2000 Vol. 2, No. 24 3897—3899

Syntheses with Organoboranes. XI. Allylboration of Vinylic Epoxides with Allylic Dialkylboranes

Marek Zaidlewicz* and Marek P. Krzemiński

Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland zaidlevi@chem.uni.torun.pl

Received September 24, 2000

ABSTRACT

Allylboration of representative vinylic epoxides with allyldiethylborane (1) and (2-cyclohexenyl)dicyclohexylborane (2) affords the corresponding 1,2- and 1,4-addition products. *cis*-1,2-Addition is favored in the reaction of 1 with 3,4-epoxycycloalkenes of six- to eight-membered rings. 3,4-Epoxycyclopentene (3a) and 5,5-dimethyl-3,4-epoxycyclopentene (3b) undergo five-membered ring opening during allylboration with 1 and 2, producing the corresponding (*Z*)-trienols (4a and 4b) with high stereoselectivity. 1,4-Addition of 1 and 2 to monoepoxides of 1,3-butadiene and isoprene is favored, producing predominantly the corresponding (*E*)-alcohols.

Vinylic epoxides are versatile synthetic building blocks, and their synthesis and reactions are extensively studied.¹ Recently, we described the kinetic resolution of vinylic epoxides with chiral dialkylboranes of high optical purity.² Earlier, we showed that the reduction of these compounds with borane and dialkylboranes proceeds with high stereoselectivity affording the corresponding allylic alcohols of (*Z*)-configuration.³

The addition of various organometallic reagents to vinylic epoxides provides an access to allylic and homoallylic alcohols.⁴ Thus, 1,2-addition products are favored by Grignard regents,⁵ allylstannanes,⁶ and tetraallyllanthanoid complexes.⁷ 1,4-Addition predominates with organocopper reagents⁸ and copper-catalyzed reactions of organomagnesium⁹ and organozinc compounds.¹⁰ Vinylic tellurides,¹¹

(4) Gorzynski-Smiths, J. Synthesis 1984, 629.

organozinc, ¹² and organosilicon ¹³ compounds have also been used. However, mixtures of regio- and stereoisomers and rearranged products are often obtained. Clearly, new reagents are desirable.

The reactions of vinylic epoxides with organoboranes have not been extensively studied. Trialkylboranes react with 3,4-epoxy-1-butene under free radical conditions affording 1,4-addition products. ¹⁴ The addition of 1-alkenylboranes in the presence of palladium and nickel complexes provides

^{(1) (}a) Trost, B. M.; McEachern, E. J.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 12702. (b) Johannes, C. W.; Visser, M. S.; Weatherhead, G. S.; Hoveyda A. H. J. Am. Chem. Soc. 1998, 120, 8340. (c) Rychlet Elliott, M.; Dhimane, A.-L.; Maracria, M. Tetrahedron Lett. 1998, 39, 8849. (d) Caldwell, C. G.; Derguini, F.; Bigge, C. F.; Chen, A.-H.; Hu, S.; Wang, J.; Sastry, L.; Nakanishi, K. J. Org. Chem. 1993, 58, 3533. (e) Chang, S.; Heid, R. M.; Jacobsen, E. N. Tetrahedron Lett. 1994, 35, 669.

⁽²⁾ Zaidlewicz, M.; Krzemiński, M. Tetrahedron Lett. 1996, 39, 7131.

⁽³⁾ Zaidlewicz, M.; Uzarewicz, A.; Sarnowski, R. Synthesis 1979, 62.

^{(5) (}a) Rose, B. C.; Taylor, S. K. *J. Org. Chem.* **1974**, *39*, 578. (b) Bloodworth, A. J.; Curtis, R. J.; Spencer, M. D.; Tallant, N. A. *Tetrahedron* **1993**, *49*, 2729. (c) Söderberg, B. C.; Austin, L. R.; Davis, C. A.; Nyström, J. E.; Vågberg, J. O. *Tetrahedron* **1994**, *50*, 61.

⁽⁶⁾ Naruta, Y.; Maruyama, K. Chem. Lett. 1987, 963.

⁽⁷⁾ Fukuzawa, S.; Sakai, S. Bull. Chem. Soc. Jpn. 1992, 65, 3308.

^{(8) (}a) Marshall, J. A. *Chem. Rev.* **1989**, 89, 1503. (b) Marshall, J. A.; Crute, T. D., III; Hsi, J. D. *J. Org. Chem.* **1992**, 57, 115. (c) Harms, A. E.; Stille, J. R.; Taylor, S. K. *Organometallics* **1994**, 13, 1456.

^{(9) (}a) Lee, E. R.; Lacomy, I.; Bigler, P.; Scheffold, R. *Helv. Chim. Acta* **1991**, *74*, 146. (b) Jung, M. E.; D'Amico, D. C. *J. Am. Chem. Soc.* **1995**, *117*, 7379.

