
This article was downloaded by: [University of Sydney]

On: 02 January 2015, At: 05:46

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Triton-B-Catalyzed, Efficient, One-Pot Synthesis of Carbazates Through Alcoholic Tosylates

Devdutt Chaturvedi $^{\rm a}$, Amit K. Chaturvedi $^{\rm b}$, Nisha Mishra $^{\rm b}$ & Virendra Mishra $^{\rm b}$

^a Bio-organic Chemistry Division, Indian Institute of Integrative Medicine, Jammu-Tawi, India

To cite this article: Devdutt Chaturvedi, Amit K. Chaturvedi, Nisha Mishra & Virendra Mishra (2008) Triton-B-Catalyzed, Efficient, One-Pot Synthesis of Carbazates Through Alcoholic Tosylates, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 38:22, 4013-4022, DOI: 10.1080/00397910802269259

To link to this article: http://dx.doi.org/10.1080/00397910802269259

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness,

^b Synthetic Research Laboratory, Department of Chemistry, B.S.A.P.G. College, Mathura, India Published online: 20 Oct 2008.

or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Synthetic Communications®, 38: 4013–4022, 2008 Copyright © Taylor & Francis Group, LLC ISSN: 0039-7911 print/1532-2432 online

DOI: 10.1080/00397910802269259

Triton-B-Catalyzed, Efficient, One-Pot Synthesis of Carbazates Through Alcoholic Tosylates

Devdutt Chaturvedi, ¹ Amit K. Chaturvedi, ² Nisha Mishra, ² and Virendra Mishra ²

¹Bio-organic Chemistry Division, Indian Institute of Integrative Medicine, Jammu-Tawi, India ²Synthetic Research Laboratory, Department of Chemistry, B.S.A.P.G. College, Mathura, India

Abstract: A quick, efficient, one-pot synthesis of carbazates was accomplished in high yields by the reaction of various tosylates of primary, secondary, and *tert* alcohols, with a variety of substituted hydrazines using the benzyltrimethylammonium hydroxide (Triton-B)/CO₂ system. The reaction conditions are mild with simpler workup procedures than the reported methods.

Keywords: Alcoholic tosylates, benzyltrimethylammonium hydroxide, carbazates, carbon dioxide, substituted hydrazines

INTRODUCTION

Organic carbazates have unique applications in the fields of pharmaceuticals^[1] and agrochemicals,^[2] as intermediates in organic synthesis,^[3] for protection of amino groups in peptide synthesis,^[4] as linkers in solid-phase organic synthesis,^[5] and as donor ligands in complexation reactions with transition metals.^[6] To satisfy demand, their synthesis has been changed from the use of costly and toxic chemicals such as phosgene^[7] and its derivatives,^[8] directly or indirectly, to the abundantly available cheap and safe reagents such as CO₂. However, their formation using

Received April 23, 2008.

Address correspondence to Devdutt Chaturvedi, Bio-organic Chemistry Division, Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi180001, India. E-mail: ddchaturvedi002@yahoo.co.in

 CO_2 employed harsh reaction conditions, such as use of strong bases, higher reaction temperatures, and longer reaction times. [9] Thus, we were prompted to embark on improved procedures. Our group [10] has been engaged during the past several years with the development of new methodologies for the preparation of carbamates, dithiocarbamates, and related compounds using cheap, abundantly available, and safe reagents such as CO_2 and CS_2 . Recently, [11] we found that benzyltrimethyl ammonium hydroxide (Triton-B) is the best catalyst for the synthesis of carbamates, dithiocarbamates, and dithiocarbonates (xanthates). We report here an efficient, one-pot synthesis of carbazates from a variety of alcoholic tosylates of primary, secondary, and tertiary alcohols and substituted hydrazines using the Triton-B/ CO_2 system. The alcoholic tosylates of various alcohols were prepared from the corresponding alcohols using *p*-toluene sulfonyl chloride following the standard procedure. [12]

