

Synthetic Communications An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

SYNTHESIS AND HYDROLYTIC STABILITY OF TERT-BUTOXYDIMETHYLSILYL ENOL ETHERS

Zacharia A. Fataftah , Abdel-Monem M. Rawashdeh & Chariklia Sotiriou-Leventis

To cite this article: Zacharia A. Fataftah , Abdel-Monem M. Rawashdeh & Chariklia Sotiriou-Leventis (2001) SYNTHESIS AND HYDROLYTIC STABILITY OF TERT-BUTOXYDIMETHYLSILYL ENOL ETHERS, Synthetic Communications, 31:15, 2379-2389, DOI: 10.1081/SCC-100104840

To link to this article: http://dx.doi.org/10.1081/SCC-100104840

Published online: 09 Nov 2006.

🖉 Submit your article to this journal 🗗

Article views: 149

View related articles 🗹

Citing articles: 3 View citing articles 🕑

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

SYNTHETIC COMMUNICATIONS, 31(15), 2379-2389 (2001)

SYNTHESIS AND HYDROLYTIC STABILITY OF *TERT*-BUTOXYDIMETHYLSILYL ENOL ETHERS

Zacharia A. Fataftah,^{1,*} Abdel-Monem M. Rawashdeh,² and Chariklia Sotiriou-Leventis^{2,*}

¹Department of Chemistry, Yarmouk University, Irbid, Jordan ²Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65409, USA

ABSTRACT

tert-Butoxydimethylsilyl enol ethers derived from aldehydes and ketones were synthesized in good yields with high regioand stereoselectivities, under thermodynamically and kinetically controlled conditions. The hydrolytic stability of *tert*butoxydimethylsilyl enol ether of cyclohexanone was studied under acidic and basic conditions and compared to that of trimethylsilyl, *tert*-butyldimethylsilyl and (2,4,6-tri-*tert*-butylphenoxy)dimethylsilyl enol ethers.

Silyl enol ethers have shown to be useful enolate equivalents for the synthesis of enones,¹ α -hydroxy ketones,² 1,4-diketones,³ and other functionalized carbonyl compounds,⁴ which in turn are versatile intermediates for the syntheses of some natural products. Several methods for the preparation of silyl enol ethers have been reported.^{5,6} House described the preparation of

2379

Copyright © 2001 by Marcel Dekker, Inc.

www.dekker.com

^{*}Corresponding authors.

ORDER		REPRINTS
-------	--	----------

2380

Downloaded by [Universite Laval] at 15:40 20 November 2015

FATAFTAH, RAWASHDEH, AND SOTIRIOU-LEVENTIS

trimethylsilyl enol ethers (1) from aldehydes and ketones with trimethylsilyl chloride.⁷ However, the utility of these enol ethers is limited by their susceptibility to hydrolysis. This problem was overcome by the use of the *tert*-butyldimethylsilyl derivatives (2).⁸ *tert*-Butyldimethylsilyl chloride, however, is considerably more expensive than trimethylsilyl chloride.^{9,10} In an effort to find a silylating agent which could provide hydrolytic stability similar to that of the *tert*-butyldimethylsilyl moiety at a more reasonable cost, Rathke prepared the solid (2,4,6-tri-*tert*-butylphenoxy) dimethylsilyl chloride (TPS, 3) from 2,4,6-tri-*tert*-butylphenol.¹¹ Here, we explore the possibility of using an alkoxy dimethylsilyl chloride instead of the phenoxy analog 3. Therefore, *tert*-butoxydimethylsilyl chloride (TBOSCI, 4), was chosen in our study. TBOSCI is a colorless liquid that can be prepared readily and more inexpensively than 3 from dichlorodimethylsilane and *tert*-butanol in the presence of urea.¹²

RESULTS AND DISCUSSION

Several *tert*-butoxydimethylsilyl enol ethers were prepared for the first time in good to excellent yields (50–98%) from the reaction of *tert*-butoxy-dimethylsilyl chloride with a number of ketones and aldehydes (eq. 1, Table 1) by two distinctive methods based on thermodynamic and kinetic control.

