Synthesis and crystal structure of 7,7-dimethyl-2,4diphenyl-5-oxo-1,4,5,6,7,8-hexahydroquinolin

Xiangshan Wang,⁽¹⁾ Daqing Shi,^{(1)*} and Shujiang Tu⁽¹⁾

Received November 16, 2001

The 7,7-dimethyl-2,4-diphenyl-5-oxo-1,4,5,6,7,8-hexahydroquinolin was synthesized and the compound was identified by IR, ¹H NMR, elemental analysis and X-ray crystallography. It crystallized in the triclinic space group $P\bar{1}$, with a = 7.129(2) Å, b = 10.514(3) Å, c = 13.040(3) Å, $\alpha = 76.58(2)^{\circ}$, $\beta = 88.97(2)^{\circ}$, $\gamma = 79.24(2)^{\circ}$, and $D_{calc} = 1.172$ g cm⁻³ for Z = 2. X-ray analysis revealed that the atoms C(2), C(3), C(4), C(10), C(9), and N form a six-membered ring that adopts a boat conformation, and another six-membered ring (C(10)–C(9)–C(8)–C(7)–C(6)–C(5)) adopts a half-chair conformation. In addition, there is an intermolecular hydrogen bond (N–H0···O) in the product molecule.

KEY WORDS: Crystal structure; quinolin; synthesis.

Introduction

1,4-Dihydropyridines (1,4-DHPS) are wellknown compounds because of their pharmacological profile as calcium channel modulators.¹ The chemical modifications carried on the DHP ring resulting in the presence of different substituents² or heteroatoms³ have allowed the expansion of the structure–activity relationship and afforded some insight into the molecular interactions at the receptor level. We report here the crystal structure of 7,7-dimethyl-2,4-diphenyl-5-oxo-1,4,5,6,7,8-hexahydroquinolin (**3**).

Experimental

All chemicals were of analytical reagents grade and were used directly without further purification.

Synthesis of 7,7-dimethyl-2,4-diphenyl-5-oxo-1,4,5,6,7,8-hexahydroquinolin

To a solution of 1,3-diphenyl-2-propen-1one (1 (2 mmol) in DMF (10 mL), 5,5-dimethyl-1, 3-cyclohexanedione (2) (2.5 mmol) and ammonium acetate (5 mmol) were added. The mixture was stirred at 80°C for 1–2 h, and then cooled to room temperature. The mixture was poured into 200-mL water. The yellow solid was filtered off and washed with water. Recrystallization from 95% EtOH gave yellow crystals of 3 in 85% yield. M.p. 206-208°C; IR (KBr, cm⁻¹): 3260, 3030, 2990, 1660, 1630, 1590, 1490, 1450, 770, 760, 695; ¹H NMR (DMSO-*d*₆, δ, ppm): 0.96 (3H, s, CH₃), 1.04 (3H, s, CH₃), 2.00 (1H, d, $J = 16.0 \text{ Hz}, \text{C}^8 - \text{H}), 2.18 (1\text{H}, \text{d}, J = 16.0 \text{ Hz},$ C^8 —H), 2.48 (2H, s, CH₂), 4.57 (1H, d, J = 5.6 Hz, C⁴-H), 5.22 (1H, dd, J = 2.0 Hz, J' =3.6 Hz, C³-H), 7.09-7.50 (10H, m, ArH), 8.63 (1H, s, NH); Elemental analysis: found (%): C, 83.93, H, 6.86, N, 4.03; Calcd. for C₂₃H₂₃NO: C, 83.85, H, 7.04, N, 4.25.

⁽¹⁾ Department of Chemistry, Xuzhou Normal University, Xuzhou 221009, People's Republic of China.

^{*} To whom correspondence should be addressed. E-mail: wxs2001z@sina.com.cn.

X-ray analysis

A summary of the crystallographic data is given in Table 1. A single crystal with dimensions of $0.44 \times 0.38 \times 0.32$ mm was mounted on a Siemens P4 diffractometer with graphite monochromated Mo $K\alpha$ ($\lambda = 0.71073$ Å) radiation.