^{(10) (}a) Lipshutz, B. H.; Woo, K.; Gross, T.; Buzard, D. J.; Tirado, R. *Synlett* **1997**, 477. (b) Badalassi F.; Crotti P.; Macchia F.; Pineschi M.; Arnold A.; Feringa B. L. *Tetrahedron Lett.* **1998**, *39*, 7795.

⁽¹¹⁾ Tucci, F. C.; Chieffi, A.; Comasseto, J. V.; Marino, J. P. J. Org. Chem. 1996, 61, 4975.

⁽¹²⁾ Eshelby, J. J.; Parsons, P. J.; Crowley, P. J. J. Chem. Soc., Perkin Trans. 1 1996, 191.

mixtures of 1,2- and 1,4-addition products. ¹⁵ Here, we wish to report the allylboration of vinylic epoxides. The reactions of allyldiethylborane (1) and (2-cyclohexenyl)dicyclohexylborane (2) with representative vinylic epoxides derived from acyclic and cyclic dienes were examined.

Allyldiethylborane was conveniently prepared in 81% yield by transmetalation of allylaluminumsesquibromide and *n*-amyl diethylborinate obtained by treatment of chlorodiethylborane with 1-pentanol. (2-Cyclohexenyl)dicyclohexylborane was synthesized by the hydroboration of 1,3-cyclohexadiene with dicyclohexylborane. 17

$$BEt_2$$
 $BChx_2$

3,4-Epoxycyclopentene (**3a**) reacted readily with **1** in diethyl ether at room temperature to give one major product in good yield (Table 1). Surprisingly, it was not the expected

Table 1. Allylboration of 3a and 3b with 1 at Room Temperature

		time	product composition ^a (%)			yield b
epoxide	solvent	(h)	4	5 ^c	6 ^d	(%)
3a	Et ₂ O	3	90	4	6	78
3a	THF	4	88		12	80
3b	Et_2O	24	73	12	15	77
3b	THF	12	93	4	3	81

^a Determined by GC analysis. ^b Isolated yields. ^c cis/trans mixture. Identified by hydrogenation and comparison with authentic samples of cis-and trans-2-propylcyclopentanols and 5,5-dimethyl-2-propylcyclo-pentanols, respectively. ^d Identified by GC comparison with authentic samples prepared by the reaction of allylmagnesium bromide with 3a and 3b, respectively.

1,2- or 1,4-addition product but the acyclic (*Z*)-trienol (**4a**) formed by the addition of allyl group and opening of both the epoxide and cyclopentene rings. Its structure and (*Z*)-configuration of the disubstituted internal double bond was established by 2D ¹H and ¹³C NMR analysis. ¹⁸ Only 4% of the 1,2-addition product **5a** and 6% of **6a**, derived from

3-cyclopentenone formed by rearrangement of the starting epoxide, was obtained.¹⁹

In tetrahydrofuran **5a** was not formed but the amount of **6a** increased. Allylboration of 3,4-epoxy-5,5-dimethylcyclopentene²⁰ (**3b**) with **1** produced also the corresponding (*Z*)-trienol (**4b**). The reaction carried out in tetrahydrofuran was slower compared with **3a**, but the product was obtained in good purity and yield (Table 1).

Similarly, 2 reacted with 3a to give the same type of product, (Z)-trienol (7), in moderate yield. (Z)-Configuration of the disubstituted double bond fixed in the ring is retained in the product.

A stereoselective five-membered ring opening has also been observed in the hydrolysis of 3a in water at pH ≥ 7 leading to the formation of (Z)-2,4-pentadienal, in addition to cyclopentanediols and 3-cyclopentenone.²¹

The reactivity of 3,4-epoxycycloalkenes (8a-c) toward 1 decreases with the increasing cycloalkene ring size (Table 2). Thus, 3,4-epoxycyclohexene reacted in diethyl ether at

(17) Hydroboration of 1,3-cycloalkadienes, except 1,3-cyclopentadiene, with dialkylboranes provides preferentially the allylic borane derivatives: Brown, H. C.; Bhat, K. S.; Jadhav, P. K. *J. Chem. Soc., Perkin Trans. 1* **1991**, 2633. The homoallylic borane derivative formed as a minor product (9%) does not interfere in the allylboration reaction.