RESULTS AND DISCUSSION

Substituted hydrazine was taken in dry dimethylsulfoxide (DMSO) and purified CO₂ gas was bubbled in it at 60 °C for 30 min with constant stirring. Triton-B was slowly added with constant stirring. The reaction continued for another 30 min, and then corresponding alcoholic tosylate was added. The reaction was further continued until complete as checked by Thin-Layer Chromatography (TLC; see Table 1). It is proposed that the O⁻ of the carbazate ion produced will attack the electrophilic carbon of the respective alcoholic tosylates to afford carbazates in high yields (80-98%) at room temperature in 2-4h, as mentioned in Table 1. The reaction proved to be successful, and the desired products were isolated and their structures confirmed by various spectroscopic and analytical techniques. Thus, various substituted hydrazines were reacted with a variety of alcoholic tosylates of primary, secondary, and tertiary alcohols using the Triton-B/CO₂ system to afford the corresponding carbazates in good to excellent yields (Table 1). The reaction conditions are shown in Scheme 1.

We have screened several solvents such as *n*-heptane, *n*-hexane, acetonitrile, benzene, toluene, methanol, dichloromethane, chloroform, DMSO, dimethylformamide, and hexamethylphosphoric triamide, of which dry DMSO proved to be the most suitable at room temperature.

In conclusion, we developed a convenient and efficient protocol for the one-pot, three-component coupling of various substituted hydrazines with a variety of alcoholic tosylates of primary, secondary, and tertiary alcohols via a CO₂ bridge using Triton-B. This method generates the

Entry	\mathbb{R}^1	R^2	R^3	R	Time (h)
1	<i>n</i> -C ₃ H ₇	Н	Н	4-MeO-Ph	3
2	PhCH ₂ CH ₂	Н	Н	Ph	3
3	PhCH ₂	Н	Н	Ph	4
4	Ph	Н	Н	Bn	4.5
5	C_2H_5	Me	Н	Bn	4.5
6	Ph-4-MeO	Н	H	Ph-3-NO ₂	4.5
7	C_3H_7	Н	H	Ph-4-NO ₂	4.5
8	C_3H_7	Н	H	$Ph-2,4-NO_2$	5
9	C_3H_7	Н	H	Naphthyl	4.5
10	C_4H_9	C_4H_9	H	Ph	4.5
11	C_4H_9	C_4H_9	C_4H_9	Ph	4.5
12	C_5H_{11}	Н	Н	n-C ₄ H ₉	3
13	C_7H_{15}	Н	Н	Ph	3
14	C_9H_{19}	Н	Н	n - C_4H_9	3
15	C_3H_7	C_3H_7	Н	Ph	4.5
16	Ph	CH ₃	Н	Ph	5

Table 1. Conversion of alcoholic toylates into carbazates of formula 1–16

corresponding carbazates in good to excellent yields. Furthermore, this method exhibits substrate versatility, mild reaction conditions, and experimental convenience. This synthetic protocol is believed to offer a more general method for the formation of the carbon–oxygen bonds essential to numerous organic syntheses.

EXPERIMENTAL

Chemicals were procured from Merck, Aldrich, and Fluka chemical companies. Reactions were carried out under an atmosphere of argon. IR spectra (4000–200 cm⁻¹) were recorded on a Bomem MB-104 Fourier

$$R^{2}$$
 $\xrightarrow{R^{3}}$ $OTs + \prod_{H} \frac{P}{N} \frac{P}{$

^aAll the products were characterized by IR, NMR, and mass spectroscopic data.

^bIsolated yields.

transform infrared (FTIR) spectrophotometer using the neat technique, whereas NMRs were scanned on an AC-300F NMR (300-MHz), instrument using CDCl₃ and some other deutrated solvents and TMS as internal standard. Elemental analyses were conducted by means of a Carlo-Erba EA 1110-CNNO-S analyzer and agreed favorably with calculated values.