The data were collected at the temperature of 295(2) K. Using the ω -2 θ scan technique (3.22° < 2 θ < 50.00°), 3668 independent

Table 1. Crystallographic Data for 3

Empirical formula	C23H23NO
CCDC deposit no.	CCDC-1003/6146
Color/shape	Pale yellow/block
Formula weight	329.42
Temperature, K	295(2)
Crystal system	Triclinic
Space group	$P\bar{1}$
Unit cell dimensions	a = 7.129(2) Å
	b = 10.514(3) Å
	c = 13.040(3) Å
	$\alpha = 76.58(2)^{\circ}$
	$\beta = 88.97(2)^{\circ}$
	$\gamma = 79.24(2)^{\circ}$
Volume, Å ³	933.7(4)
Ζ	2
Density (calculated), Mg/m ³	1.172
Absorption coefficient, mm ⁻¹	0.071
Diffractometer/scan	Siemens P4/ ω -2 θ
F(000)	352
Crystal size, mm	$0.44 \times 0.38 \times 0.32$
θ range for data collection, deg	1.61-25.00
Limiting indices	$0 \le h \le 8, -11 \le k \le 12, -15 \le l \le 15$
Reflections collected	3668
Independent reflections	$3265 [R_{(int)} = 0.0134]$
Data/restraints/parameters	3265/0/229
Goodness of fit on F^2	0.868
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0430, wR_2 = 0.0982$
R indices (all data)	$R_1 = 0.0777, wR_2 = 0.1086$
Extinction coefficient	0.027(3)
Largest diff. peak and hole, $e/Å^3$	0.150 and -0.151

reflections were collected, of which 3138 reflections with $I > 2\sigma(I)$ were observed. Corrections for Lp factors were applied. The structure was solved by direct methods using SHELXS97 program and expanded using Fourier technique. The non-hydrogen atoms were refined anisotropically. The hydrogen atoms were determined with theoretical calculations and refined isotropically. A full-matrix least-squares refinement gave final R = 0.0430 and Rw =0.0982 [$w = 1/(\sigma^2 (F_0^2) + (0.0578P)^2)$, where $P = (F_0^2 + 2F_c^2)/3$]. The goodness of fit indicator is 0.868. The maximum peak in the final difference Fourier maps is 0.150 $e/Å^3$ and the minimum peak is -0.151 e/Å^3 . In the final circle refinement the largest parameter shift $(\Delta / \sigma)_{max}$ is 0.000.

Analysis

Melting points were determined in open capillaries and are uncorrected. IR spectra were recorded on an FT IR-8101 spectrometer in KBr. ¹H NMR spectra were obtained for solution in DMSO- d_6 with Me₄Si as internal standard, using an Inova-400 spectrometer. Elemental analyses were carried out using Carlo Erba 1110 analyzer. X-ray diffraction was measured on a Siemens P4 diffractometer.

Results and discussion

X-ray analysis

Atomic coordinates and equivalent isotropic displacement parameters are listed in Table 2. Interatomic distances and bond angles are given in Table 3. Figure 1 shows the molecular structure of compound **3**. In the product molecule, the atoms C(2), C(3), C(4), C(10), C(9), and N form a six-membered ring, with the interatomic distances 1.336(2) Å for C(2)—C(3) and 1.365(2) Å for C(10)—C(9), which show that they are C=C double bonds. X-ray analysis reveals that the pyridine ring adopts a boat conformation: the

Table 2. Atomic Coordinates (10^4) and Equivalent IsotropicDisplacement Parameters (10^3 Å^2)

