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2-Phenyl-9-benzyl-8-azapurines, bearing at the 6 position an amido group interposed between the 8-
azapurine moiety and an alkyl or a substituted phenyl group, have been synthesised and assayed as
ligands for adenosine receptors. All the compounds show high affinity for the A1 adenosine receptor,
and many of them also show a good selectivity for A1 with respect to A2A and A3 adenosine receptors.
Based on the quite rich library containing such compounds and relevant biological data, QSAR models,
able to rationalise the results and to give a quantitative estimate of the observed trends were also devel-
oped. The obtained models can assist in the design of new compounds selectively active on A1 adenosine
receptor.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction nyl-ureido function at the same position was found to shift the
Adenosine is an important endogenous regulator present in
extracellular space in high concentration during metabolically
stressful conditions, such as in injury, ischemia and inflammation.
It is a powerful signalling molecule that participates in the regula-
tion of a wide variety of physiological and pathophysiological pro-
cesses mainly addressed to tissue protection and repair.1 Four
adenosine receptors subtypes were identified and cloned: A1, A2A,
A2B and A3. Up to now many ligands targeting the adenosine recep-
tor subtypes have been synthesised and developed but none of
them has reached clinical applications. Nevertheless, the interest
on designing ligands with high activity and selectivity for these
receptors is always strong due to the interesting therapeutic per-
spectives foreseen.2

In the past we obtained a number of ligands of A1 and A3 aden-
osine receptors by modifying the substituent at the 2, 6 and 9 posi-
tions of purine and 8-azapurine nucleus. A phenyl ring at the 2
position and a benzyl group at 9 position were found to be good
substituents to ensure binding with A1 and A3 receptors but not
for A2A ones. For A1 receptors, we showed that cycloalkylamino,
alkylamino and alkyl-phenylamino groups, bearing or not a hydro-
xyl function, are the best substituents for C(6) (Fig. 1 A).3–6 A phe-
ll rights reserved.

: +39 0502219605.
affinity towards A3 receptors (Fig. 1 B).7 So, we have judged that
preparing and assaying 2-phenyl-9-benzyl-8-azapurines, bearing,
at the 6 position, an amido group interposed between the 8-azap-
urine moiety and an alkyl, a cycloalkyl, a phenyl or substituted
phenyl group or an heterocyclic ring (Fig. 1 C), could be of big inter-
est in view of assaying the effect of the amido function on the affin-
ity of such molecules toward A1, A2A and A3 receptors.

We have also believed that the library of compounds acting at
the above receptor subtypes, available in our laboratory, had
became large enough to allow the development of good QSAR
models, to be subsequently exploited with predictive purposes.
A very wide variety of approaches are available nowadays for
QSAR treatment of biological data. The choice of the most suitable
ones strictly depends upon the type of data to be analysed. In this
study two different biological indicators of the receptor affinity
had to be handled: (1) percentage inhibition of specific binding
of radioligand (%i), as in the case of data referring to the A2A

and A3 receptor subtypes, and (2) inhibition constant (Ki), as in
the case of data referring to the A1 subtype. A multiple linear
regression (MLR) method was used for developing the model en-
abling activity predictions with regard to the A1 subtype, while
a data mining approach, based on decision trees, was used for
developing the QSAR model enabling activity predictions concern-
ing the A2A and A3 subtypes. In both cases high quality predictive
models were obtained.
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Figure 1. Chemical structures of 2-phenyl-9-benzyl-8-azaadenines (A), 2-phenyl-9-benzyl-N6-(arylcarbamoyl)-8-azaadenines (B), N-(9-benzyl-2-phenyl-8-azapurin-6-yl)-
amides (C).

Scheme 1. General method for the synthesis of compounds 2a–r.
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2. Chemistry

In the Scheme is depicted the general method to obtain com-
pounds 2a–q and 2r (Scheme 1).

2-Phenyl-9-benzyl-8-azaahypoxanthine,8 obtained by the pro-
cedures described,9 was transformed by reaction with phosphorus
oxychloride (POCl3) in the corresponding chloride which was not
characterised and reacted with NH3 to give the corresponding ade-
nine 1.6 Compound 1 reacted with the suitable acyl chlorides, pre-
pared from the corresponding acids and thionyl chloride, to give
the desired products 2a–q. In many cases the yield of the reaction
was not high probably due to a very low basic character of the N6 of
8-azapurines, being the lone pair delocalised in aromatic rings.
However the yields were not a problem because the starting com-
pounds are not expensive and we could obtain enough amount of
final products to perform chemical analysis and biological assays.
Compounds 2q1–3 were reduced with hydrogen and 10% Pd/C at
room pressure and temperature to give the compounds 2r1–3.

3. Biological assays

All new compounds obtained were tested in radioligand bind-
ing assays for affinity toward A1, A2A, and A3 adenosine receptors.
The results are reported in Table 1; when the percentage of inhibi-
tion resulted <60% at 10 lM, compounds were considered inactive.
Compound 2h3 has not been assayed because of its low solubility
both in DMSO and in the assay buffer Tris–HCl 50 mM, pH 7.4.

For tests involving the A1 receptors the radiolabelled antagonist
[3H]DPCPX was used, while the antagonist radioligand
[3H]ZM241385 was used in the experiments involving A2A recep-
tors. In the case of A3 receptors the agonist radioligand [3H]NECA
was used as a probe. The results are given as Ki ± SEM (nM) and/
or percentage inhibition of the radioligand, where control binding
is 0% and non-specific binding is 100%.

4. Development of QSAR models

The development of QSAR models was carried out in accordance
with the guidelines Guidance document on the validation of (Quanti-
tative) Structure–Activity Relationship [(Q)SAR] models, OECD Envi-
ronmental Health and Safety Publications, Series on Testing and
Assessment No. 69, 2007.

4.1. Endpoint selection

In this work, compounds have been tested for their A1, A2A and
A3 adenosine receptor affinity. More in detail, two different indica-
tors of the receptor affinity were collected: (1) percentage inhibi-



Table 1
Molecular structures and biological assay results of compounds towards adenosine A1, A2A and A3 receptors

CompdID Structure Percentage inhibition of specific binding of radioligand %ia and Ki ± SEM (nM) of selected compounds

Adenosine A1 receptor Adenosine A2A receptor Adenosine A3 receptor

1

N

N N
N

N

NH2

5.6 ± 1.0 147 ± 64 4219 ± 3310

N

N N
N

N

NH

O

R

R

2a 7.5 ± 1.3 110 ± 20 48%i

2b 2.2 ± 0.6 119 ± 29 3033 ± 2518

2c 2.5 ± 0.4 27%i 4686 ± 1121

2d 12 ± 2 40%i 24%i

2e
S

8.0 ± 0.6 305 ± 90 2290 ± 1735

2f1
O

12 ± 3 573 ± 25 3047 ± 2053

2f2
O

10 ± 2 161 ± 38 1637 ± 448

2g 110 ± 13 36%i 15%i

2h1

F
40 ± 10 35%i 5303 ± 1461

2h2

F
22 ± 6 21%i 5812 ± 1453

2i1

Cl
141 ± 36 38%i 410 ± 170

(continued on next page)
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Table 1 (continued)

CompdID Structure Percentage inhibition of specific binding of radioligand %ia and Ki ± SEM (nM) of selected compounds

Adenosine A1 receptor Adenosine A2A receptor Adenosine A3 receptor

2i2

Cl
70 ± 11 0%i 5338 ± ± 400

2i3

Cl
108 ± 13 30%i 3547 ± 211

2j

I
482 ± 119 41%i 103 ± 20

2k1

H3CO
1523 ± 500 13%i 51%i

2k2
OCH3

93 ± 20 12%i 5531 ± 975

2k3

OCH3
28 ± 4 17%i 5288 ± 775

2l

CH3
709 ± 84 21%i 56%i

2m1

F3C
550 ± 74 27%i 560 ± 45

2m2

CF3
163 ± 16 31%i 2506 ± 317

2m3

CF3
123 ± 34 39%i 4209 ± 156

2n

H3CH2CO
1845 ± 765 48%i 51%i

2o

H3CO

Cl
7153 ± 722 31%i 22%i

2p

O2N Cl
2143 ± 491 18%i 40%i

2q1

O2N
207 ± 14 30%i 41%i

2q2
NO2

77 ± 14 6%i 4852 ± 2000

(continued on next page)
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Table 1 (continued)

CompdID Structure Percentage inhibition of specific binding of radioligand %ia and Ki ± SEM (nM) of selected compounds

Adenosine A1 receptor Adenosine A2A receptor Adenosine A3 receptor

2q3

NO2
24 ± 7 26%i 57%i

2r1

H2N
34 ± 10 297 ± 36 4107 ± 1447

2r2

NH2
32 ± 9 4%i 59%i

2r3

NH2
7.1 ± 0.7 50%i 926 ± 269

a Data are expressed as means from 2 to 3 independent experiments performed in duplicate; individual values varied less than 15%.
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tion of specific binding of radioligand (%i) and (2) inhibition con-
stant (Ki), as described in ‘Biological assays’ section in ‘Materials
and Methods’ and in ‘Results and discussion’. Compounds and
activity values are summarised in Table 1. Different endpoints
were rationally selected on the basis of different biological behav-
iour of the assayed molecules.