Typical Experimental Procedure

To a stirred solution (under Ar) of 3 mmol of substituted hydrazine in $5\,\mathrm{cm}^3$ of anhyd. DMSO, $2\,\mathrm{cm}^3$ Triton-B were slowly added and carbon dioxide was continuously bubbled in it at $60\,^{\circ}\mathrm{C}$. Then the mixture was stirred for $0.5\,\mathrm{h}$, at which point $3\,\mathrm{cm}^3$ of the required alkyl halide was added over a period of $5\,\mathrm{min}$. The stirring was further continued until the completion of the reaction (cf. Table 1). The reaction mixture was poured into $20\,\mathrm{cm}^3$ of water, and the organic layer was extracted with $3\times10\,\mathrm{cm}^3$ EtOAc. The organic layer was washed with $20\,\mathrm{cm}^3$ of $0.1\,\mathrm{N}$ HCl, $25\,\mathrm{cm}^3$ of saturated solution of NaHCO₃, and $30\,\mathrm{cm}^3$ of brine, and then dried (Na₂SO₄) and concentrated to get the desired compound.

Data

N'-(4-Methoxyphenyl) Hydrazine Carboxylic Acid Butyl Ester (1, $C_{12}H_{18}N_2O_3$)

Yield: 94%; mp: oil; IR (neat) $\ddot{v} = 1680 \,\mathrm{cm}^{-1}$; ^{1}H NMR (CDCl₃) $\delta = 0.96$ (t, 3H, $J = 7.3 \,\mathrm{Hz}$), 1.34 (m, 2H), 1.86 (m, 2H), 3.73 (s, 3H), 4.12 (t, 2H), 4.85 (m, NH), 6.74–7.66 (m, 4H), 8.0 (br, NH); ^{13}C NMR (CDCl₃) $\delta = 13.7$, 19.5, 32.5, 63.5, 112.5, 114.9, 134.5, 152.4, 160.6 (C=O) ppm; MS (EI): m/z = 238.

N'-Phenyl Hydrazine Carboxylic Acid 3-Phenyl Propyl Ester (2, $C_{16}H_{18}N_2O_2$)

Yield: 96%; mp: oil; IR (neat) \ddot{v} = 1685 cm⁻¹; ¹H NMR (CDCl₃) δ = 1.92 (m, 2H), 2.56 (t, 2H, J = 7.2 Hz, Ph. CH_2), 4.10 (t, 2H), 4.67 (br, NHPh), 6.66–7.12 (m, 10H, Ar-H), 8.0 (br, NH); ¹³C NMR (CDCl₃), δ = 32.4, 34.4, 63.5, 112.6, 119.4, 125.7, 128.8, 129.6, 138.7, 161 (C=O) ppm; MS: m/z = 270.

N'-Phenyl Hydrazine Carboxylic Acid Phenethyl Ester (3, C₁₅H₁₆N₂O₂)

Yield: 87%; mp: oil; IR (neat) \ddot{v} = 1681 cm⁻¹; ¹H NMR (CDCl₃) δ = 2.83 (2H, t, J = 6.7 Hz, Ph. CH_2 CH₂O), 4.42 (t, 2H, J = 7.2 Hz, Ph CH_2 O), 4.77 (br, H, PhNH), 6.69–7.15 (m, 10H, Ar-H), 8.05 (br, NH); ¹³C NMR (CDCl₃), δ = 35.5, 65.9, 112.3, 118.6, 128.5, 129.5, 140.3, 142.5, 165.4 (C=O) ppm; MS: m/z = 256.