Atom	x	у	Z.	U(eq)
0	6506(2)	5031(2)	7243(1)	65(1)
Ν	359(2)	4272(2)	8111(1)	45(1)
C(1)	4843(3)	2026(2)	7666(1)	42(1)
C(2)	1035(2)	3255(2)	8995(1)	40(1)
C(3)	2901(3)	2739(2)	9105(1)	43(1)
C(4)	4304(2)	3115(2)	8275(1)	42(1)
C(5)	4758(2)	5332(2)	7068(1)	43(1)
C(6)	3928(3)	6658(2)	6350(2)	48(1)
C(7)	1948(3)	6760(2)	5875(2)	47(1)
C(8)	677(2)	6232(2)	6765(2)	48(1)
C(9)	1570(2)	4944(2)	7481(1)	38(1)
C(10)	3493(2)	4473(2)	7575(1)	39(1)
C(11)	2101(3)	5967(2)	5028(2)	70(1)
C(12)	1095(3)	8215(2)	5378(2)	75(1)
C(13)	3600(3)	1834(2)	6944(2)	64(1)
C(14)	4079(4)	803(2)	6434(2)	74(1)
C(15)	5783(4)	-50(2)	6633(2)	67(1)
C(16)	7028(4)	125(2)	7341(2)	75(1)
C(17)	6566(3)	1152(2)	7852(2)	63(1)
C(18)	-423(3)	2874(2)	9769(1)	40(1)
C(19)	-1951(3)	3813(2)	9976(2)	48(1)
C(20)	-3323(3)	3425(2)	10678(2)	57(1)
C(21)	-3214(3)	2113(3)	11180(2)	66(1)
C(22)	-1687(4)	1181(2)	11007(2)	70(1)
C(23)	-308(3)	1561(2)	10307(2)	59(1)

atoms C(2), C(3), C(10), and C(9) are on one plane (plane 1, the deviations from each atom to the plane are -0.0079, 0.0077, -0.0076, and 0.0077 Å, respectively), while the atom N is away from the plane (0.1373 Å) and the atom C(4) is also away from the plane (0.2941 Å). The dihedral angles between plane 1 and phenyl ring (plane 2, C(1)—C(13)~C(17)), and between plane 1 phenyl ring (plane 3, $C(18) \sim C(23)$) are 90.87 and 33.39°, respectively. In another six-membered ring (C(5) \sim C(10)), the atoms C(10), C(9), C(8), C(6), and C(5) are on another plane (plane 4, mean deviation of 0.0219 Å from the plane), while the atom C(7) is away from the plane (0.6269 Å), which indicates that the ring adopts a half-chair conformation. The deviation from the atom C(8) (0.0151 Å) to this plane is larger than that from the atom C(6)(0.0026 Å) (the torsion angles show the same in-

Bond distances			
O-C(5)	1.239(2)	C(10)-C(5)	1.439(2)
N-C(9)	1.361(2)	C(9)–C(8)	1.492(2)
N-C(2)	1.400(2)	C(8)-C(7)	1.525(2)
C(2)-C(3)	1.336(2)	C(7)–C(11)	1.521(3)
C(2)-C(18)	1.480(2)	C(7)-C(6)	1.527(3)
C(3)-C(4)	1.496(3)	C(7)-C(12)	1.529(3)
C(4)-C(10)	1.521(2)	C(6)-C(5)	1.508(3)
C(4)-C(1)	1.527(2)	C(1)-C(17)	1.378(3)
C(10)-C(9)	1.365(2)		
Bond angles			
C(9) - N - C(2)	121.34(15)	C(11)–C(7)–C(8)	111.52(16)
C(3)-C(2)-N	119.45(17)	C(11)-C(7)-C(6)	109.67(16)
C(3) - C(2) - C(18)	124.98(17)	C(8)-C(7)-C(6)	107.93(15)
N-C(2)-C(18)	115.53(15)	C(11)-C(7)-C(12)	109.03(18)
C(2) - C(3) - C(4)	122.84(17)	C(8) - C(7) - C(12)	108.79(16)
C(3)-C(4)-C(10)	109.26(15)	C(6)-C(7)-C(12)	109.89(16)
C(3)-C(4)-C(1)	110.49(15)	C(5)-C(6)-C(7)	115.51(15)
C(10)-C(4)-C(1)	113.48(15)	O-C(5)-C(10)	121.42(18)
C(9)-C(10)-C(5)	118.73(16)	O-C(5)-C(6)	119.28(17)
C(9)-C(10)-C(4)	121.00(16)	C(10)-C(5)-C(6)	119.22(16)
C(5)-C(10)-C(4)	120.07(15)	C(13)-C(1)-C(4)	121.70(17)
N-C(9)-C(10)	120.10(16)	C(17)-C(1)-C(4)	121.27(17)
N-C(9)-C(8)	116.06(15)	C(23)-C(18)-C(2)	120.46(17)
C(10)-C(9)-C(8)	123.70(16)	C(19)-C(18)-C(2)	121.54(17)
C(9)–C(8)–C(7)	114.24(15)		