In the thermodynamically controlled method A (Table 1), a mixture of a ketone, triethylamine, sodium iodide and the silylating agent **4** in acetonitrile,

ORDER		REPRINTS
-------	--	----------

Downloaded by [Universite Laval] at 15:40 20 November 2015

was stirred at room temperature for 40-120 min, depending on the substrate. Yields of TBOS enol ethers ranged from 70 to 98%. For aldehydes, the reaction mixtures were refluxed (method B, Table 1). Since aldehyde enolates are more reactive than ketone enolates toward aldol condesation,⁷ heat is required to enhance the retroaldol reaction of aldehydes.

Table 1. Formation of tert-Butoxydimethylsilyl Enol Ethers

substrate	product(s)	method ^a	reaction time (min)	%yield ^b (E/Z)
0	OTBOS OTBOS	А	70	5a : 70 (3/68) 5b : 28
<u>الْ</u>	E/Z 5a 5b	С	30	5a : 13 (16/4) 5b : 53
		D	30	5a : 13 (18/1) 5b : 53
0	OTBOS	А	85	82 (7/93)
\checkmark	5 c	С	30	90 (70/30)
		D	30	90 (86/14)
	Jothos 5d	A C	120 72	91 80
$\overset{\circ}{\not\vdash}$	otbos 5e	A C	40 30	79 83
\sim $\overset{\circ}{\downarrow}$ \sim	OTBOS	Α	70	85 (8/92)
	<i>E/Z</i> 5f	С	72	(67/33)
	OTBOS	D	72	(73/27)
		А	70	70 (24/76)
	5g	С	15	70 (70/30)

(continued)

ORDER		REPRINTS
-------	--	----------

substrate	product(s)	method ^a	reaction time (min)	%yield ^b (E/Z)
O II	OTBOS	В	75	80
₩ H	EZ H 5h	С	15	(23/77) 50 (96/4)
O II	OTBOS	В	105	76
∕∕∕∕ _H	E/Z 5i	С	15	(18/82) 50 (96/4)
$\overset{\mathring{\blacksquare}}{\bigcirc}$	otbos 5j	A C	90 30	95 95
		A C	70 72	85 79
	OTBOS 51	A C	60 22	82 82
Ů	5m	A C	60 40	76 75
	OTBOS 5n	A C	70 16	85 97

Table 1. Continued

2382

^aIn method A, the carbonyl compound was stirred at room temperature with a mixture of Et₃N, TBOSCl and NaI in CH₃CN. In method B, the reaction mixture of method A was refluxed. In method C, the enolate formed by the reaction of the cabonyl compound with LDA in THF, was quenched withTBOSCl. In method D, LiTMP was used instead of LDA. ^bGC yield.

The kinetically controlled methods C and D (Table 1), involve initial formation of the enolate ions via reaction of the carbonyl compound either with a solution of lithium diisopropylamide (LDA, generated from diisopropylamine and n-butyllithium, method C) or lithium

Downloaded by [Universite Laval] at 15:40 20 November 2015

ORDER		REPRINTS
-------	--	----------

2,2,6,6-tetramethylpiperidide (LiTMP, prepared from 2,2,6,6-tetramethylpiperidine and *n*-butyllithium, method D) in tetrahydrofuran (THF), under nitrogen. Subsequent quenching of the produced enolate ions with *tert*-butoxydimethylsilyl chloride produced the *tert*-butoxydimethylsilyl enol ethers. The products were obtained within 15–72 min with yields in the range of 50-97% (Table 1).

The regio- and stereoselectivity of the *tert*-butoxydimethylsilyl enol ethers are influenced by the different methods used in their formation (thermodynamic *vs.* kinetic). As expected, kinetic control favors the formation of the *E* enolate, resulting from α -proton abstraction from the less sterically hindered side (Table 1). The use of the more hindered base LiTMP (method D) increases the ratio of E/Z enolates even further (Table 1, **5a**, **5c**, and **5f**).^{13,14}

The rate of hydrolysis of TBOS enol ether derived from cyclohexanone (**5k**, Table 2) was investigated under acidic and basic conditions. Our experimental data were compared with the literature rates of hydrolysis of TMS enol ether **6**, TBS enol ether **7**, and TPS enol ether **8** derived from cyclohexanone under the same reaction conditions (Table 2).⁷ It is clear that TBOS enol ether **5k** is by far more resistant to acid hydrolysis than the TMS derivative **6**, and **5k** is even slightly more resistant to acid hydrolysis than the TBS derivative **7**. Also, it may be noted that **5k** is almost as resistant to acid hydrolysis as the TPS enol ether **8**. All three enol ethers **5k**, **7**, and **8** are stable to base treatment.