(18) (5Z)-1,5,7-Octatrien-4-ol (4a). Representative Procedure. All operations were carried out under a nitrogen atmosphere. To a stirred solution of 3,4-epoxy-1-cyclopentene (3a) (1.23 g, 15 mmol) in diethyl ether (15 mL), was added allyldiethylborane (1) (1.65 g, 15 mmol) at room temperature. After 3 h, 11 B NMR analysis indicated no signal at δ 85 ppm corresponding to 1. Ether was removed and THF (20 mL) was added. The mixture was cooled to 0 °C and oxidized with 3 M NaOH (6 mL) and 30% H₂O₂ (6 mL) for 4 h at room temperature. The organic layer was separated and the aqueous layer was extracted with diethyl ether (3 \times 10 mL). The combined organic solutions were washed with brine and dried over anhydrous magnesium sulfate. The product was isolated by distillation: 1.45 g, 78% yield, bp 64–66 °C/3 mmHg. GC analysis on a capillary Supelcowax-10 column (30 m \times 0.32 mm) revealed (5Z)-1,5,7-octatrien-4-ol (4a) (90%), 1-allyl-3-cyclopenten-1-ol (6a) (6%), and cis/trans-2-allyl-3-cyclopenten-1-ol (5a) (4%). An analytical sample of 4a was separated by preparative GC. Anal. for C₈H₁₂O (124.18): calcd 77.38% C, 9.74% H; found 77.30% C, 9.78% H. ¹H and ¹H \times ¹H COSY NMR (CDCl₃): δ 1.65 (s, 1H, OH), 2.32 (t, J = 6.5, 2H, CH₂), 4.64 (q, J = 8.5, 1H, HC – OH), 5.20 (m, 4H, C₍₁₎H₂, C₍₈₎H₂), 5.45 (t, J = 9.8, 1H, C₍₅₎H), 5.81 (m, 1H, $C_{(2)}H$), 6.08 (t, J = 11.1, 1H, $C_{(6)}H$), 6.62 (dt, J = 16.8, 10.6, 1H, $C_{(7)}H$). ¹³C NMR (CDCl₃): δ 42.02, 67.14, 118.28, 119.38, 130.72, 131.77, 133.39, 133.97. ${}^{1}\text{H} \times {}^{13}\text{C}$ HETCOR NMR (CDCl₃) (correlation peaks): 2.31 (t, 2H) -41.82 (C₍₃₎H₂), 4.62 (q, 1H) -66.98 (HC₍₄₎OH), 5.20 (m, 4H) -118.01, 119.13 (C₍₁₎H₂, C₍₈₎H₂), 5.44 (t, 1H) -133.34 (C₍₅₎H), 5.80 (m, 1H) -133.87 (C₍₂₎H), 6.06 (t, 1H) -130.48 (C₍₆₎H), 6.63 (dt, 1H) -131.67 (C₍₇₎H). The ¹H and ¹³C NMR spectra were recorded on a Varian Gemini 200 instrument.

(19) For comparison, the reaction of allylmagnesium bromide with **3a** in diethyl ether at 0 °C gave *trans*-**5a** (42%), **6a** (23%), and the 1,4-addition product *trans*-4-allyl-2-cyclopenten-1-ol (35%).

(20) Compound **3b** was synthesized by epoxidation of 5,5-dimethyl-1,3-cyclopentadiene. (a) Crandall, J. K.; Banks, D. B.; Colyer, R. A. *J. Org. Chem.* **1968**, *33*, 423. (b) Smith, W. T.; McLeod, G. L. *Organic Syntheses*; Schreiber, R. S., Ed.; J. Wiley: New York, 1951; Vol. 31, p 40. (c) Holder, R. W.; Daub, J. P.; Baker, W. E.; Gilbert, R. H., III; Graf, N. A. *J. Org. Chem.* **1982**, *47*, 1445.

(21) Ross, A. M.; Pohl, T. M.; Piazza, K.; Thomas, M.; Fox, B.; Whalen, D. L. J. Am. Chem. Soc. 1982, 104, 1658.

3898 Org. Lett., Vol. 2, No. 24, 2000

⁽¹³⁾ Matsukashi, H.; Asai, S.; Hirayabashi, K.; Hatanaka, Y.; Mori, A.; Hiyama, T. Bull. Chem. Soc. Jpn. 1997, 70, 1943.

⁽¹⁴⁾ Suzuki, M.; Miyaura, N.; Itoh, M.; Brown, H. C.; Holland, G. W.; Negishi, E. *J. Am. Chem. Soc.* **1971**, *93*, 2792.

⁽¹⁵⁾ Miyaura, N.; Tanabe, Y.; Suginome, M.; Suzuki, A. J. Organomet. Chem. 1982, 233, C13.

⁽¹⁶⁾ Mikhailov, B. M.; Bubnov, Y. N.; Tsyban, A. V. J. Organomet. Chem. 1978, 154, 113.