All of the assayed compounds turned out to be good ligands for
the A1 adenosine receptor subtypes, which enabled measuring Ki

values. Consequently, the affinity of such compounds, expressed
in terms of Ki values, supplied the proper endpoint values in the
case of data referring to the A1 subtype. In contrast, most of the
analysed compounds were found to be, in the average, poorer li-
gands for the A2A and A3 receptors subtypes, so that only %i values
were collected for all of them, while Ki values were measured only
for most active compounds (i.e., the ones showing %i >60% at 10
lM). Consequently, affinities of compounds toward the A2A and
A3 subtypes, expressed as %i values, supplied the proper endpoint
values for such receptor subtypes. It may be worth to point out
here that expressing affinity data toward the A2A and A3 subtypes
in terms of %i (measured at 10 lM) offered the advantage that both
active and inactive compounds were considered in model building,
so ensuring a very wide sampling of the biological indicator.

4.2. Dataset building

A Dataset (DS) containing the 31 compounds reported in Table 1
was considered as the starting point. Subsequently, selected end-
points were subjected to simple mathematical transformations in
order to let them assume a proper distribution. The A1 endpoint
(Ki) was converted into pKi (�logKi) in order to have normally dis-
tributed property values. The reader is referred to http://en.wikipe-
dia.org/wiki/Normal_distribution and related links for a definition
of normal distribution.

As explained in more detail later, the development of a model
by means of a multiple linear regression requires that the above
assumption is fulfilled. The A2A and A3 endpoint (%i) was discret-
ized into two classes (‘Inactive’ and ‘Active’) as follows:

– the ‘Inactive’ class contains compounds with %i at 10 lM < 60%
– the ‘Active’ one contains compounds with %i at 10 lM P 60%

Table 2 illustrates all the 31 compounds together with pKi val-
ues for A1 receptor as well as the ‘Inactive’ or ‘Active’ class for A2A

and A3 receptors.
4.3. Molecular descriptor calculation

For each compound belonging to DS, 149 molecular descriptors
were calculated starting from molecular structures expressed in
terms of ‘molecular graphs’ (drawn in MDL IsisDraw 2.5). Such
descriptors account for molecular features of bi-dimensional (2D)
type. These descriptors may be easily calculated by most of the
computer programs suitable for molecular descriptor calculation.
In this work, they were specifically calculated by using software
developed ‘in house’. Such descriptors consist of constitutional
descriptors, information indices, topological indices and charge
descriptors. Among all molecular descriptors calculated, a selection
of the ones which showed a normal distribution was made first, as
required for proper development of a multiple linear regression
model, and for the purpose of defining the applicability domain
of the model in terms of range of molecular descriptor values.
The normal distribution of descriptors was tested by the Kolmogo-
rov-Smirnov test.10

4.4. Splitting of dataset into training set and test set pairs

It may be worth to recall here a crucial point in QSAR model
development. Any QSAR model is developed (‘trained’) over a
dataset containing known molecular structures and relevant bio-
logical property values (‘training’ set or TR set). The model needs
then to be validated on a smaller dataset (not less than 1/5 of TR
set) also containing known molecular structures and relevant
biological property values (‘test’ set or TS set). TR and TS are
sub-sets belonging to the initial DS previously mentioned. They
must be obviously (fully) disjoined with respect to each other,
in order to enable the so-called ‘external validation’ of the QSAR
model itself. Indeed, if molecular structures and relevant biolog-
ical property values (target property) are properly sampled, sta-
tistical parameters, arising from comparison between computed
and experimental target property values enable quantifying the
predictive power of the model. It has also to be taken into ac-
count that any QSAR model gives valid predictions only if the
molecules, to be predicted by it, fall into the chemical space de-
fined by the specific ‘training set’ (TR set), where such a model
has been developed, i.e. fall into the so-called Applicability Do-
main (AD) of the QSAR model itself. Based on what mentioned
above, rational splitting of the initial DS into suitable TR/TS set
pairs, so that every point (compound) of the TS is closed to at
least one point (compound) of the TR, in the chemical space

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution


Table 2
Summary of actual and predicted affinity values towards adenosine A1 receptor and actual and predicted affinity class towards A2A and A3 receptors, for all the analysed
compounds, together with their belonging to TR or TS, and with molecular descriptors involved in the models

Compd
ID

TR/TS A1 actual
pKi

A1 predicted
pKi

A2A actual
class

A2A predicted
class

A3 actual
class

A3 predicted
class

RpID-
TPC

B6HES J8 MIC0

1 TR 8.25 8.43 Active Active Active Active 62.933 2.879 0.007 1.472
2a TR 8.12 8.38 Active Active Inactive Active 63.987 3.067 0.007 1.549
2b TS 8.65 8.44 Active Active Active Active 67.39 3.107 0.006 1.532
2c TR 8.61 8.27 Inactive Inactive Active Active 70.734 3.149 0.006 1.515
2d TS 7.91 7.87 Inactive Inactive Inactive Inactive 74.013 3.193 0.007 1.498
2e TR 8.1 7.88 Active Active Active Active 78.361 3.12 0.006 1.662
2f1 TR 7.93 7.88 Active Active Active Active 78.361 3.121 0.006 1.619
2f2 TS 8 7.88 Active Active Active Active 78.361 3.116 0.006 1.619
2g TR 6.96 7.28 Inactive Inactive Inactive Inactive 85.568 3.16 0.007 1.521
2h1 TR 7.4 6.51 Inactive Inactive Active Active 91.665 3.16 0.009 1.634
2h2 TR 7.66 7.32 Inactive Inactive Active Active 84.757 3.164 0.007 1.634
2i1 TR 6.85 6.51 Inactive Inactive Active Active 91.665 3.16 0.009 1.634
2i2 TR 7.16 7.32 Inactive Inactive Active Active 84.757 3.162 0.007 1.634
2i3 TS 6.97 7.09 Inactive Inactive Active Active 84.784 3.164 0.008 1.634
2j TR 6.32 6.51 Inactive Inactive Active Active 91.665 3.16 0.009 1.634
2k1 TS 5.82 6.22 Inactive Inactive Inactive Inactive 97.355 3.16 0.009 1.576
2k2 TR 7.03 7.05 Inactive Inactive Active Active 90.044 3.199 0.007 1.576
2k3 TR 7.55 7.16 Inactive Inactive Active Active 83.494 3.212 0.008 1.576
2l TR 6.15 7.09 Inactive Inactive Inactive Inactive 84.784 3.203 0.008 1.507
2m1 TR 6.26 6.06 Inactive Inactive Active Active 95.964 3.182 0.01 1.742
2m2 TR 6.79 6.89 Inactive Inactive Active Active 88.626 3.226 0.008 1.742
2m3 TS 6.91 7.01 Inactive Inactive Active Active 81.789 3.236 0.009 1.742
2n TR 5.73 6.17 Inactive Inactive Inactive Inactive 102.75 3.329 0.008 1.56
2o TR 5.15 6.24 Inactive Inactive Inactive Inactive 96.89 3.164 0.009 1.684
2p TS 5.67 5.88 Inactive Inactive Inactive Inactive 99.471 3.34 0.01 1.781
2q1 TR 6.68 6.08 Inactive Inactive Inactive Inactive 99.964 3.334 0.009 1.674
2q2 TR 7.11 6.95 Inactive Inactive Active Active 92.055 3.296 0.007 1.674
2q3 TS 7.62 7.09 Inactive Inactive Inactive Active 84.68 3.286 0.008 1.674
2r1 TS 7.46 6.51 Active Inactive Active Inactive 91.665 3.16 0.009 1.547
2r2 TR 7.5 7.32 Inactive Inactive Inactive Inactive 84.757 3.175 0.007 1.547
2r3 TS 8.15 7.09 Inactive Inactive Active Inactive 84.784 3.187 0.008 1.547
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defined by molecular descriptors, is one of the most critical steps
in developing QSAR models.