formation: $C(9) - C(10) - C(5) - C(6) = -6.9^{\circ}$ and $C(5)-C(10)-C(9)-C(8) = 8.3^{\circ}$, and so the protons at C(8) are in the different chemical surroundings, which display an AB pattern. The positions of the two methyl groups are different: one methyl $(C(11)-CH_3)$ (the atom C(11) is away from the plane (2.1376 Å)) is in the pseudoaxial site while another methyl $(C(12)-CH_3)$ is in the pseudoequatorial site (the atom C(12)) is away from the plane (0.3059 Å). The dihedral angles between plane 4 and plane 1, plane 2, plane 3 are 15.13, 75.75, and 32.83°, respectively. In addition, because of the existence of conjugate system, the distance of C(10)-C(9)(1.365(2) Å) is significantly longer than the normal C=C double bonds:⁴ there is corresponding shortening of C(9)—N (1.361(2) Å) and C(2)—N (1.400(2) Å) relative to the normal C(sp²)-N (1.426 Å) bond,⁵ which are in the range of the structures of other similar compounds.⁶⁻⁸ The distance between atoms N and O, between atoms N

Fig. 1. Structure of compound 3 (50% probability ellipsoids).

and H0 (x: -0.0847, y: 0.4476, z: 0.7963), between atoms O and H0 are 2.887(2), 0.86, and 2.04 Å, respectively, and the angle of N—H0…O is 166.1°, which indicates the existence of inter-

Fig. 2. The packing arrangement in a unit cell of the title molecule.

molecular hydrogen bond N—H···O (symmetry operation: -1 + x, y, z). The packing arrangement in a unit cell of the title molecule is shown in Fig. 2: they are dimers. The molecules are held together by the hydrogen bond.

Spectroscopic analysis

In the infrared spectroscopy of the title compound, the infrared absorption (3260(s) cm⁻¹) is assigned to N—H stretching vibration and the very strong absorption at 1660(vs) cm⁻¹ is assigned to ν (C=O). The ¹H NMR data exhibit that the two methyl groups have different chemical shifts (0.96, 1.04 ppm): one methyl (C(11)—CH₃) is in the pseudoaxial site while another methyl (C(12)—CH₃) is in the pseudoequatorial site in the X-ray analysis. The ¹H NMR is partially assigned because of their different shielding degree and coupling constants.

Acknowledgments

We thank Prof. Kaibei Yu (Chengdu Center of Analysis and Mesurement, Acedemin Sinica of China) for X-ray data collection, and the Foundation of the "Surpassing Project" of Jiangsu Province for financial support.

References

- 1. Janis, R.A.; Silver, P.J.; Triggle, D.J. Adv. Drug. Res. 1987, 16, 309.
- 2. Eisner, V.; Kuthan, J. Chem. Rev. 1972, 72, 1.
- 3. Chorvat, R.T.; Rorig, K.J. J. Org. Chem. 1988, 53, 5779-5781.
- Bartell, L.S.; Roth, E.A.; Hollowell, C.D.; Kuchitsu, K.; Young, J.E. J. Chem. Phys. 1965, 42, 2683.
- Lorente, A.; Galan, C.; Fonseca, I.; Sanz-Aparicio, J. Can. J. Chem. 1995, 73, 1546.
- Tu, S.J.; Wang, H.; Feng, J.Q.; Tang, A.L.; Feng, J.C. Chin. J. Struct. Chem. 2001, 1, 76.
- Tu, S.J.; Feng, J.Q.; Wang, H.; Tang, A.L.; Feng, J.C. Chin. J. Struct. Chem. 2001, 3, 131.
- Tu, S.J.; Zhou, J.F.; Gao, Y.; Liu, X.H. Chin. J. Struct. Chem. 2001, 11, 459.