In conclusion, the facile, inexpensive synthesis and easy handling of *tert*-butoxydimethylsilyl chloride may rank it as the reagent of choice for the synthesis of silyl enol ethers compared to (2,4,6-tri-*tert*-butylphenoxy)-dimethylsilyl and *tert*-butyldimethylsilyl chloride which are more expensive. The latter reagent is also more difficult to prepare. In addition, the hydrolytic stability of the resulting TBOS enol ethers is superior to TMS and comparable to TBS and TPS enol ethers.

EXPERIMENTAL

IR spectra were recorded on a Pye-Unican SP-300 spectrometer. ¹H NMR spectra were obtained in CDCl₃ with a Bruker WP 80 EY spectrometer. Mass spectra were recorded on a sector field double focusing unit VG 7070E GC-MS spectrometer at an accelerating voltage of 6k volts. Vapor phase chromatographic analysis and preparative work were carried out on Varian Aerographs 1400 and 3400 with thermal conductivity detectors. Elemental analysis was performed by M-H-W Laboratories, Phoenix AZ. Copyright @ Marcel Dekker, Inc. All rights reserved.

ORDER		REPRINTS
-------	--	----------

substrate	hydrolysis conditions ^b	reaction time, h	% ketone ^c
o-si-	A B C	6 0.25 1	100 100 <5
o-Si I 7	A B B C	6 0.25 1 1	0 80 100 0
o-Si-O 5k	A B B C	6 0.25 1 2 1	0 70 90 100 0
	- B B B C	6 0.2 1 2 1	0 10 70 100 0

Table 2. Hydrolysis of Silyl Enol Ethers^a

2384

^aHydrolysis of compounds **6**, **7**, and **8** are from literature.⁷ ^bA, HOAc/THF/H₂O, 1:10:1; B, THF/1 M HCl. 20:1; C, THF/1 M NaOH, 20:1. ^cDetermined by GC with decane as internal standard.

All starting materials and reagents were from Aldrich. Tetrahydrofuran was distilled from lithium aluminum hydride, and triethylamine was distilled from calcium hydride prior to use.

Preparation of *tert*-Butoxychlorodimethylsilane (4)

Following the procedure of Krovelets et al.,¹² urea (70 g, 1.2 mol) and dichlorodimethylsilane (120 ml, 1 mol) were stirred vigorously for 15 min at room temperature, under nitrogen, followed by the dropwise addition of *tert*-butanol (94 ml, 1 mol). The reaction mixture was stirred for an additional 1.5 h at room temperature followed by filtration (moisture should be excluded during the filtration since urea hydrochloride is very hygroscopic). The filtrate was subjected to fractional distillation to

ORDER	<u> </u>	REPRINTS
-------	-------------	----------

give **4** as a colorless liquid. Yield: 86%; bp 100° C/760 mm Hg (lit.¹² bp 107– 108° C/747 mm Hg); ¹H NMR δ 0.43 (6H, s), 1.32 (9H, s).

Preparation of tert-Butoxydimethylsilyl Enol Ethers (5a-n)

Method A. Into a 10 ml round bottom flask, sodium iodide (3 mmol, 0.45 g), acetonitrile (3 ml), triethylamine (0.63 ml, 4.5 mmol), and *tert*-butoxychlorodimethylsilane (0.6 ml, 3.3 mmol) were added followed by the addition of ketone or aldehyde (3 mmol). The mixture was stirred at room temperature, under nitrogen for 40–120 min, depending on the substrate (Table 1). The reaction mixture was then diluted with 6 ml of petroleum ether (40–60°C) and washed with cold saturated aqueous NaHCO₃ (2 × 3 ml). The organic layer was dried over anhydrous Na₂SO₄, concentrated *in vacuo* followed by the addition of an appropriate standard ($n-C_{11}H_{24}$ to $n-C_{16}H_{34}$, 3 mmol), and GC analysis (10% SE-30, 1/8″ × 5′ or 1/8″ × 20′ column).