In this work, selection of the TR/TS couple was carried out as
follows: DS molecules were first classified by using a hierarchical
clustering algorithm.11 In hierachical clustering, data are itera-
tively partitioned, until convergence is reached. Proceeding mole-
cule by molecule, each step of the clustering is characterised by
the creation of a tree which contains molecules at its leaves and
the whole DS at the root node. The method used herein is a com-
monly known agglomerative method, where molecules are added
one by one and the forming tree is opportunely updated at each
step, assigning each examined compound to most appropriate
leave, i.e. cluster. At each stage the method merges the two clusters
which are closest (i.e. most similar) to each other. The ‘choice’ of
the cluster to be assigned to a particular molecule was made in this
work by using the ‘average linkage clustering’ method, were the
distance (or similarity) between clusters is defined as the average
distance, i.e. the average of the distances, between each object
(compound) of the first cluster and each object (compound) of
the second cluster.

In this way, five clusters were obtained, two of which have only
one compound, the other clusters have 8, 8 and 13 compounds,
respectively. Secondly, individual TS molecules were extracted
from each cluster with more the one compound, by randomly
selecting about 30% of the molecules belonging to each cluster.
All the selected molecules constituted the test set, while all the
remaining molecules made up the training set. As a result, the
present DS with 31 entities in all, was split into a TR with 21 com-
pounds and a TS with 10 compounds, as summarised in Table 2.

All of the obtained QSAR models were also compared with cor-
responding models wherein the TR/TS couples were randomly se-
lected. In this case too, 21 compounds were assigned to TR and
10 compounds to TS.
4.5. Model building

A method based on multiple linear regression (MLR) was used for
developing the model enabling activity predictions with regard to
A1 receptor subtypes. The general purpose of multiple linear
regression is to relate the dependent variable y (biological activity)
to a number of independent variables xi (molecular descriptors) by
using a linear equation such as

y ¼ aþ b1 � x1 þ � � � þ bi � xi

where a is the intercept and bi is the ith regression coefficient. In or-
der to safely apply the MLR method of correlation, some assump-
tions need to be fulfilled, such as

– data have to be continuous
– variables must have a normal distribution
– independent and dependent variables must be linearly related
– assumption of homoscedasticity
– residual errors have to be normally distributed.

The data treated in building the QSAR models described here
fulfilled the above assumptions.

A data mining approach which makes use of the C4.5 decision
trees was used for developing the QSAR model enabling activity
predictions with regard to the A2A and A3 receptor subtypes. This
approach does not require that assumptions regarding data distri-
bution are satisfied. Decision trees were built to evaluate possible
relationships between molecular features (expressed in terms of
molecular descriptors) and biological activity within the two clas-
ses, ‘Active’ and ‘Inactive’, for both receptor subtypes. The con-
struction of a decision tree is a recursive operation which first
selects a descriptor (numeric) to be placed at the root node by
comparing it with a predetermined constant value, so making a
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binary split (also called two-way split) depending on whether the
descriptor value is higher or lower/equal than that constant.
Descriptors to be used for splitting are determined by the informa-
tion gain, a statistical property measuring the homogeneity of each
daughter node. Descriptors providing a higher value of information
gain will afford more homogeneous nodes and will be selected to
build the tree. In contrast, descriptors providing low values of
information gain will be discarded, that way leading to a pre-selec-
tion of descriptors to be included in tree construction. This opera-
tion allows splitting the TR into two branches, so leading to two
subsets, according to threshold defined by the constant. Such a
step can be then recursively repeated for each branch, finally
resulting in leaf nodes which represent classification. A molecule
is classified following down the tree along its branches, according
to the values of descriptors in the successive nodes. When that
molecule reaches a leaf, the class assigned to that leaf will also
be assigned to the molecule.12 The iterative repetition of assign-
ments for all the TR molecules gave the decision tree models for
affinity on A2A and A3 adenosine receptors.

4.6. Statistical validation of the models: assessment of
goodness of fit, robustness and predictive ability

Goodness of fit, robustness and predictive ability of the devel-
oped models were used herein as statistical measures of perfor-
mance of the models themselves.

The term ‘goodness of fit’ is intended to mean how well the
model predicts compounds belonging to TR. The term ‘robustness’
indicates the stability of the model, and consequently the one of
predictions obtained by it, when changes are introduced in the
TR and the model is re-trained taking into account these changes.
It may be assessed by leave-one-out cross-validation (LOO-CV), in
which each compound is in turn left out of the TR, so that each new
reduced TR is used to develop a model enabling classification of
each compound left out. The term ‘predictive ability’ means how
well the model predicts compounds belonging to the external TS.
The obtained models were also submitted to response permutation
tests (as described in the above mentioned OECD guidelines, page
52–53 and references cited therein) in order to verify the absence
of chance correlation.

For the regression model developed at A1 receptor, all the
above-mentioned assumptions were observed. Moreover, among
parameters commonly used in model validation, the statistical
parameters which give a measure of performance of the model
are reported in Table 3. On regard to the models concerning activ-
ity at the A2A and A3 receptors, the results of the classification may
be organised in a confusion matrix. Confusion matrix (also called
contingency matrix) shows actual classes in rows and classes, pre-
dicted by the classifier, in columns. The main diagonal represents
the numbers of correctly classified molecules, that is, cases where-
in the actual class is the same as the predicted class; in contrast,
numbers out of the main diagonal represent misclassifications.
Table 3
Model validation on adenosine A1 receptor. Statistical parameters coming from training se

TR LOO

Residual sum of squares SSRES 4.37 Predictive residual sum
Multiple correlation coefficient R2 0.72 Multiple correlation coe
Multiple correlation coefficient R2 by permutation

test
0.088 —

Number of predictor variables 2 Number of predictor va
Number of observation 21 Number of observation
Adjusted R2 0.68 Adjusted Q2

Standard error of estimate 0.49 Standard error of predic
F-Value 22.70 F-Value
Standard deviation error of estimate 0.46 Standard deviation erro

SDEP
The most significant statistical parameters are reported, which
may be obtained from values included within confusion matrices.
In particular, sensitivity, specificity, concordance, positive predic-
tivity, negative predictivity, false positive rate, and false negative
rate constitute the Cooper statistics,13 while the remaining param-
eters are the ones commonly used in model validation. Such
parameters refer to TR, LOO-CV and TS classifications.

4.7. Estimate of applicability domain of the models

In the cases of all the three models, TS molecules were selected
so that they belonged to the applicability domain of the model,
which is determined by TR molecules. Several different methods
enabling to define the applicability domain are available. They
have been recently reviewed in Jaworska et al.14

In this work, a double check was performed. First of all, all TS
molecules were verified to possess a 2-phenyl-9-benzyl-8-azaade-
nine substructure. This is because the models were developed with
the aim of screening new libraries of compounds bearing such moi-
eties, which obviously drove the selection of the TR molecules.
Then the range of values taken by each individual descriptor for
TR molecules was considered to define the applicability domain
for each model, since descriptors involved in them had shown to
be ‘normally’ distributed.

5. Results and discussion

5.1. Biological results

Biological results demonstrated that the synthesised com-
pounds possess a very interesting affinity toward A1 receptors,
either the ones having an alkyl or cycloalkyl group bound to the
carbonyl carbon, or the ones having a phenyl or a substituted phe-
nyl at the same position. On the contrary, the new compounds are
in general not significantly active on A2A and A3 receptor subtypes.
Thus, such new compounds possess good selectivity properties to-
ward A1 receptor with respect to A2A and A3 receptors.

5.2. QSAR study of A1 adenosine receptor ligands

The following equation defines the QSAR model developed on
A1 adenosine receptor:

pKi ¼ 13:2595� 0:0509ð�0:0104Þ � RpID-TPC

� 231:3828ð�95:376Þ � J8

where each descriptor is reported with its regression coefficient
(±standard deviation of the estimated regression coefficient).
The model is based on multiple linear regression. It was devel-
oped on a total of 21 instances, that is, 21 compounds belonging
to TR. Descriptors involved in this model are RpID-TPC and J8.
RpID-TPC is the difference between Randic conventional bond-or-
t, leave-one-out cross validation and test set, respectively

TS

of squares PRESS 5.68 Predictive residual sum of squares PRESS 2.60
fficient Q2 0.63 Multiple correlation coefficient R2 0.70

— — —

riables 2 Number of predictor variables 2
21 Number of observation 10
0.59 Adjusted R2 0.61

tion 0.56 Standard error of prediction 0.61
18.17 F-Value 8.15

r of prediction 0.52 Standard deviation error of prediction
SDEP

0.51



Figure 2. Plot illustrating the trend of errors versus actual pKi values.
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der (p) ID number and total path count.15,16 J8 is the Gavez mean
topological charge index of 8 order.17 Since RpID-TPC values are
positive real numbers, lower values of RpID-TPC correspond to
higher affinity values. This descriptor reflects features linked to
steric hindrance in the molecule. RpID-TPC values increase
according to the following scale: no substituent < cyclopro-
pyl < cyclobutyl < cyclopentyl < cyclohexyl < aromatic five-mem-
bered rings < aromatic six-membered rings. Concerning the
substitution pattern of phenyl ring, the para and meta positions
appear to be preferred, while the ortho position is not, due to ste-
ric hindrance reasons. Particularly unfavoured are large substitu-
ents at the ortho position. Since J8 values are positive real
numbers, lower values of J8 correspond to higher affinity values.
This descriptor accounts for both steric and electronic features
of compounds. According to such trend, a substituent with opti-
mal size is a 4- or 5-membered ring. Concerning the substitution
pattern of phenyl ring, electron-withdrawing groups at meta posi-
tions are preferred. Mono-substitution at ortho positions and di-
substitution are not allowed.

