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ABSTRACT

A regio- and stereoselective isomerization of allenamides is described, leading to preparations of de novo 2-amido-dienes and a tandem
isomerization-6π-electron electrocyclic ring-closure.

Synthesis of conjugated dienes via an allene isomerization,
while a thermodynamically favored process, is not trivial
kinetically. The required 1,3-H-shift constitutes a four-
electron [2π + 2σ] process that would call for an antarafacial
approach if proceeding through a concerted and anti-Hückel
[or Möbius] transition state.1,2 Although impossible in an
allylic system, it is relatively more feasible for an allenic
system because of the presence of orthogonally oriented
p-orbitals of the sp-hybridized central allenic carbon [Scheme
1]. The orthogonal p-orbital at C3 [in blue] introduces a
formal phase change required for an anti-Hückel transition
state, or formally allows a six-electron [2π + 2σ + 2π]
process when the second set of allenic π-electrons becomes
involved. Nevertheless, the calculated2a ∆Eact value remains
high at 77.7 kcal mol-1 and consequently, concerted or not,
most thermal isomerizations of allenes take place at high

temperatures,3,4 thereby rendering it difficult to control E/Z
ratios of the resulting dienes. There are more practical
approaches would involve stepwise processes promoted by
acid, base, or metal, but their examples are limited and the
level of stereo- and regiochemical control needs to be
improved.3,5
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Given that most dienes can be prepared from an array of
stereoselective transformations, synthesizing conjugated dienes
from structurally more challenging allenes through a kineti-
cally demanding and stereochemically undistinguished isomer-
ization does not appear to be a logical first choice. However,
our efforts with the chemistry of allenamides6 allowed us to
envision a much greater potential in constructing amido-
dienes through isomerizing allenamides7-9 because there are
no consistent approaches for synthesizing amido-dienes.10-12

Of the two major methods for preparing amido-dienes,10 the
one involving acid-mediated condensations suffers from
functional group tolerance with the metal-mediated amidative
cross-coupling13,14 suffering from limited access to halo-

dienes [Scheme 1]. In contrast, substituted allenamides are
quite accessible through R-alkylations of parent allena-
mide15,16 or amidative cross-couplings of allenyl halides.17

Their isomerizations can prove to be an invaluable entry to
amido-dienes. We communicate here a regio- and stereose-
lective isomerization of allenamides in the synthesis of
2-amido-dienes and a tandem isomerization-6π-electron
electrocyclic ring-closure.

Screening through various thermal conditions [entries 1-7
in Table 1] including several solvents distinctly revealed that

isomerization of achiral allenamide 1 was the most effective
at 115 °C in CH3CN [sealed tube], leading to 2-amido-diene
218 in 78% isolated yield and 16:1 ratio [entry 4] in favor of
the E-geometry [assigned later]. While there appears to be a
solvent effect on the E/Z ratio [entries 5-7], we found that
with the exception of HNTf2 and PTSA [entries 8-9], a
range of Brønsted acids were equally effective and more
facile at RT in providing 2-amido-diene 2 with excellent E/Z
ratio [entries 10-13].

Generality of this R-isomerization could be established as
shown in Table 2. Key features are: (1) An array of chiral
allenamides 5-7 could be employed to construct de noVo
2-amido-dienes 8-10 with comparable yields and E/Z ratios
under thermal [higher temperature at 135 °C] or acidic
conditions [entries 2-11]; (2) unsubstituted 2-amido-dienes
8d and 9c could also be accessed in good yields [see R ) H
in entries 7 and 9]; (3) allenamide 11 containing an acyclic
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Scheme 1. Allene Isomerizations

Table 1. Thermal vs Acidic Conditions

entry solvent
acid

[10 mol %]
temp
[°C]

time
[h]

yield
[%]a,b E:Zc

1 CH3CN - 25 16 0 -d

2 CH3CN - 55 16 51 g20:1
3 CH3CN - 85 16 88 g20:1
4 CH3CN - 115 16 91 [78] 16:1
5 THF - 115 16 51 9:1
6 ClCH2CH2Cl - 115 16 79 7:1
7 Tol - 150 16 55 4:1
8 CH2Cl2 HNTf2 25 5 min 0 -e

9 CH2Cl2 PTSA 25 1 66 2:1
10 CH2Cl2 4-NO2PhCO2H 25 16 81 15;1
11 CH2Cl2 PhCO2H 25 16 85 [55] 18:1
12 CH2Cl2 PPTS 25 16 77 15:1
13 CH2Cl2 CSA 25 10 min 95 [74] 18:1

a NMR yields. b Isolated yields in the bracket. c Determined by 1H NMR.
d Allenamide 1 was recovered. e Allenamide 1 decomposed.
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amide is also feasible for the isomerization; and (4) a single-
crystal X-ray structure of 10b was attained to unambiguously
assign the E-configuration [Figure 1].