Method B. Same as method A except that after the addition of aldehyde the reaction mixture was refluxed for the indicated time (Table 1).

Method C. A 10 ml flask equipped with a magnetic stirring bar, septum, gas inlet valve, and mercury bubbler was flame-dried under nitrogen. n-Butyllithium as a 1.6 M solution in hexane (1.3 ml, 2 mmol) was added and the flask was immersed in an ice bath. Diisopropylamine (0.28 ml, 2 mmol) was added dropwise with stirring. After the evolution of butane had ceased, hexane was removed under vacuum, which was broken with nitrogen. LDA obtained as a white solid, was dissolved in 2 ml anhydrous THF, and 2 mmol of the carbonyl compound was added dropwise with stirring at 0°C over 2 min. The reaction mixture was stirred for 10 min at 0°C, then quenched with *tert*-butoxychlorodimethylsilane (0.36 ml, 2 mmol), and stirred for 5 min at 0°C. An appropriate standard (n-C₁₁H₂₄ to n-C₁₆H₃₄, 2mmol) was added. The reaction mixture was stirred at room temperature for the indicated time (Table 1), followed by GC analysis (10% SE-30, $1/8'' \times 5'$ column). For product isolation, petroleum ether (2 ml) was added to the reaction mixture and washed with cold saturated aqueous NaHCO₃ (2ml). The organic layer was dried over anhydrous sodium sulfate and concentrated *in vacuo*, followed by fractional vacuum distillation.

Method D. Same as method C except that 2,3,6,6-tetramethyl piperidine was used instead of diisopropylamine.

tert-Butoxydimethylsilyl enol ethers from 2-butanone (5a and 5b) Colorless liquid consisting of 5a (*E* and *Z* isomers) and 5b; bp 35° C (9 mm Hg); d 0.851 g/ml; MS, *m/e* 187(M⁺-15), 145, 129, 115, 86, 75,

ORDER		REPRINTS
-------	--	----------

57, 45. Anal. Calcd for $C_{10}H_{22}SiO_2$: C, 59.35; H, 10.96. Found: C, 59.28; H, 10.79. The regioisomers **5a** and **5b** were separated by preparative GC. However, the *E* and *Z* isomers of **5a** were inseparable by this technique.

5a (E+Z): IR 1670 cm⁻¹ (C=C); ¹H NMR δ 0.17 (6H, s), 1.29 (9H, s), 1.50 (3H, d, J=6.9 Hz), 1.80 (3H, s), 4.74 (q, J=7.2 Hz, E), 4.43 (q, J=6.4 Hz, Z).

5b: IR 1620 cm^{-1} (C = C); ¹H NMR δ 0.18 (6H, s), 1.02 (3H, t, J = 7.2), 1.29 (9H, s), 1.96 (2H, q, J = 7.3 Hz), 4.05 (1H, s), 4.16 (1H, s).

tert-Butoxydimethylsilyl enol ether from 3-pentanone (5c): Colorless liquid consisting of *E* and *Z* isomers; bp 30°C (3 mm Hg), d 0.845 g/ml; IR 1650 cm⁻¹ (C=C). The *E* and *Z* isomers were separated by preparative GC. ¹H NMR δ *E*: 0.14 (6H, s), 1.0 (3H, t, *J*=7.6 Hz), 1.28 (9H, s), 1.52 (3H, d, *J*=7.1 Hz), 2.1 (2H, q, *J*=7.6 Hz), 4.70 (1H, q, *J*=6.9 Hz); *Z*: 0.17 (6H, s), 1.02 (3H, t, *J*=7.6 Hz), 1.29 (9H, s), 1.52 (3H, d, *J*=7.1 Hz), 2.10 (2H, q, *J*=7.6 Hz), 4.48 (1H, q, *J*=7.1 Hz); MS, *m/e* 201 (M⁺-15), 159, 143, 75. Anal. Calcd for C₁₁H₂₄SiO₂: C, 61.06; H, 11.18. Found: C, 60.88; H, 11.40.