Normal distribution of variables and errors (according to the
Kolmogorov–Smirnov test), as well as homoscedasticity criteria
were observed (see plot in Fig. 2).

The model was developed on compounds belonging to a TR
with regard to which a well representative TS set was selected.
It was then validated by means of leave-one-out cross-validation
(LOO-CV) and by using the external test set (TS). Statistical
parameters resulting from LOO-CV and TS validations are re-
ported in Table 3. The applicability domain of this model, calcu-
lated on the basis of descriptor ranges, is summarised as follows:
Table 4
Confusion matrices concerning QSAR models for adenosine A2A (left) and A3 (right) recept

A2A training set 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 4 0

Inactive 0 17

A2A LOO 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 3 0

Inactive 1 17

A2A test set 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 2 1

Inactive 0 7
RpID-TPC values: from 62.933 to 102.75 and J8 values: from
0.006 to 0.01.

5.3. QSAR study of A2A adenosine receptor ligands

The QSAR model developed on A2A adenosine receptor is a J48
pruned tree, with an overall size of 3 and 2 leaves. It can be easily
represented in the form of the rules reported below:
Rule 1:

B6HES <= 3.121
?class Active (4/0)

Rule 2:

B6HES > 3.121
?class Inactive (17/0)

The numbers in parentheses represent the number of compounds
predicted to belong to the corresponding class (on the left) and the
number of misclassified molecules (on the right, zero in both cases).
The only descriptor involved in this model is B6HES, that is, burden
sixth highest eigenvalue weighted by Sanderson electronegativi-
ties.18,19 It reflects both steric and electronic features of compounds,
where steric hindrance mostly affects affinity. In particular, a prefer-
ence scale for substituents is the one which follows: no substitu-
ents = cyclopropyl > cyclobutyl > aromatic five-membered rings >
cyclopentyl = cyclohexyl = phenyl, the latter one fitting worst in the
receptor. Concerning the substitution pattern of phenyl ring, it may
modulate affinity, but it does not seem to lead to high affinity
compounds.

Also in this case, the applicability domain of the model was cal-
culated on the basis of the range of descriptor values, i.e. B6HES
values must range from 2.879 to 3.34.

Confusion matrices concerning the QSAR model for A2A adeno-
sine receptor are illustrated in Table 4, left column. The most sig-
nificant statistical parameters for the A2A model are reported in
Table 5, left column.

5.4. QSAR study of A3 adenosine receptor ligands

The QSAR model developed on A3 adenosine receptor also relies
on a J48 pruned tree, with an overall size of 7 and 4 leaves. It can be
ors, calculated on the basis of TR, LOO and TS, respectively

A3 training set 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 14 0

Inactive 1 6

A3 LOO 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 11 3

Inactive 4 3

A3 test set 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 4 2

Inactive 1 3



Table 5
Most significant statistical parameters obtained from values included within confusion matrices, for both A2A (left) and A3 (right) models, each calculated on the basis of TR, LOO
and TS, respectively

A2A A3

TR LOO TS TR LOO TS

Sensitivity (true positive rate) 1 1 0.67 1 0.78 0.67
Specificity (true negative rate) 1 0.94 1 0.86 0.43 0.75
Concordance or accuracy 1 0.95 0.9 0.95 0.67 0.7
Positive predictivity 1 0.75 1 0.93 0.73 0.8
Positive predictivity by permutation test 0.99 — — 0.21 — —
Negative predictivity 1 1 0.88 1 0.5 0.6
Negative predictivity by permutation test 0.082 — — 0.97 — —
False positive (over-classification) rate 0 0.056 0 0.147 0.57 0.25
False negative (over-classification) rate 0 0 0.33 0 0.21 0.33
Error rate 0 0.048 0.1 0.048 0.33 0.3
NO-model error rate, NOMER% 19.05 14.28 30 66.67 66.67 60
Prior probability of active class 0.25 0.33 0.33 0.071 0.071 0.17
Prior probability of inactive class 0.059 0.056 0.14 0.14 0.14 0.25
Prior proportional probability of active class 0.19 0.14 0.3 0.67 0.67 0.6
Prior proportional probability of inactive class 0.81 0.86 0.7 0.33 0.33 0.4
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represented by means of the following rules:
Rule 1:

RpID-TPC<=70.734
MIC0<=1.56
?class Active (3/1)

Rule 2:

RpID-TPC > 70.734
MIC0<=1.56
?class Inactive (3/0)

Rule 3:

RpID-TPC<=95.964
MIC0 > 1.56
?class Active (12/0)

Rule 4:

RpID-TPC > 95.964
?class Inactive (3/0)

The numbers in parentheses represent the number of compounds
predicted to belong to the corresponding class (on the left) and the
number of misclassified molecules (on the right). Descriptors in-
volved in this model are: RpID-TPC and MIC0. RpID-TPC is the differ-
ence between Randic conventional bond-order (p) ID number and
total path count.15,16 MIC0 is Mean information content index (0-or-
der) and it accounts for the atomic composition of the molecule.20

Rule 1 (MIC0 <= 1.56 and RpID-TPC <= 70.734: Active (3/1)) says
that the absence of any group or the presence or cyclopropyl, cyclobu-
tyl or cyclopentyl rings are allowed, leading to an appreciable activity.

Rule 2 (RpID-TPC > 70.734 e MIC0 <= 1.56: Inactive (3.0)) says
that cyclohexyl groups or phenyl rings substituted by electron-
releasing (such as alkyl) groups make a compound to be inactive.

Rule 3 (RpID-TPC <= 95.964 and MIC0 > 1.56 Active (12/0)) says
that a phenyl substitution by electron-withdrawing groups as
methoxy, halogen, nitro and trifluoromethyl is allowed at meta
and para positions, leading to active compounds. It should be noted
that the definition of activity on this receptor is in the high nano-
molar or micromolar range.

Rule 4 (RpID-TPC > 95.964: Inactive (3.0)) says that compounds
with a ortho-phenyl substitution by electron-withdrawing groups
as alkyloxy, nitro and/or trifluoromethyl are inactive.
For this model as well, the applicability domain was calculated
on the basis of descriptor range. It can be illustrated as follows:
RpID-TPC ranges from 62.933 to 102.75, while MIC0 ranges from
1.472 to 1.781.

Confusion matrices concerning the QSAR model for A3 adeno-
sine receptor are illustrated in Table 4, right column. The most sig-
nificant statistical parameters for the A3 model are reported in
Table 5, right column.
5.5. Comparison of the developed QSAR models with
corresponding models obtained by random selection of TR/TS
pairs

Random splitting of dataset in TR and TS lead to composition
summarised in Table 6.

The following equation defines the random QSAR model devel-
oped on A1 adenosine receptor:

pKi ¼ 13:3128� 0:0483ð�0:0115Þ � RpID-TPC

� 262:094ð�86:488Þ � J8

The applicability domain of this random model, calculated on
the basis of descriptor ranges, is summarised as follows: RpID-
TPC values: from 62.933 to 99.964 and J8 values: from 0.006 to
0.01. Statistical parameters describing this model are reported in
Table 7.

