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Abstract: The influence of protecting groups at C4 and C7 on a
ring-closing metathesis reaction was investigated. Matched induc-
tion led to the total synthesis of stagonolide C and the formal total
synthesis of modiolide A.
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Many naturally occurring ten-membered lactones isolated
from fungal metabolites, commonly known as decano-
lides, have attracted considerable attention from synthetic
organic chemists as well as bioorganic chemists, because
of their interesting structural features and various biolog-
ical activities such as plant growth inhibition and anti-
feedant, anti-fungal and anti-bacterial activities.1 The
main phytotoxic metabolite produced by S. Cirsii in liquid
culture, named stagonolide (1) was isolated and character-
ized as a new nonenolide.2 Other metabolites include
eight new stagonolides, named stagonolide B to I (2–9),
which were isolated and chemically characterized includ-
ing their biological properties.3a,b These stagonolides were
structurally similar to stagonolide (1) and were isolated
from the same fungus. Another structurally similar ten-
membered lactone known as modiolide A (10) was isolat-
ed by Kobayashi and co-workers3c from marine-origin mi-
croorganisms and shown to be active against both bacteria
and fungi.

Construction of lactones through the formation of a C–C
bond and, particularly, by intramolecular ring-closing
metathesis4 reactions remains as a promising tool for the
synthesis of decanolides. Recently, Murty et al. reported
the total synthesis of stagonolide F following a ring-clos-
ing metathesis approach.5 The influence of the protecting
groups on the geometrical outcome of the ring-closing
metathesis reaction has been reported previously.6 During
our studies on the total synthesis of nonenolide6c (12) and
decarestrictine6a C1 and C2 (13 and 14, Figure 1), we ob-
served that complete control of the double bond geometry
formed during the ring-closing metathesis reaction was
possible through the selection of protecting groups.

As part of an ongoing program aimed at exploring ring-
closing metathesis for macrolide synthesis and at general-

izing its substrate and protecting group based selectivity,
we have investigated the outcome of such ring-closing
metathesis reactions on substrates with protecting groups
at chiral centers adjacent to both the reacting sites. In this
way we hoped to achieve the total synthesis of stagonolide
C and the formal total synthesis of modiolide A.

According to our retrosynthetic analysis (Scheme 1), con-
struction of the ten-membered lactone would arise from
the formation of the C5–C6 olefinic linkage from the bis-
alkene which, in turn, would be prepared via esterification
of alcohol 17 and acid 18; the fragments would be pre-
pared from L-malic acid and butane-1,4-diol, respectively.

The synthesis of fragment 17 began with the known com-
pound 21,7 which was subjected to reduction with
DIBAL-H at –15 °C in dichloromethane to afford allyl al-
cohol 22 in 81% yield. Sharpless asymmetric epoxidation8

Figure 1 Stagonolide (1), stagonolide B–I (2–9), modiolide A (10),
herbarumin III (11), nonenolide (12), and decarestrictine C1 and C2
(13 and 14)