tert-Butoxydimethylsilyl enol ether from 4-methyl-2-pentanone (5d): Colorless liquid; bp 65°C (8 mm Hg); d 0.815 g/ml; IR 1615 cm⁻¹ (C = C); ¹H NMR δ 0.17 (6H, s), 0.88 (7H, m), 1.29 (9H, s), 1.86 (2H, m), 4.01 (1H, s), 4.18 (1H, s); MS, *m/e* 230 (M⁺), 216, 215, 207, 188, 173, 159, 157, 75, 57. Anal. Calcd for C₁₂H₂₆SiO₂: C, 62.55; H, 11.37. Found: C, 62.43; H, 11.33.

tert-Butoxydimethylsilyl enol ether from 3,3-dimethyl-2-butanone (5e): Colorless liquid; bp 42°C (3 mm Hg); d 0.826 g/ml; IR 1610 cm⁻¹ (C = C); ¹H NMR δ 0.17 (6H, s), 1.04 (9H, s), 1.29 (9H, s), 4.09 (2H, s); MS, *m/e* 230 (M⁺), 215, 173, 159, 157, 77, 75. Anal. Calcd for C₁₂H₂₆SiO₂: C, 62.55; H, 11.37. Found: C, 62.34; H, 11.12.

tert-Butoxydimethylsilyl enol ether from 4-pentanone (5f): Colorless liquid consisting of *E* and *Z* isomers (inseparable by preparative GC); bp 66°C (7 mm Hg); d 0.815 g/ml; IR 1660 cm⁻¹ (C = C); ¹H NMR δ 0.16 (6H, s), 0.89 (6H, t, *J* = 6.3 Hz), 1.29 (9H, s), 1.37–1.58 (2H, m), 2.00 (4H, q, *J* = 7.3 Hz), 4.39 (1H, t, *J* = 7.5 Hz, *Z*), 4.74 (1H, t, *J* = 7.6 Hz, *E*); MS, *m/e* 229 (M⁺-15), 188, 187, 173, 171, 145, 75, 57. Anal. Calcd for C₁₃H₂₈SiO₂: C, 63.86; H, 11.55. Found: C, 63.93; H, 11.61.

tert-Butoxydimethylsilyl enol ether from 2,6-dimethyl-4-heptanone (5g): Colorless liquid consisting of *E* and *Z* isomers (inseparable by preparative GC); bp 77°C (5 mm Hg); d 0.826 g/ml; IR 1650 cm⁻¹ (C=C); ¹H NMR δ 0.15 (6H, s), 0.92 (13H, m), 1.28 (9H, s); 1.91 (2H, m), 2.28 (1H, m), 4.23 (1H, d, *J*=9, *Z*), 4.62 (1H, d, *J*=9.7 Hz, *E*); MS, *m/e* 256 (M⁺-16), 214, 200, 198, 109, 75, 57. Anal. Calcd for C₁₅H₃₂SiO₂: C, 66.11; H, 11.84. Found: C, 66.13; H, 11.70.

ORDER		REPRINTS
-------	--	----------

tert-Butoxydimethylsilyl enol ether from pentanal (5h): Colorless liquid consisting of *E* and *Z* isomers; d 0.866 g/ml; IR 1660 cm⁻¹ (C=C). The *E* and *Z* isomers were separated by preparative GC. ¹H NMR δ *E*: 0.15 (6H, s), 0.89 (3H, t, *J*=7 Hz), 1.28 (9H, s), 1.3–1.6 (2H, m), 2.06 (2H, q, *J*=6.8 Hz), 5.0 (1H, dt, *J*_{trans}=11.8 Hz, *J*=7.5 Hz), 6.23 (1H, d, *J*_{trans}=11.8 Hz); *Z*: 0.15 (6H, s), 0.89 (3H, t, *J*=7 Hz), 1.28 (9H, s), 1.3–1.6 (2H, m), 2.06 (2H, q, *J*=7.5 Hz), 6.23 (1H, d, *J*_{trans}=11.8 Hz); *Z*: 0.15 (6H, s), 0.89 (3H, t, *J*=7 Hz), 1.28 (9H, s), 1.3–1.6 (2H, m), 2.06 (2H, q, *J*=6.8 Hz), 4.45 (1H, dt, *J*_{cis}=6.2 Hz, *J*=7.5 Hz), 6.2 (1H, d, *J*_{cis}=6.2 Hz). Anal. Calcd for C₁₁H₂₄SiO₂: C, 61.06; H, 11.18. Found: C, 60.87; H, 10.99.