Normal distribution of variables and errors (according to the
Kolmogorov–Smirnov test), as well as homoscedasticity criteria
were observed (see plot in Fig. 3)

The random QSAR model developed on A2A adenosine receptor
is represented in the form of the rules reported below:
Rule 1:

B6HES <= 3.121
?class Active (3/0)

Rule 2:

B6HES > 3.121
?class Inactive (18/0)

Also in this case, the applicability domain of the random model
was calculated on the basis of the range of descriptor values, that
is, B6HES values must range from 2.879 to 3.34. Confusion matrices
concerning the random QSAR model for A2A adenosine receptor are
illustrated in Table 8, left column. The most significant statistical



Table 6
Summary of actual and predicted affinity values towards adenosine A1 receptor and actual and predicted affinity class towards A2A and A3 receptors, for all the analysed compounds, together with their belonging to TRrandom or TSrandom,
and with molecular descriptors involved in the random models

Compd ID TRrandom or TSrandom A1 actual pKi A1 predicted pKi A2A actual class A2A predicted class A3 actual class A3 predicted class RpID-TPC B6HES J8 MIC0

1 TRrandom 8.25 8.44 Active Active Active Active 62.933 2.879 0.007 1.472
2a TSrandom 8.12 8.39 Active Active Inactive Active 63.987 3.067 0.007 1.549
2b TSrandom 8.65 8.49 Active Active Active Active 67.39 3.107 0.006 1.532
2c TRrandom 8.61 8.32 Inactive Inactive Active Active 70.734 3.149 0.006 1.515
2d TRrandom 7.91 7.9 Inactive Inactive Inactive Inactive 74.013 3.193 0.007 1.498
2e TSrandom 8.1 7.96 Active Active Active Active 78.361 3.12 0.006 1.662
2f1 TRrandom 7.93 7.96 Active Active Active Active 78.361 3.121 0.006 1.619
2f2 TRrandom 8 7.96 Active Active Active Active 78.361 3.116 0.006 1.619
2g TRrandom 6.96 7.35 Inactive Inactive Inactive Inactive 85.568 3.16 0.007 1.521
2h1 TRrandom 7.4 6.53 Inactive Inactive Active Active 91.665 3.16 0.009 1.634
2h2 TRrandom 7.66 7.39 Inactive Inactive Active Active 84.757 3.164 0.007 1.634
2i1 TRrandom 6.85 6.52 Inactive Inactive Active Active 91.665 3.16 0.009 1.634
2i2 TSrandom 7.16 7.39 Inactive Inactive Active Active 84.757 3.162 0.007 1.634
2i3 TRrandom 6.97 7.12 Inactive Inactive Active Active 84.784 3.164 0.008 1.634
2j TRrandom 6.32 6.52 Inactive Inactive Active Active 91.665 3.16 0.009 1.634
2k1 TSrandom 5.82 6.25 Inactive Inactive Inactive Inactive 97.355 3.16 0.009 1.576
2k2 TRrandom 7.03 7.13 Inactive Inactive Active Active 90.044 3.199 0.007 1.576
2k3 TRrandom 7.55 7.18 Inactive Inactive Active Active 83.494 3.212 0.008 1.576
2l TRrandom 6.15 7.12 Inactive Inactive Inactive Inactive 84.784 3.203 0.008 1.507
2m1 TRrandom 6.26 6.06 Inactive Inactive Active Active 95.964 3.182 0.01 1.742
2m2 TSrandom 6.79 6.94 Inactive Inactive Active Active 88.626 3.226 0.008 1.742
2m3 TRrandom 6.91 7 Inactive Inactive Active Active 81.789 3.236 0.009 1.742
2n TSrandom 5.73 6.26 Inactive Inactive Inactive Inactive 102.75 3.329 0.008 1.56
2o TRrandom 5.15 6.28 Inactive Inactive Inactive Inactive 96.89 3.164 0.009 1.684
2p TRrandom 5.67 5.89 Inactive Inactive Inactive Inactive 99.471 3.34 0.01 1.781
2q1 TRrandom 6.68 6.13 Inactive Inactive Inactive Inactive 99.964 3.334 0.009 1.674
2q2 TRrandom 7.11 7.03 Inactive Inactive Active Active 92.055 3.296 0.007 1.674
2q3 TRrandom 7.62 7.13 Inactive Inactive Inactive Active 84.68 3.286 0.008 1.674
2r1 TSrandom 7.46 6.53 Active Inactive Active Active 91.665 3.16 0.009 1.547
2r2 TSrandom 7.5 7.39 Inactive Inactive Inactive Active 84.757 3.175 0.007 1.547
2r3 TSrandom 8.15 7.12 Inactive Inactive Active Active 84.784 3.187 0.008 1.547
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Figure 3. Plot illustrating the trend of errors versus actual pKi values obtained by
random QSAR models.
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parameters for the random A2A model are reported in Table 9, left
column.

The random QSAR model developed on A3 adenosine receptor
can be represented by means of the following rules:

Rule 1:

RpID-TPC <= 70.734
MIC0 <= 1.56
?class Active (2/1)
Table 7
Model validation on adenosine A1 receptor. Statistical parameters coming from random tr

TRrandom LOOrandom

Residual sum of squares SSRES 4.23 Predictive residual sum
Multiple correlation coefficient R2 0.71 Multiple correlation coe
Multiple correlation coefficient R2 by permutation

test
0.098 —

Number of predictor variables 2 Number of predictor va
Number of observation 21 Number of observation
Adjusted R2 0.68 Adjusted Q2

Standard error of estimate 0.49 Standard error of predic
F-Value 22.55 F-Value
Standard deviation error of estimate 0.45 Standard deviation erro

SDEP

Table 8
Confusion matrices concerning random QSAR models for adenosine A2A (left) and A3 (righ

A2A TRrandom 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 3 0

Inactive 0 18

A2A LOOrandom 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 2 0

Inactive 1 18

A2A TSrandom 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 3 1

Inactive 0 6
Rule 2:

RpID-TPC > 70.734
MIC0 <= 1.52
?class Inactive (3/0)

Rule 3:

RpID-TPC <= 95.964
MIC0 > 1.52
?class Active (13/1)

Rule 4:

RpID-TPC > 95.964
?class Inactive (3/0)

The applicability domain for random model was calculated on
the basis of descriptor range. It can be illustrated as follows:
RpID-TPC ranges from 62.933 to 99.964, while MIC0 ranges from
1.472 to 1.781. Confusion matrices concerning the random QSAR
model for A3 adenosine receptor are illustrated in Table 8, right col-
umn. The most significant statistical parameters for the random A3

model are reported in Table 9, right column.
It is possible to observe, from comparison between models

described in Sections 5.2-5.4 and the ones described in Section 5.5,
that, in the cases investigated here, the models show satisfactory
statistical parameters even when developed on a random basis.
aining set, random leave-one-out cross validation and random test set, respectively

TSrandom

of squares PRESS 5.32 Predictive residual sum of squares PRESS 2.59
fficient Q2 0.64 Multiple correlation coefficient R2 0.71

— — —

riables 2 Number of predictor variables 2
21 Number of observation 10
0.60 Adjusted R2 0.62

tion 0.54 Standard error of prediction 0.61
18.76 F-Value 8.15

r of prediction 0.50 Standard deviation error of prediction
SDEP

0.51

t) receptors, calculated on the basis of TRrandom, LOOrandom and TSrandom, respectively

A3 TRrandom 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 14 0

Inactive 1 6

A3 LOOrandom 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 11 3

Inactive 4 3

A3 TSrandom 2 � 2 contingency table

Predicted class

Active Inactive

Actual class Active 6 0

Inactive 2 2



Table 9
Most significant statistical parameters obtained from values included within confusion matrices, for both A2A (left) and A3 (right) models, each calculated on the basis of TRrandom,
LOOrandom and TSrandom, respectively

A2A A3

TRrandom LOOrandom TSrandom TRrandom LOOrandom TSrandom

Sensitivity (true positive rate) 1 1 0.75 0.93 0.78 1
Specificity (true negative rate) 1 0.95 1 1 0.43 0.5
Concordance or accuracy 1 0.95 0.9 0.95 0.67 0.8
Positive predictivity 1 0.67 1 1 0.73 0.75
Positive predictivity by permutation test 0.099 — — 0.2 — —
Negative predictivity 1 1 0.86 0.86 0.5 1
Negative predictivity by permutation test 0.073 — — 0.98 — —
False positive (over-classification) rate 0 0.053 0 0 0.57 0.5
False negative (over-classification) rate 0 0 0.25 0.067 0.21 0
Error rate 0 0.048 0.1 0.047 0.33 0.2
NO-model error rate, NOMER% 14.28 9.521 40 71.43 66.67 60
Prior probability of active class 0.33 0.5 0.25 0.067 0.071 0.17
Prior probability of inactive class 0.056 0.052 0.17 0.17 0.14 0.25
Prior proportional probability of active class 0.14 0.095 0.4 0.71 0.67 0.6
Prior proportional probability of inactive class 0.86 0.9 0.6 0.28 0.33 0.4
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Thus, their performances result comparable with the models pre-
sented in Sections 5.2-5.4 and may be mechanicistically interpreted
in the same way, leading to same conclusions about structure–activ-
ity relationships. Nevertheless we wanted to follow two different
ways, in developing QSAR models for the particular system analysed
here, as in some of our previous experiences, we had found that the
method described in *****paragraph Sections 5.2-5.4 allowed find-
ing better models in more complex biological systems. Of course
the simplest QSAR models have to be exploited in predictive tasks.
6. Conclusions

Compounds that have been synthesised, tested and presented in
this paper show high affinity for the A1 adenosine receptor, and
many of them also show a good selectivity for A1 with respect to
A2A and A3 adenosine receptors. Based on the quite rich library con-
taining such compounds and relevant biological data, QSAR models,
able to rationalise the results and to give a quantitative estimate of
the observed trends were developed. The obtained models can assist
in the design of new compounds selectively active on A1 adenosine
receptor, according to the general rule which can consequently be
inferred: RpID-TPC should be as low as possible, approaching the va-
lue of 70.730, within the range 70.730–95.964; MIC0 should be in the
range 1.472–1.56; B6HES should be higher than 3.121, and in the
range 3.121–3.34; J8 should be as low as possible, approaching the
value of 0.006, within the range 0.006–0.01.