N'-Butyl Hydrazine Carboxylic Acid Benzyl Ester (4, C₁₂H₁₈N₂O₂)

Yield: 92%; mp: oil; IR (neat) $\ddot{v} = 1680 \text{ cm}^{-1}$; ¹H NMR (CDCl₃) $\delta = 0.99$ (t, 3H, CH₃), 1.34 (m, 2H, CH_2 CH₃), 1.56 (m, 2H, CH_2 ·CH₂CH₃), 2.15 (br, NH), 2.66 (m, 2H, NH CH_2), 5.13 (s, 2H, Ph CH_2), 7.10–7.19 (m, 5H, Ar-H), 8.0 (br, NH); ¹³C NMR (CDCl₃), $\delta = 13.8$, 20.3, 31.6, 51.2, 69.3, 126.8, 127.6, 128.5, 141.8, 158 (C=O) ppm; MS: m/z = 222.

N'-Butyl Hydrazine Carboxylic Acid Sec-butyl Ester (5, C₉H₂₀N₂O₂)

Yield: 90%; mp: oil; IR (neat) $\ddot{v} = 1681 \text{ cm}^{-1}$; ¹H NMR (CDCl₃) $\delta = 0.98$ (t, 3H, CH₃), 1.15 (t, 3H, CH₃), 1.38 (m, 2H, CH₂· CH₃), 1.42 (d, 3H, CHCH₃), 1.56 (m, 2H, CH₂CH₂), 2.0 (br, H, NH), 2.66 (m, 2H, NHCH₂), 4.20 (m, CHCH₃), 8.0 (br, NH); ¹³C NMR (CDCl₃) $\delta = 8.2$, 13.8, 19.2, 20.5, 29.3, 71.4, 156.9 (C=O) ppm; MS: m/z = 188.

N'-(3-Nitrophenyl)-hydrazine Carboxylic Acid 4-Methoxy Benzyl Ester (6, $C_{15}H_{15}N_3O_5$)

Yield: 85%; mp: oil; IR (neat) $\ddot{v} = 1682 \text{ cm}^{-1}$; ¹H NMR (CDCl₃) $\delta = 3.73$ (s, 3H, O*CH*₃), 4.05 (br, H, *NHPh* · O*Me*), 5.34 (s, 2H), 6.66–7.69 (m, 8H, Ar-H), 8.1 (br, NH); ¹³C NMR (CDCl₃) $\delta = 69.3$, 107.6, 114.8, 118.8, 128.5, 129.9, 133.6, 143.6, 148.7, 160.6 (C=O) ppm; MS: m/z = 317.

N'-(4-Nitrophenyl)-hydrazine Carboxylic Acid Butyl Ester (7, $C_{11}H_{15}N_3O_4$)

Yield: 85%; mp: oil; IR (neat) $\ddot{v} = 1682 \, \mathrm{cm}^{-1}$; ¹H NMR (CDCl₃) $\delta = 0.99$ (t, 3H, CH₃), 1.36 (m, 2H, CH_2 CH₃), 1.57 (m, 2H, OCH₂ · CH_2), 4.04 (br, N, $NHArNO_2$), 6.92–8.15 (m, 4H, Ar-H), 8.0 (br, NH); ¹³C NMR (CDCl₃) $\delta = 13.8$, 21.7, 32.3, 63.7, 113.5, 124.6, 138.8, 143.3, 159 (C=O) ppm; MS: m/z = 253.

N'-(2,4-Dinitro-phenyl)hydrazinecarboxylic Acid Butyl Ester (**8**, $C_{11}H_{14}N_4O_6$)

Yield: 80%; mp: oil; IR (neat) \ddot{v} = 1681 cm⁻¹; ¹H NMR (CDCl₃) δ = 0.98 (t, 3H, CH₃), 1.36 (m, 2H, CH_2 CH₃), 1.59 (m, 2H, SCH₂ · CH_2), 4.08 (br, N, $NHArNO_2$), 7.19–9.50 (m, 3H, Ar-H), 8.10 (br, NH); ¹³C NMR (CDCl₃) δ = 13.8, 19.3, 31.8, 63.8, 113.6, 119.2, 130.2, 132.8, 139.7, 143.3, 160 (C=O) ppm; MS: m/z = 298.