tert-Butoxydimethylsilyl enol ether from hexanal (5i): Colorless liquid consisting of *E* and *Z* isomers; d 0.875 g/ml; IR 1660 cm⁻¹ (C=C). The *E* and *Z* isomers were separated by preparative GC. ¹H NMR δ *E*: 0.15 (6H, s), 0.88 (3H, t, *J*=6.5 Hz), 1.28 (9H, s), 1.0–2.22 (6H, m), 5.0 (1H, dt, *J*_{trans}=11.8 Hz, *J*=7.3 Hz), 6.25 (1H, d, *J*_{trans}=11.8 Hz); *Z*: 0.15 (6H, s), 0.88 (3H, t, *J*=6.5 Hz), 1.28 (9H, s), 1–2.22 (6H, m), 4.46 (1H, dt, *J*_{cis}=6.2 Hz, *J*=7.3 Hz), 6.2 (1H, d, *J*_{cis}=6.2 Hz). Anal. Calcd for C₁₂H₂₆SiO₂: C, 62.55; H, 11.37. Found: C, 62.35; 11.32.

tert-Butoxydimethylsilyl enol ether from cyclopentanone (5j): Colorless liquid; bp 65°C (5 mm Hg); d 0.890 g/ml; IR 1630 cm⁻¹ (C = C); ¹H NMR δ 0.17 (6H, s), 1.28 (9H, s), 1.5–2.3 (4H, m), 2.23 (2H, q, *J* = 5.9 Hz), 4.70 (1H, br s); MS, *m/e* 214 (M⁺), 199, 158, 157, 141, 133, 115, 75, 59, 57, 39. Anal. Calcd for C₁₁H₂₂SiO₂: C, 61.63; H, 10.34. Found: C, 61.71; H, 10.39.

tert-Butoxydimethylsilyl enol ether from cyclohexanone (5k): Colorless liquid; bp 54°C (1 mm Hg); d 0.876 g/ml; IR 1650 cm⁻¹ (C = C); ¹H NMR δ 0.15 (6H, s), 1.28 (9H, s), 1.42–2.09 (8H, m), 4.89–4.97 (1H, m); MS, *m/e* 230 (M⁺), 216, 215, 207, 188, 173, 159, 157, 75, 57. Anal. Calcd for C₁₂H₂₄SiO₂: C, 63.11; H, 10.60. Found: C, 63.16; H, 10.75.

tert-Butoxydimethylsilyl enol ether from 4-methylcyclohexanone (5I): Colorless liquid; bp 59°C (1.5 mm Hg); d 0.869 g/ml; IR 1660 cm⁻¹ (C=C); ¹H NMR δ 0.14 (6H, s), 0.93 (3H, d, J = 4.9 Hz), 1.29 (9H, s), 1.37–2.50 (7H, m), 4.92 (1H, m); MS, m/e 242 (M⁺), 227, 186, 185, 171, 169, 157, 144, 143, 129, 127, 75, 57. Anal. Calcd for C₁₃H₂₈SiO₂: C, 64.41; H, 10.81. Found: C, 64.33; H, 10.91.

tert-Butoxydimethylsilyl enol ether from cycloheptanone (5m): Colorless liquid; bp 45°C (1 mm Hg); d 0.906 g/ml; IR 1650 cm⁻¹ (C = C); ¹H NMR δ 0.14 (6H, s), 1.28 (9H, s), 1.44–2.31 (10H, m), 5.09 (1H, t, *J* = 6.6 Hz); MS, *m/e* 241 (M⁺-1), 226, 186, 185, 171, 169, 158, 157, 94, 75, 57. Anal Calcd for C₁₃H₂₈SiO₂: C, 64.41; H, 10.81. Found: C, 64.29; H, 10.98.