The models suggest some structural characteristics of the binding
site structure for each receptor subtype. The binding pockets of A2A

and A3 receptors are expected to be slightly smaller than the one of
the A1 subtype. With regard to the ligand structural features, the
group showing the highest affinity for A1 adenosine receptor and
the best selectivity A1/A2A–A3 was found to be cyclohexyl. It should
be taken as the best scaffold where different substituents at posi-
tions 3 and 4 may be introduced, in order to obtain new compounds
able to modulate affinity and/or selectivity for adenosine receptors.

7. Experimental

7.1. Chemistry

Melting points were determined using a Reichert Kofler hot-
stage apparatus and are uncorrected. Infrared spectra were re-
corded with a FT-IR spectrometer Nicolet/Avatar in Nujol mulls.
Routine nuclear magnetic resonance spectra were recorded in
DMSO-d6 solution on a Varian Gemini 200 spectrometer operating
at 200 MHz. Mass spectra were obtained on a Hewlett–Packard
5988 A spectrometer using a direct injection probe and an electron
beam energy of 70 eV. Evaporation was performed in vacuo (rotary
evaporator). Analytical TLC was carried out on Merck 0.2 mm pre-
coated silica gel aluminium sheets (60 F-254). Flash-column chro-
matography was performed using Merck Kieselgel 60 (230–400
mesh). Elemental analyses, indicated by the symbols of the ele-
ments, were performed by our Analytical Laboratory and were
within ±0.4% of the theoretical values.

7.1.1. N-(9-Benzyl-2-phenyl-9H-8-azapurin-6-yl)-amides 2a–q
To a solution of 8-azaadenine 1 (100 mg, 3.3 mmol) obtained as

described in the literature7 in 100 ml of anhydrous toluene, a solu-
tion of the suitable acyl chloride (25 mmol) in 10 ml of toluene was
added drop-wise, then the mixture was refluxed for 24 h. After
cooling the mixture was evaporated under reduced pressure, the
residue diluted with chloroform and the solution washed with
10% NaOH, 10% HCl and water. After evaporation, the solid ob-
tained was crystallised.

Compound 2a: yield: 18%; mp 169–170 �C (95% EtOH); IR: 3249
(NH); 1688 (C@O). 1H NMR: 11.79 (br s, 1H exch., NH); 8.53 (m, 2H,
arom), 7.60–7.36 (m, 8H, arom); 5.96 (s, 2H, CH2–benzyl); 2.37 (s,
1H, COCH); 0.99 (m, 4H, CH2). MS: 370 (M+, 10), 215 (100) m/z. Ele-
mental analysis for C21H18N6O: Calcd: C, 68.09; H, 4.90; N, 22.69.
Found: C, 67.98; H, 4.86; N, 22.50.

Compound 2b: yield: 13%; mp 160–162 �C (95% EtOH); IR: 3255
(NH); 1685 (C@O). 1H NMR: 11.31 (br s, 1H exch., NH); 8.50 (m, 2H,
arom); 7.61–7.35 (m, 8H, arom); 5.95 (s, 2H, CH2–benzyl); 3.74 (m,
1H, COCH); 2.26 (m, 4H, CH2); 1.97 (m, 2H, CH2). MS: 384 (M+, 4),
129 (100) m/z. Elemental analysis for C22H20N6O: Calcd: C, 68.73;
H, 5.24; N, 21.86. Found: C, 68.90; H, 5.31; N, 22.02.

Compound 2c: yield: 15%; mp 170–171 �C (95% EtOH); IR: 3284
(NH); 1693 (C@O). 1H NMR: 11.42 (br s, 1H exch., NH); 8.51 (m, 2H,
arom); 7.58–7.34 (m, 8H, arom); 5.94 (s, 2H, CH2–benzyl); 3.28
(m,1H, COCH); 1.97–1.62 (m, 8H, CH2). MS: 398 (M+, 5), 129
(100) m/z. Elemental analysis for C23H22N6O: Calcd: C, 69.33; H,
5.57; N, 21.09. Found: C, 69.48; H, 5.51; N, 21.12.

Compound 2d: yield: 13%; mp 166–167 �C (95% EtOH); IR: 3255
(NH); 1689 (C@O). 1H NMR: 11.40 (br s, 1H exch., NH); 8.51 (m, 2H,
arom); 7.57–7.34 (m, 8H, arom); 5.94 (s, 2H, CH2–benzyl); 2.84 (m,
1H, COCH); 1.96–1.22 (m, 10H, CH2). MS: 421(M+, 5); 129 (100) m/
z. Elemental analysis for C24H24N6O: Calcd: C, 69.88; H, 5.86; N,
20.37. Found: C, 69.57; H, 5.51; N, 20.13.

Compound 2e: yield: 28%; mp 213–215 �C (95% EtOH); IR: 3229
(NH); 1667 (C@O). 1H NMR: 11.92 (s, 1H exch., NH); 8.53 (m, 2H,
arom); 8.27 (m, 1H, arom); 8.04 (m, 1H, arom); 7.60–7.25 (m,
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9H, arom); 5.97 (s, 2H, CH2–benzyl). MS: 412 (M+, 30), 189 (100)
m/z. Elemental analysis for C22H16N6OS: Calcd: C, 64.06; H, 3.91;
N, 20.38. Found: C, 63.95; H, 4.23; N, 20.22.

Compound 2f1: yield: 30%; mp 197–198 �C (95% EtOH); IR: 3326
(NH); 1689 (C@O). 1H NMR: 11.72 (br s, 1H exch., NH); 8.54 (m, 2H,
arom); 8.07 (d, J = 1.0 Hz, 1H, arom); 7.70 (d, J = 3.2 Hz, 1H, arom);
7.60–7.34 (m, 8H, arom); 6.79 (m, 1H, arom); 5.97 (s, 2H, CH2–ben-
zyl). MS: 396 (M+, 5), 233 (100) m/z. Elemental analysis for
C22H16N6O2: Calcd: C, 66.66; H, 4.07; N, 21.20. Found: C, 66.80;
H, 4.24; N, 21.28.

Compound 2f2: yield: 5%; mp 216–218 �C (95% EtOH); IR: 3126
(NH); 1685 (C@O). 1H NMR: 11.64 (br s, 1H exch., NH); 8.67 (s, 1H,
arom); 8.55 (m, 2H, arom); 7.89 (m, 1H, arom); 7.61–7.09 (m, 9H,
arom); 5.98 (s, 2H, CH2–benzyl). MS: 396 (M+, 2), 233 (100) m/z.
Elemental analysis for C22H16N6O2: Calcd: C, 66.66; H, 4.07; N,
21.20. Found: C, 66.74; H, 4.21; N, 21.33.

Compound 2g: yield: 20%; mp 227–228 �C (95% EtOH); IR: 3239
(NH); 1672 (C@O). 1H NMR: 11.95 (br s, 1H exch., NH); 8.48 (m, 2H,
arom); 8.08 (d, J = 8.6 Hz, 2H arom); 7.68–7.32 (m, 11H, arom);
5.91 (s, 2H, CH2–benzyl). MS: 436 (M+, 5), 273 (100) m/z. Elemental
analysis for C24H18N6O: Calcd: C, 70.92; H, 4.46; N, 20.68. Found: C,
70.79; H, 4.25; N, 20.38.

Compound 2h1: yield: 80%; mp 193–194 �C (95% EtOH); IR:
3236 (NH); 1685 (C@O). 1H NMR: 12.16 (s, 1H exch., NH); 8.21
(m, 2H, arom); 7.82–7.28 (m, 12H, arom); 5.96 (s, 2H, CH2–benzyl).
MS: 424 (M+, 11), 273 (100) m/z. Elemental analysis for
C24H17FN6O: Calcd: C, 67.92; H, 4.04; N, 19.80. Found: C, 68.14;
H, 4.20; N, 20.18.