Although our main interest resides in identifying a useful
protocol for synthesizing 2-amido-dienes given its greater
scarcity,10-12,19,20 we examined isomerizations of allenamides
from the γ-position en route to more well-known 1-amido-
dienes.21 As shown in Table 3, isomerizations of two types
of γ-substituted allenamides, those with a cyclohexylidene
group [see 13-16 in entries 1-13], and those with an
isopropylidene group [see 17-19 in entries 14-19] led to
1-amido-dienes 20-26 exclusively as E-enamides [assigned
based on the trans-olefinic proton coupling constant].

A keen observation here for the γ-isomerization is that
acidic conditions appear to be more effective in general with
the exception of 17 [entry 15]. In addition, thermal isomer-
izations at the γ-position required higher temperatures and/
or longer reaction times than those of R-isomerizations. This
difference prompted us to explore a possible regioselective
isomerization. As shown in Scheme 2, when heating alle-

namides 27a and 27b, containing both R- and γ-substituents,
at 135 °C in CH3CN, isomerizations occurred exclusively
at the R-position, leading to 2-amido-dienes 28a and 28b22

in 71 and 94% yields, respectively, all in favor of the
E-enamide [assigned by NOE18]. Isomerization of allenamide
27c took place at RT when in contact with silica gel but
again R-isomerization was favored. This regioselective
isomerization are both mechanistically intriguing23 and
should be great synthetic value in constructing highly
substituted 2-amido-dienes.
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Table 2. Isomerization of Allenamides at the R-Position

a Unless otherwise noted, CH3CN was the solvent for thermal conditions,
and CH2Cl2 was the solvent when using 10 mol % of CSA at rt. For all
reactions, concn ) 0.10 M. b Isolated yields. c Determined by 1H NMR.
d Temp started at -78 °C. e ClCH2CH2Cl was used. f MS (4 Å) was used.

Figure 1. X-ray structure of 2-amido-diene 10b.

Table 3. Isomerization of Allenamides at the γ-Position

a Unless otherwise noted, CH3CN was the solvent for thermal conditions,
and CH2Cl2 was the solvent when using 10 mol % of PTSA or CSA at rt.
In all reactions, concn was 0.10 M. b Isolated yields. c Only E isomers were
observed. d Ninety percent starting allenamide recovered. e Seventy percent
starting allenamide recovered. f Forty-four percent starting allenamide
recovered. g Toluene was the solvent. h MS (4 Å) was used. i Decomposition.
j NMR yields.

Scheme 2. Regioselective R-Isomerizations
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The E-selectivity23 attained from R-isomerization provides
an excellent platform for the following important pericyclic
transformation. As shown in Scheme 3, isomerization of

R-allylated allenamide 29 under acidic conditions afforded
3-amido-triene 30 in 86% yield. With the E-selectivity, triene
30 is perfectly suited for a thermal 6π-electron electrocyclic
ring-closure24 to give cyclic diene 31. Although only in 35%
yield,25 examples of cyclic 2-amido-dienes such as 31 are more
rare.26 Allenamide 32a provided a good example of synthesizing

cyclic 2-amido-diene 34a via acid-promoted R-isomerization
followed by ring-closure. Allenamide 32b demonstrated that
the thermal isomerization could be arrested with the gem-
dimethyl group in triene 33b impeding the ring-closure.
Unfortunatedly, attempted ring-closure of 32b at 200 °C led to
an unidentified product instead of 34b.

At last, this process could be rendered in tandem under
thermal conditions to access cyclic 2-amido-dienes 34a, 37, and
38 in good overall yields directly from respective allenamides
32a, 35, and 36 [Scheme 4]. It is noteworthy that these 6π-

electron pericyclic ring-closures mostly took place at 135 °C,
which implies an accelerated process. This feature is consistent
with related ring-closures of 1,3,5-hexatrienes bearing a C3-
donating group.27,28

We have described here a regio- and stereoselective isomer-
ization of allenamides, leading to preparations of de noVo
2-amido-dienes and a tandem isomerization-6π-electron elec-
trocyclic ring-closure. Studies involving applications of these
dienes and this new tandem process as well as mechanistic
understanding of this allene-isomerization are underway.
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Scheme 3. 3-Amido-Trienes and Pericyclic Ring-Closure

Scheme 4. Tandem R-Isomerization-Pericyclic Ring-Closure
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