tert-Butoxydimethylsilyl enol ether from acetophenone (5n): Colorless liquid; bp 70°C (0.7 mm Hg); d 0.931 g/ml; IR 1610 cm⁻¹ (C = C); ¹H NMR δ 0.27 (6H, s), 1.33 (9H, s), 4.61 (1H, d, *J* = 1.5 Hz), 4.93 (1H, d, *J* = 1.4 Hz), 7.25–7.28 (3H, m), 7.34–7.59 (2H, m); MS, *m/e* 235 (M⁺-15), 193, 179, 135,

ORDER		REPRINTS
-------	--	----------

105, 103, 75, 45. Anal. Calcd for $C_{14}H_{22}SiO_2$: C, 67.15; H, 8.86. Found: C, 66.96; H, 8.86.

Hydrolysis. The hydrolysis of the silyl enol ether derived from cyclohexanone (**5**k) was investigated with the following solutions: A, HOAc/THF/H₂O. 1:10:1 (v/v); B, THF/1 M HCl, 20:1 (v/v); C, THF/1 M NaOH, 20:1 (v/v). For this purpose, silyl enol ether **5**k (1 mmol) was dissolved in 2.5 ml of solution A, B or C. After the indication time (Table 2), the internal standard, decane, was added, 10 ml of ether was used to extract the solution, and the solution was washed with H₂O (5 ml), dried with MgSO₄, and analyzed by GC.

ACKNOWLEDGMENT

C. Sotiriou-Leventis thanks the Petroleum Research Fund, administered by the American Chemical Society (Grant No. 35154-AC).

REFERENCES

- (a) Ito, Y.; Hirao,T.; Saegusa, T. J. Org. Chem. **1978**, *43*, 1011; (b) Jung, M.E.; Pan, Y.; Rathke, M.W.; Sullivan, D.F.; Woodbury, R.P. J. Org. Chem. **1977**, *42*, 3961; (c) Murai, S.; Hatayama, Y.; Sonoda, N. Tetrahedron Lett. **1978**, 3455.
- Hassner, A.; Reuss, R.H.; Pinnick, H.W. J. Org. Chem. 1975, 40, 3427.
- 3. Kobayashi, Y.; Taguchi, T.; Tokuno, E. Tetrahedron Lett. 1977, 3741.
- 4. Rasmussen, J.K. Synthesis 1977, 2, 91.
- 5. Brownbridge, P. Synthesis 1983, 1, 85.
- 6. Yamamoto, Y.; Matui, C. Organometallics 1997, 16, 2204.
- House, H.O.; Czuba, L.H.; Galiand, M.; Olmstead, H.P. J. Org. Chem. 1969, 34, 2324.
- 8. Stork, G.; Hudrlik, P.F. J. Am. Chem. Soc. 1968, 90, 4462.
- 9. Curent Aldrich prices: trimethyl silyl chloride (\$26/mol, 99 + % purity); *tert*-butyldimethylsilyl chloride (\$226/mol, 99% purity). The latter can be prepared from dimethylsilyl chloride and *tert*-butyllithium by the method of Corey for approximately half of the selling cost.¹⁰
- 10. Corey, E.J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
- 11. Manis, P.; Rathke, M.W. J. Org. Chem. 1981, 46, 5348.
- 12. Krolevets, A.A.; Antipova, V.V.; Popov, A.G.; Adamov, A.V. Zh. Obshch. Khim. **1988**, *58*, 2274.

Marcel Dekker, Inc.

270 Madison Avenue, New York, New York 10016

ORDER		REPRINTS
-------	--	----------

- 13. Fataftah, Z.A.; Kopka, I.E.; Rathke, M.W. J. Am. Chem. Soc. 1980, 102, 3959.
- 14. Nakamura, E.E.; Hashimoto, K.; Kuwajima, I. Tetrahedron Lett. 1978, 2079.

Received in the USA November 6, 2000

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the <u>U.S. Copyright Office</u> for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on <u>Fair Use in the Classroom</u>.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our <u>Website</u> User Agreement for more details.

Order now!

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081SCC100104840