Compound 2h2: yield: 21%; mp 210–211 �C (95% EtOH); IR:
3242 (NH); 1675 (C@O). 1H NMR: 11.97 (s, 1H exch., NH); 8.49
(m, 2H, arom); 7.91 (m, 2H, arom); 7.56–7.34 (m, 10H, arom);
5.98 (s, 2H, CH2–benzyl). MS: 424 ((M+, 10), 273 (100) m/z. Ele-
mental analysis for C24H17FN6O: Calcd: C, 67.92; H, 4.04; N,
19.80. Found: C, 68.19; H, 4.28; N, 20.01.

Compound 2h3: yield: 25%; mp 260–261 �C (95% EtOH); IR:
3252 (NH); 1674 (C@O). 11.90 (s, 1H exch., NH); 8.49 (m, 2H,
arom); 8.15 (m, 2H, arom); 7.57–7.37 (m, 10H, arom); 5.99 (s,
2H, CH2–benzyl). MS: 424 (M+, 9) 395 (100) m/z. Elemental analy-
sis for C24H17FN6O: Calcd: C, 67.92; H, 4.04; N, 19.80. Found: C,
67.99; H, 4.12; N, 19.98.

Compound 2i1: yield: 15%; mp 210–211 �C (95% EtOH); IR: 3238
(NH); 1688 (C@O). 1H NMR: 12.31 (s, 1H exch., NH); 8.09 (m, 2H,
arom); 7.68–7.36 (m, 12H, arom); 5.96 (s, 2H, CH2–benzyl). MS:
405 (31) 139 (100) m/z. Elemental analysis for C24H17ClN6O: Calcd:
C, 65.38; H, 3.89; N, 19.06. Found: C, 65.11; H, 4.12; N, 19.17.

Compound 2i2: yield: 35%; mp 219–220 �C (95% EtOH); IR: 3241
(NH); 1685 (C@O). 1H NMR: 11.98 (br s, 1H exch., NH); 8.48 (m, 2H,
arom); 8.14 (s, 1H, arom); 8.05 (d, J = 7.2 Hz, 1H); 7.79–7.36 (m,
10H, arom); 5.99 (s, 2H, CH2–benzyl). MS: 440 (M+, 15) 178 (100)
m/z. Elemental analysis for C24H17ClN6O: Calcd: C, 65.38; H, 3.89;
N, 19.06. Found: C, 65.37; H, 4.00; N, 19.21.

Compound 2i3: yield: 58%; mp 220–221 �C (95% EtOH); IR: 3259
(NH); 1674 (C@O). 1H NMR: 11.87 (br s, 1H exch., NH); 8.35 (m, 2H,
arom); 8.12 (d, J = 7.0 Hz, 2H, arom); 7.70–7.34 (m, 10H, arom);
5.99 (s, 2H, CH2-benzyl). MS: 440 (M+, 82) 160 (100) m/z. Elemen-
tal analysis for C24H17ClN6O: Calcd: C, 65.38; H, 3.89; N, 19.06.
Found: C, 65.41; H, 3.92; N, 19.10.

Compound 2j: yield: 44%; mp 178–180 �C (95% EtOH); IR: 3201
(NH); 1665 (C@O). 1H NMR: 12.24 (br s, 1H exch., NH); 8.11 (m, 2H,
arom); 7.97 (d, J = 7.8 Hz, 1H); 7.56–7.32 (m, 11H, arom); 5.96 (s,
2H, CH2–benzyl). MS: 405(M+-128, 90), 91 (100) m/z. Elemental
analysis for C24H17IN6O: Calcd: C, 54.15; H, 3.22; N, 15.79. Found:
C, 54.31; H, 3.12; N, 15.56.

Compound 2k1: yield: 34%; mp 198–200 �C (95% EtOH); IR:
3281 (NH); 1704 (C@O). 1H NMR: 11.70 (br s, 1H exch., NH);
8.34 (m, 2H, arom); 7.85 (d, J = 7.6 Hz, 1H); 7.53–7.17 (m, 11H,
arom); 5.96 (s, 2H, CH2-benzyl); 3.86 (s, 3H, OCH3). MS: 436 (M+,
8), 233 (100) m/z. Elemental analysis for C25H20N6O2: Calcd: C,
68.80; H, 4.62; N, 19.25. Found: C, 69.10; H, 4.87; N, 19.46.

Compound 2k2: yield: 40%; mp 179–180 �C (95% EtOH); IR:
3245 (NH); 1677 (C@O). 1H NMR: 11.83 (br s, 1H exch., NH);
8.34 (m, 2H, arom); 7.70–7.24 (m, 12H, arom); 5.97 (s, 2H, CH2–
benzyl); 3.86 (s, 3H, OCH3). MS: 436 (M+, 5), 233 (100) m/z. Ele-
mental analysis for C25H20N6O2: Calcd: C, 68.80; H, 4.62; N,
19.25. Found: C, 68.99; H, 4.81; N, 19.25.

Compound 2k3: yield: 36%; mp 223–224 �C (95% EtOH); IR:
3240 (NH); 1670 (C@O). 1H NMR: 11.81 (br s, 1H exch., NH);
8.50 (m, 2H, arom); 8.10 (d, J = 7.6 Hz, 2H, arom); 7.57–7.35 (m,
8H, arom); 7.11(d, J = 7.6 Hz, 2H, arom); 5.97 (s, 2H, CH2–benzyl);
3.86 (s, 3H, OCH3). MS: 436 (M+, 7), 91 (100) m/z. Elemental anal-
ysis for C25H20N6O2: Calcd: C, 68.80; H, 4.62; N, 19.25. Found: C,
68.83; H, 4.67; N, 19.38.

Compound 2l: yield: 32%; mp > 300 �C (95% EtOH); IR: 3266
(NH); 1671 (C@O). 1H NMR1H NMR: 11.81 (br s, 1H exch.,
NH); 8.51 (m, 2H, arom); 8.03 (d, J = 3.8 Hz, 2H, arom); 7.60–
7.37 (m, 10H, arom); 5.99 (s, 2H, CH2–benzyl); 2.44 (s, 3H,
CH3). MS: 420 (M+, 4), 91 (100) m/z. Elemental analysis for
C25H20N6O: Calcd: C, 71.41; H, 4.79; N, 19.99. Found: C,
71.33; H, 4.86; N, 19.94.

Compound 2m1: yield: 20%; mp 178–180 �C (MeOH); IR: 3221
(NH); 1675 (C@O). 1H NMR: 12.38 (br s, 1H exch., NH); 8.03–
7.76 (m, 6H, arom); 7.52–7.35 (m, 8H, arom); 5.95 (s, 2H, CH2-ben-
zyl). MS: 474 (M+, 8), 173 (100) m/z. Elemental analysis for
C25H17F3N6O: Calcd: C, 63.29; H, 3.61; N, 17.71. Found: C, 63.15;
H, 3.47; N, 17.62.

Compound 2m2: yield: 39%; mp 210 �C dec. (95% EtOH); IR:
3235 (NH); 1679 (C@O). 1H NMR: 12.29 (br s, 1H exch., NH);
8.49–8.35 (m, 4H, arom); 8.20 (d, J = 7.4, 1H, arom), 7.83 (t,
J = 7.6 Hz, 1H, arom); 7.58–7.36 (m, 8H, arom); 5.99 (s, 2H, CH2–
benzyl). MS: 474 (M+, 10), 173 (100) m/z. Elemental analysis for
C25H17F3N6O: Calcd: C, 63.29; H, 3.61; N, 17.71. Found: C, 63.45;
H, 3.55; N, 17.60.

Compound 2m3: yield: 25%; mp 230–231 �C (MeOH); IR: 3247
(NH); 1672 (C@O). 1H NMR: 12.14 (br s, 1H exch., NH); 8.48 (m,
2H, arom); 8.24 (d, J = 8.2 Hz, 2H, arom); 7.96 (d, J = 8.2 Hz, 2H,
arom), 7.59–7.32 (m, 8H, arom); 5.98 (s, 2H, CH2-benzyl). MS:
474 (M+, 12), 445 (100) m/z. Elemental analysis for C25H17F3N6O:
Calcd: C, 63.29; H, 3.61; N, 17.71. Found: C, 63.57; H, 3.74; N,
17.82.

Compound 2n: yield: 11%; mp 169–170 �C (95% EtOH); IR: 3262
(NH); 1696 (C@O). 1H NMR: 11.70 (br s, 1H exch., NH); 8.34 (m, 2H,
arom); 7.93 (m, 1H, arom); 7.63–7.15 (m, 11H, arom); 5.97 (s, 2H,
CH2-benzyl); 4.13 (q, J = 6.8 Hz, 2H, CH2); 1.30 (t, J = 6.8 Hz, 3H,
CH3). MS: 450 (M+, 2), 273 (100) m/z. Elemental analysis for
C26H22N6O2: Calcd: C, 69.32; H, 4.92; N, 18.66. Found: C, 69.45;
H, 4.81; N, 18.85.