N'-Naphthalen-2-yl Hydrazine Carboxylic Acid Butyl Ester (9, $C_{15}H_{18}N_2O_2$)

Yield: 83%, mp: oil; IR (neat) $\ddot{v} = 1681 \text{ cm}^{-1}$; ^{1}H NMR (CDCl₃) $\delta = 0.96$ (t, 3H, CH₃), 1.36 (m, 2H, *CH*₂CH₃), 1.57 (m, 2H, OCH₂ · *CH*₂), 4.05 (br, H, Ar-N*H*), 4.12 (t, 2H), 6.76–7.55 (m, 7H, Ar-H), 8.02 (br, NH); ^{13}C NMR (CDCl₃) $\delta = 13.9$, 22.1, 32.5, 33.9, 107.4, 117.2, 121.3, 124.5, 126.6, 127.2, 133.5, 142.6, 161 (C=O) ppm; MS: m/z = 258.

N'-Phenyl-hydrazine Carboxylic Acid 1-Butyl Pentyl Ester (10, $C_{16}H_{26}N_2O_2$)

Yield: 89%; mp: oil; IR (neat) $\ddot{v} = 1682 \text{ cm}^{-1}$; ¹H NMR (CDCl₃) $\delta = 0.99$ (t, 6H, CH₃), 1.33 (m, 4H, *CH*₂CH₂CH), 1.38 (m, 4H, *CH*₂CH₃), 1.54 (m, 4H, CH*CH*₂), 3.95 (t, H, O*CH*), 4.15 (br, H, *NH*Ar), 6.66–7.18 (m, 5H, Ar-H), 8.0 (br, NH); ¹³C NMR (CDCl₃) $\delta = 14.3$, 23.1, 28.5, 36.2, 72.7, 112.2, 119.3, 129.0, 142.4, 158 (C=O) ppm; MS: m/z = 278.

N'-Phenyl-hydrazine Carboxylic Acid 1,1-Dibutyl Pentyl Ester (11, $C_{20}H_{34}N_2O_2$)

Yield: 88%; mp: oil; IR (neat) $\ddot{v} = 1684 \text{ cm}^{-1}$; ¹H NMR (CDCl₃) $\delta = 0.96$ (t, 9H, CH₃), 1.29 (m, 4H, $CH_2\text{CH}_2\text{C}$), 1.33 (m, 4H, $CH_2\text{CH}_3$), 1.50 (m, 4H, CH CH_2), 4.0 (br, H, NH-Ar), 6.67–7.19 (m, 5H, Ar-H), 8.0 (br, NH); ¹³C NMR (CDCl₃) $\delta = 14.3$, 23.5, 26.8, 39.8, 72.4, 112.5, 119.3, 129.6, 142.2, 162 (C=O) ppm; MS: m/z = 334.

N'-Butyl-hydrazine Carboxylic Acid Hexyl Ester (12, C₁₁H₂₄N₂O₂)

Yield: 96%; mp: oil; IR (neat) $\ddot{v} = 1684 \text{ cm}^{-1}$; ¹H NMR (CDCl₃) $\delta = 0.98$ (t, 6H, CH₃), 1.30 (m, 4H, CH₂CH₂CH₂CH₃), 1.36 (t, 2H, CH₂CH₃),

1.58 (m, 2H, NHCH₂ CH_2), 1.63 (t, 2H, CH_2 N), 2.0 (br, 2H, NH), 2.66 (t, 2H, NH CH_2), 4.10 (t, 2H, O CH_2), 8.0 (br, NH); ¹³C NMR (CDCl₃) δ = 13.7, 14.1, 20.2, 23.1, 28.6, 31.5, 32.6, 69.5, 164.5 (C=O) ppm; MS: m/z = 216.