Table 2. Allylboration of 8a-c with 1

		temp	time	product composition ^a (%)			yield b
epoxide	solvent	(°C)	(h)	9 (c/t) ^c	10 (c/t) ^c	11	(%)
	Et ₂ O	20	5	81(72/28)	19(63/37)		82
8a	THF	20	24	82(63/37)	16(56/44)	2	69
8b	Et_2O	20	24	68(62/38)	32(41/59)		78
8b	THF	65	12	59(60/40)	39(43/57)	2	68
8c	neat	120	14	52(62/38)	48(52/48)		65

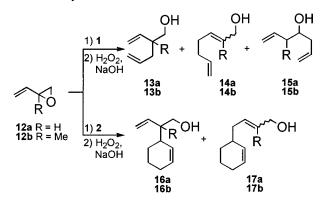
^a Determined by GC analysis. ^b Isolated yields. ^c The *cis/trans* ratio was established by hydrogenation to *cis/trans* 2- and 4-propyl-cyclohexanols and comparison with authentic samples by GC.

room temperature, whereas 3,4-epoxycyclooctene required prolonged heating under neat conditions.

The 1,2-addition of $\bf 1$ to these epoxides is favored over 1,4-addition, and essentially no rearrangement of the epoxides to the corresponding ketones is observed under the reaction conditions used (Table 2). Noteworthy is the preferential formation of cis-2-allyl-3-cycloalken-1-ols.

The *cis*-1,2-addition may be rationalized assuming coordination of boron to oxygen of the vinylic epoxide and intramolecular transfer of allyl group via a six-membered transition state. In contrast, other allylmetal reagents, e.g., derivatives of magnesium, tin, and copper, react with **8a** producing *trans*-2-allyl-3-cyclohexen-1-ol or *trans*-4-allyl-2-cyclohexen-1-ol (Table 3). Recently, a carbometalation

Table 3. Reaction of Allylmetal Reagents with 8a


			4.5		
allyl-M	solvent	temp (°C)	time (h)	product composition (%)	yield ^a (%)
	BOLVEILE	(0)	(11)	composition (70)	(70)
allylMgBr	Et_2O	20	4	trans-9a	40^b
allylMgBr	Et_2O	0	2	trans- 9a (77)	55
				11a (23)	
allyl $SnMe_3$	CH_2Cl_2	-78	0.5	trans- 9a	40^c
allvlCu(CN)Li	THF	$-40 \rightarrow rt$	d	trans-10a	66^e

^a Isolated yields. ^b Reference 5c. ^c Reference 6. ^d Not reported. ^e Reference 8c.

approach to *cis-***9a** by allylboration of 1,3-cyclohexadiene with allyldibromoborane was reported.²²

Allylboration of epoxides **12a** and **12b** derived from acyclic 1,3-dienes was slower compared tothat of **8a** and **8b** (Table 4). The reaction required several days when carried

Table 4. Allylboration of 12a and 12b with 1 and 2

epoxide	reagent	temp (°C)	time (h)	produ	ct composition ^a (E/Z) (%)	yield ^b (%)
12a	1	20	168	13a 34	14a 66(88/12)	62
12a	1	60	24	13a 46	14a 52(80/20) 15a 2	69
12b	1	60	24	13b 30	14b 66(84/16) 15b 4	65
12a	2	60	48	16a 46	17a 54(78/22)	58
12b	2	80	72	16b 35	17b 65(77/23)	65

^a Determined by GC analysis. Products identified by ¹H and ¹³C NMR analysis and by comparison (GC, ¹H and ¹³C NMR) with authentic samples. ^b Isolated yields.

at room temperature. However, at 60 °C under neat conditions 1 reacted with 12a in 24 h, and 2 required 48 h.

Despite the prolonged reaction time rearrangement of the epoxides is not a competing reaction since only very small amounts of rearranged products **15a** and **15b** were obtained (Table 4). 1,4-Addition predominates and the ratio of E/Z isomers is in the range of 80/20.

In conclusion, the allylboration of 3,4-epoxycyclopentene and its alkyl-substituted derivatives provides a convenient access to the corresponding acyclic (*Z*)-trienols in high stereoselectivity and good yields. The preferential *cis*-1,2-addition of **1** to 3,4-epoxycycloalkenes provides *cis*-2-allyl-3-cycloalken-1-ols. The stereochemistry of the addition is opposite to other allylmetal reagents.

Acknowledgment. Financial support from the State Committee for Scientific Research, Warsaw, grant TO9A 13809, is acknowledged.

Supporting Information Available: Spectroscopic data for all new products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006641G

Org. Lett., Vol. 2, No. 24, 2000

^{(22) (}a) Singleton, D. A.; Waller, S. C.; Zhang, Z.; Frantz, D. E.; Leung, S.-W. *J. Am. Chem. Soc.* **1996**, *118*, 9986. (b) Frantz, D. E.; Singleton, D. A. *Org. Lett.* **1999**, *1*, 485.