O

OR5

R4

R2

R3
O

Me O

OH

O

H

H

O

Me O

OH

O

MeO

OH

OH

O

MeO

OH

HO

O

MeO

OH

OH

O

O

HO

O Me
O

OH

O

MeO

OH

O

H

H

O

Me O

OH

OH

O

Me O

OH

OH

O

Me O

OH

OH

1–3 4 5

6 7 8

9 10 11

12 13 14

R1

1. R1 = H, R2 + R3 = O, R4
 = OH, R5 = propyl

2. R1 = β-OH, R2 = H, R3 = OH, R4 = OH, R5 = propyl
3. R1 = α-OH, R2 = OH, R3

 = H, R4 = H, R5
 = Me



2130 D. K. Mohapatra et al. LETTER

Synlett 2009, No. 13, 2129–2132 © Thieme Stuttgart · New York

of 22 with (+)-DIPT produced 2,3-epoxy alcohol 23 in
85% yield in a 95:5 ratio with the required isomer as the
major product (based on 1H and 13C NMR). Conversion of
the hydroxy group in 23 into the iodo-derivative with
triphenylphosphine, I2 and imidazole in THF, followed by
activated zinc dust mediated elimination,9 furnished allyl-
ic alcohol 24, which was protected as its p-methoxybenzyl
ether to afford 25 in 84% yield (Scheme 2). Deprotection
of the isopropylidene group with p-toluenesulfonic acid in
methanol,10 followed by selective protection of the prima-
ry hydroxy group with tosyl chloride and triethylamine
and further reduction of the tosyl derivative with lithium
aluminum hydride, gave the required alcohol fragment
1711 in 76% yield over two steps.

The synthesis of fragment 18 started from the known in-
termediate 27,12 which was prepared from commercially
available 1,4-butane diol (20), followed by the same se-
quence of reactions as performed during the preparation
of 25. Treatment of compound 29 with 1 M TBAF solu-

tion in THF afforded 30 in 94% yield (Scheme 3). The pri-
mary hydroxy group was then oxidized with IBX13 to
afford the corresponding aldehyde; further oxidation14

with NaClO2 in the presence of NaH2PO4 and 2-methyl-2-
butene as a scavenger, furnished acid 1815 in 84% yield
over two steps. 

Our next task was to couple the two fragments and inves-
tigate the critical ring-closing metathesis reaction. Ac-
cordingly, condensation of fragments 17 and 18 was
achieved using N-(3-dimethylaminopropyl)-N¢-ethylcar-
bodiimide hydrochloride (EDC hydrochloride) and 4-
(dimethylamino)pyridine (DMAP) to afford the bis-ole-
finic ester 15 in 85% yield (Scheme 4). As per our earlier
report, a 0.001 M solution of 1516 and 10 mol% of Grubbs’
second-generation catalyst failed to provide the required
ten-membered lactone when heated under reflux even up
to 48 hours in anhydrous, degassed dichloromethane. The
crucial ring-closing metathesis reaction also failed in an-
hydrous benzene under reflux conditions and by using

Scheme 1 Retrosynthetic analysis of stagonolide C
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protecting groups such as PMB ethers and TBS ethers. Fi-
nally, reaction with diol 31 (0.001 M in CH2Cl2) and 10
mol% Grubbs’ second-generation catalyst afforded the re-
quired ten-membered lactone 317 (stagonolide C) as the
sole product in 68% yield. The geometry of the newly
formed double bond was unequivocally assigned by de-
tection of the olefinic Jtrans coupling constant (15.6 Hz be-
tween the protons at d = 5.41 and 5.58 ppm, respectively).
The constitution and configuration of the assigned struc-
ture was unambiguous since the spectral and analytical
data were in excellent accord with the proposed structure
and perfectly matched with those reported in the litera-
ture.3a In addition, computational analysis of both isomers
showed the E-isomer to be 6 kcal/mol less in energy than
the Z-isomer, signifying that the E-isomer in this case is
more stable than the Z-isomer (Figure 2). 

Scheme 4 Total synthesis of stagonolide C (3) and formal total syn-
thesis of modiolide A (10)

As the RCM reaction failed with both the TBS-protected
and PMB-protected bis-olefins, we proceeded with the ad-
vanced intermediate for the total synthesis of modiolide
A. The free hydroxy groups present at C4 and C7 in 3
were protected as their TBS ethers with TBSOTf in
dichloromethane at –15 °C, to afford the bis-TBS com-
pound 33,18 whose spectral and analytical data were in
good agreement with the reported values.6h

In conclusion, the first stereoselective total synthesis of
stagonolide C and the formal total synthesis of modiolide
A were achieved starting from commercially available L-
malic acid and 1,4-butane diol. The key reactions in-
volved were Sharpless asymmetric epoxidation, activated
zinc dust mediated reductive elimination and ring-closing
metathesis. 
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