N'-Phenyl-hydrazine Carboxylic Acid n-Octyl Ester (13, C₁₅H₂₄N₂O₂)

Yield: 96%; mp: oil; IR (neat) $\ddot{\upsilon} = 1685 \, \text{cm}^{-1}$; ¹H NMR (CDCl₃) $\delta = 0.96$ (t, 3H, CH₃), 1.30 (m, 8H, CH₂), 1.35 (m, 2H, CH₂CH₃), 1.63 (m, 2H, OCH₂CH₂), 4.0 (br, H, Ph.NH), 4.12 (t, 2H, OCH₂), 6.66–7.25 (m, 5H, Ar-H), 8.0 (br, NH); ¹³C NMR (CDCl₃) $\delta = 14.5$, 23.10, 27.5, 30.5, 32.5, 63.6, 112.2, 129.6, 118.9, 142.2, 163 (C=O) ppm; MS: m/z = 264.

N'-Butyl Hydrazine Carboxylic Acid Decyl Ester (14, C₁₅H₃₂N₂O₂)

Yield: 98%; mp: oil; IR (neat) $\ddot{v} = 1683 \,\mathrm{cm}^{-1}$; ¹H NMR (CDCl₃), $\delta = 0.97$ (s, 3H, CH₃), 0.99 (s, 3H, CH₃), 1.29 (m, 12H, CH₂), 1.34 (m, 4H, CH₂CH₃), 1.57 (m, 2H, CH₂CH₂CH₃), 2.0 (br, NH), 2.65 (m, 2H, NHCH₂), 4.12 (t, 2H, OCH₂), 8.0 (br, NH); ¹³C NMR (CDCl₃) $\delta = 13.7$, 14.5, 20.3, 23.1, 28.9, 30.6, 30.9, 31.5, 32.5, 63.5, 160 (C=O) ppm; MS: m/z = 272.

N'-Phenyl Hydrazine Carboxylic Acid 1-Propyl Butyl Ester (15, $C_{14}H_{22}N_2O_2$)

Yield: 86%; mp: oil; IR (neat) $\ddot{v} = 1680 \,\mathrm{cm}^{-1}$; ^{1}H NMR (CDCl₃) $\delta = 0.97$ (s, 3H, CH₃), 1.33 (m, 4H, CH_2CH_3), 1.54 (m, 4H, CH_2CH_2), 3.95 (m, H, CH-O), 4.1 (br, H, NH-Ar), 6.66–7.22 (m, 5H, Ar-H), 8.0 (br, NH); ^{13}C NMR (CDCl₃) $\delta = 14.5$, 20.1, 38.4, 72.8, 112.5, 118.3, 129.6, 143.3, 160 (C=O) ppm; MS: m/z = 250.

N'-Phenyl Hydrazine Carboxylic Acid 1-Phenyl Ethyl Ester (16, $C_{15}H_{16}N_2O_2$)

Yield: 82%; mp: oil; IR (neat) $\ddot{v} = 1682 \, \text{cm}^{-1}$; ¹H NMR (CDCl₃) $\delta = 1.69$ (d, 3H, CH₃), 4.2 (br, H, NH-Ph), 5.42 (m, H, *CH*-O), 6.66–7.22 (m, 10H, Ar-H), 8.0 (br, NH); ¹³C NMR (CDCl₃) $\delta = 23.4$, 74.2, 112.5, 118.9, 126.5, 128.5, 129.7, 141.3, 142.5, 163.5 (C=O) ppm; MS: m/z = 256.

ACKNOWLEDGMENT

Authors thank the SIAF division of Central Drug Research Institute for providing spectroscopic and analytical data.