Compound 2o: yield: 34%; mp 206–207 �C (95% EtOH); IR:
3283 (NH); 1701 (C@O). 1H NMR: 11.86 (br s, 1H exch., NH);
8.29 (m, 2H, arom), 7.78 (d, J = 2.6 Hz, 1H, arom), 7.67–7.21
(m, 10H, arom), 5.98 (s, 2H, CH2-benzyl), 3.80 (s, 3H, CH3).
MS: 471(M+, 2), 436 (100) m/z. Elemental analysis for
C25H19ClN6O2: Calcd: C, 63.76; H, 4.07; N, 17.85. Found: C,
63.54; H, 4.02; N, 17.98.

Compound 2p: yield: 40%; mp 175–176 �C (95% EtOH); IR: 3227
(NH); 1682 (C@O). 1H NMR: 12.59 (s, 1H exch., NH); 8.42 (s, 1H
arom), 8.07–7.86 (m, 4H, arom), 7.56–7.36 (m, 8H, arom), 5.96 (s,
2H, CH2-benzyl). MS: 485(M+, 20), 215 (100) m/z. Elemental anal-
ysis for C24H16ClN7O3: Calcd: C, 59.33; H, 3.32; N, 20.18. Found:
C, 59.21; H, 3.55; N, 20.05.

Compound 2q1: yield: 30%; mp 195–196 �C (95% EtOH); IR:
3234 (NH); 1682 (C@O). 1H NMR: 12.51 (br s, 1H exch., NH);
8.30 (m, 2H, arom); 7.98–7.29 (m, 12H, arom); 5.95 (s, 2H, CH2–
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benzyl). MS: 451 (M+, 2), 149 (100) m/z. Elemental analysis for
C24H17N7O3: Calcd: C, 63.85; H, 3.80; N, 21.72. Found: C, 63.91;
H, 3.60; N, 21.48.

Compound 2q2: yield: 22%; mp 185–186 �C (isopropanol); IR:
3225 (NH); 1669 (C@O). 1H NMR1H NMR: 12.27 (br s, 1H exch.,
NH); 8.91 (s, 1H, arom); 8.51 (m, 4H, arom); 7.89 (t, J = 8 Hz, 1H,
arom); 7.59–7.33 (m, 8H, arom); 5.99 (s, 2H, CH2–benzyl). MS:
451 (M+, 4), 150 (100) m/z. Elemental analysis for C24H17N7O3:
Calcd: C, 63.85; H, 3.80; N, 21.72. Found: C, 63.58; H, 3.99; N,
21.93.

Compound 2q3: yield: 30%; mp 245–246 �C (isopropanol); IR:
3311 (NH); 1705 (C@O). 1H NMR: 12.25 (br s, 1H exch., NH);
8.43–8.27 (m, 6H, arom); 7.57–7.36 (m, 8H, arom); 5.99 (s, 2H,
CH2–benzyl). MS: 451 (M+, 5), 149 (100) m/z. Elemental analysis
for C24H17N7O3: Calcd: C, 63.85; H, 3.80; N, 21.72. Found: C,
63.60; H, 3.52; N, 21.99.

7.1.2. N-(9-Benzyl-2-phenyl-9H-8-azapurin-6-yl)-amides 2r1–
2r3

Compounds 2q1–3 (0.2 mmol) were hydrogenated over 10% Pd/
C (20 mg) in EtOH (250 ml) at room pressure and temperature.
After filtration, the solvent was evaporated to give the desired
compound that was crystallised from isopropanol.

Compound 2r1: yield: 85%; mp 166–167 �C; IR: 3471, 3363,
3262 (NH); 1667 (C@O). 1H NMR1H NMR: 11.3 (br s, 1H exch.,
NH); 8.50 (m, 2H, arom); 7.95–7.20 (m, 12H, arom); 6.16 (br s,
2H exch., NH2); 5.96 (s, 2H, CH2–benzyl). MS: 421 (M+, 5), 273
(100) m/z. Elemental analysis for C24H19N7O3: Calcd: C, 68.40; H,
4.54; N, 23.26. Found: C, 68.45; H, 4.70; N, 23.23.

Compound 2r2: yield: 95%; mp 221–222 �C; IR: 3395, 3313,
3160 (NH); 1639 (C@O). 1H NMR: 11.59 (br s, 1H exch., NH);
8.50 (m, 2H, arom); 7.59–7.16 (m, 11H, arom); 6.84 (m, 1H, arom);
5.97 (s, 2H, CH2–benzyl); 5.40 (br s, 2H exch., NH2). MS: 421 (M+,
45), 332 (100) m/z. Elemental analysis for C24H19N7O3: Calcd: C,
68.40; H, 4.54; N, 23.26. Found: C, 68.61; H, 4.35; N, 23.55.

Compound 2r3: yield: 85%; mp 208–210 �C; IR: 3290 (NH); 1678
(C@O). 1H NMR: 11.2 (br s, 1H exch., NH); 8.51 (m, 2H, arom): 7.84
(d, J = 8.6 Hz, 2H, arom); 7.59–7.35 (m, 8H, arom); 6.63 (d, J = 8.6
Hz, 2H, arom); 6.07 (s, 2H exch., NH2); 5.95 (s, 2H, CH2–benzyl).
MS: 421 (M+, 14), 273 (100) m/z. Elemental analysis for
C24H19N7O3: Calcd: C, 68.40; H, 4.54; N, 23.26. Found: C, 68.66;
H, 4.45; N, 23.52.

7.2. Biological assays

7.2.1. Materials
[3H]DPCPX (120 Ci/mmol) was purchased from Amersham

Pharmacia, [3H]NECA (20.6 Ci/mmol), was from PerkinElmer Live
Science. [3H]ZM241385 (27.4 Ci/mmol) was from Tocris Cookson.
DPCPX, NECA and CPA were from Sigma–Aldrich. All other chemi-
cals used, at analytical grade, were from standard commercial
sources.

7.2.2. Radioligand binding assays
Membranes of rat cerebral cortex which express A1 adenosine

receptors were prepared by using the method described by Lohse
et al.21 with slight modifications. Male Wistar rat brain cortex
was homogenised in 10 volumes of ice-cold 0.32 M sucrose, 20
mM Tris–HCl buffer pH 7.4 with 30 strokes in Dounce homoge-
niser. The homogenate was centrifuged at 1000g for 10 min to re-
move the nuclear fraction, and the resulting supernatant was
centrifuged at 30,000g for 30 min. The pellet was re-suspended
using 10 strokes in Dounce homogeniser in 10 volumes of ice-cold
5 mM Tris–HCl buffer pH 7.4 for 30 min. After 60 strokes in Dounce
homogeniser, the resulting synaptosomal membranes were prein-
cubated for 30 min at 37 �C with 2 U/ml of adenosine deaminase to
remove endogenous adenosine. The membrane suspension was
then centrifuged at 48,000g for 30 min, and the resulting pellet
was re-suspended in 10 volumes of 50 mM Tris–HCl buffer pH
7.4, and stored at �80 �C until binding assays were made.

For displacement experiments involving A1 adenosine recep-
tors, rat cortex membranes (40 mg of protein) were incubated at
25 �C for 60 min with [3H]DPCPX 0.5 nM (Kd = 0.4 nM), and increas-
ing concentrations of the compounds, in a final volume of 0.4 ml of
Tris–HCl buffer. Non-specific binding was measured in the pres-
ence of 100 lM CPA. Binding reactions were terminated by dilution
with ice-cold 50 mM Tris–HCl buffer pH 7.4. Samples were then fil-
tered through Whatman GF/C glass-fibre filters using a Brandel cell
harvester. Filters were washed three times with 4 ml of the same
buffer. Bound radioactivity was measured in a liquid scintillation
counter (1600 TR Packard) after the addition of 4 ml of scintillation
liquid (Emulsifier-Safe, Packard).

Slightly different conditions were set in the case of binding dis-
placement experiments regarding A2A and A3 adenosine receptors.
Membranes of CHO cells expressing recombinant human A2A or A3

receptors were prepared as previously described.5 Membranes (40
mg of protein) were incubated with [3H]ZM241385 6 nM (Kd = 4
nM) in the experiments involving the A2A subtype, and [3H]NECA
15 nM (Kd = 150 nM) in the ones involving the A3 subtype, and
the compounds to be assayed, at fixed concentration (10 lM) or
at increasing concentrations of the compounds in duplicate, in a fi-
nal volume of 0.4 ml of Tris–HCl buffer for 120 min at 25 �C.
Non-specific binding was measured in the presence of 100 lM NECA
in the case of A2A, and 100 lM R-PIA in the case of A3 binding assay.

Samples were handled as mentioned before.
Binding parameters were calculated by GRAPHPAD PRISM software

(GRAPHPAD, San Diego, CA, USA).
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