REFERENCES

- (a) Bharti, N.; Maurya, M. R.; Naqvi, F.; Azam, A. Synthesis and antiamoebic activity of new cyclo-octadiene ruthenium(II) complexes with 2-acetylpyridine and benzimidazole derivatives. *Bio-Org. Med. Chem. Lett.* 2000, 10, 2243–2245; (b) Bharti, N.; Mannar, M. R.; Fehmida, N.; Bhattacharya, A.; Bhattacharya, S.; Azam, A. Palladium(II) complexes of NS donor ligend derived from S-methyl dithiocarbazate, S-benzyl dithiocarbazate, thiosemicarbazide as anti-amoebic agents. *Eur. J. Med. Chem.* 2000, 35, 481–486.
- Sengupta, S.; Pandey, O. P.; Rao, G. P. Sugarcane Pathol.: Fungal Dis., 1999, 1, 279–302.
- (a) Connolly, T. J.; Crittal, A. J.; Ebrahim, A. S.; Ji, G. Development and scale up of a route to cyclohecylhydrazine dimethanesulfonate. *Org. Process. Res. Dev.* 2000, 4, 526–529; (b) Gordan, M. S.; Krause, J. G.; Linneman-Mohr, M. A.; Parchue, R. R. Hydrazides and hydrazones from carbazates. *Synthesis* 1980, 3, 244–246; (c) Hauser, M. J. The preparation and cyclization of some chloroethyl carbazates: Some clarifications. *J. Org. Chem.* 1966, 31, 968–970.
- 4. Wuts, P. G. M.; Greene, T. W. Greene's Protective Groups in Organic Synthesis, John Wiley Interscience, Chichester, UK, 2006, 706–887.
- 5. (a) Huang, J. Y.; Choi, H. S.; Lee, D. H.; Yoo, S. E.; Gong, Y. D. Solid phase synthesis of 5-amino-1-(substituted thiocarbomyl)pyrazole and 1,2,4-triazole derivatives via dithiocarbazate linker. *J. Comb. Chem.* **2005**, 7, 136–141; (b) Hwang, J. Y.; Choi, H. S.; Lee, D. H.; Gong, Y. D. Solid phase synthesis of 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives via selective reagent based cyclization of acyldithiocarbazate resins. *J. Comb. Chem.* **2005**, 7, 816–819.
- 6. (a) Bolzati, C.; Benini, E.; Cavazza-Ceccato, M.; Cozzala, E.; Malago, E.; Agostini, S.; Tisato, F.; Rofosco, F.; Bandoli, G. From symmetrical to assymetrical nitrido, phosphino-thiol complexes: A new class of neutral mixed ligends ^{99m}TC compounds as potential brain imaging agents. *Bioconjugate Chem.*, 2006, 17, 419–428; (b) Ali, M. A.; Mirza, A. H.; Butcher, R. J.; Krause, K. A. The preparation, characterization, and biological activity of palladium(II) and platinum(II) complexes of tridentate NNS ligends derived from S-methyl and S-benzyldithiocarbazates and X-ray crystal structure of the [Pd(mpasme)cl] complexes. *Transition Met. Chem.* 2006, 31, 79–87.
- Dyker, H.; Scherkenbeck, J.; Gondol, D.; Goehrt, A.; Harder, A. Azadepsipetides: Synthesis and evaluation of a novel class of peptidomimetics. *J. Org. Chem.* 2001, 66, 3760–3766.

- 8. Nara, S.; Sakamoto, T.; Miyazawa, E.; Kikugawa, Y. A convenient synthesis of 1-alkyl 1-phenylhydrazines from 1-aminopthalimide. *Synth. Commun.* **2003**, *33*, 87–98.
- Fox, D. L.; Ruxer, J. T.; Oliver, R. M.; Alford, K. L.; Salvatore; R. N. Mild and efficient synthesis of carbazates and dithiocarbazates via a three component coupling using Cs₂CO₃ and TBAI. *Tetrahedron Lett.* 2004, 45, 401–405.
- 10. For Reviews, see (a) Chaturvedi, D.; Ray, S. Versatile use of carbon dioxide in the synthesis of organic carbamates. Curr. Org. Chem. 2007, 11, 987–998; (b) Chaturvedi, D.; Misra, N.; Mishra, V. Various approaches for the synthesis of organic carbamates. Curr. Org. Synth. 2007, 3, 308–320; For research work, see (c) Chaturvedi, D.; Kumar, A.; Ray, S. An efficient, one-pot synthesis of carbamate esters through alcoholic tosylates. Synth Commun. 2002, 32, 2651–2655; (d) Chaturvedi, D.; Kumar, A.; Ray, S. A high yielding, one-pot novel synthesis of carbamate esters from corresponding alcohols using Mitsunobu's reagent. Tetrahedron Lett. 2003, 44, 7637-7639; (e) Chaturvedi, D.; Ray, S. An efficient, one-pot, basic resin catalyzed, novel synthesis of carbamate esters through alcoholic tosylayes. Lett. Org. Chem. 2005, 2, 742-744; (f) Chaturvedi, D.; Ray, S. An efficient, basic resin mediated, one-pot synthesis of dithiocarbamate esters through alcoholic tosylates. J. Sulfur Chem. 2005, 26, 365–371; (g) Chaturvedi, D.; Ray, S. An efficient, basic resin mediated, one-pot synthesis of O-alkyl S-methyl dithiocarbonates from the corresponding alcohols. J. Sulfur Chem. 2006, 27, 265–271; (h) Chaturvedi, D.; Ray, S. An efficient, one-pot synthesis of dithiocarbamates from the corresponding alcohols using Mitsunobu's Tetrahedron Lett. 2006, 47, 1307–1309; (i) Chaturvedi, D.; Mishra, N.; Mishra, V. An efficient and novel synthesis of carbamate esters from the coupling of amines, halides, and carbon dioxide in the presence of basic resin. Chin. Chem. Lett. 2006, 17, 1309-1312; (j) Chaturvedi, D.; Ray, S. A high yielding, one-pot synthesis of O,S-dialkyl dithiocarbonates from alcohols using Mitsunobu's reagent. Tetrahedron Lett. 2007, 48, 149-151; (k) Chaturvedi, D.; Mishra, N.; Mishra, V. An efficient, basic resin mediated, one-pot synthesis of dithiocarbamates by Michael addition of dithiocarbamate to activated olefins. J. Sulfur Chem. 2007, 28, 39-44; (1) Chaturvedi, D.; Mishra, N.; Mishra, V. A high yielding, one-pot synthesis of dialkylcarbonates from alcohols using Mitsunobu's reagent. Tetrahedron Lett. 2007, 48, 5043–5045; (m) Chaturvedi, D.; Mishra, N.; Mishra, V. An efficient, one-pot synthesis of S-alkyl thiocarbamates from the corresponding thiols using Mitsunobu's reagent. Synthesis 2008, 355–357.
- (a) Chaturvedi, D.; Ray, S. A high yielding, one-pot Triton-B catalyzed expeditious synthesis of carbamate esters through four component coupling methodology. *Monatsh. Chem.* 2006, 137, 201–206; (b) Chaturvedi, D.; Ray, S. Triton-B catalyzed efficient, one-pot synthesis of dithiocarbamate esters. *Monatsh. Chem.* 2006, 137, 311–317; (c) Chaturvedi, D.; Ray, S. Triton-B catalyzed, efficient, one-pot synthesis of carbamate esters from alcoholic tosylates. *Monatsh. Chem.* 2006, 137, 459–463; (d) Chaturvedi, D.; Ray, S. A high yielding, one-pot synthesis of dithiocarbamates using alcoholic

tosylates. *Monatsh. Chem.* **2006**, *137*, 465–459; (e) Chaturvedi, D.; Ray, S. An efficient, one-pot Triton-B catalyzed synthesis of O-alkyl S-methyl dithiocarbonates. *Monatsh. Chem.* **2006**, *137*, 1219–1223.

12. Kabalka, G. W.; Varma, M.; Varma, R. S.; Srivastava, P. C.; Knapp, F. F. Tosylation of alcohols. *J. Org. Chem.* **1986**, *51*, 2386–2388.