# An efficient one-pot synthesis of 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles under solvent-free conditions

# Mehdi Adib<sup>a\*</sup>, Sara Saeedi<sup>a</sup>, Mehdi Soheilizad<sup>a</sup>, Maryam Bayanati<sup>a</sup>, Mahmood Tajbakhsh<sup>b</sup> and Massoud Amanlou<sup>c</sup>

<sup>a</sup>School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran <sup>b</sup>Department of Organic Chemistry, Faculty of Chemistry, Mazandaran University, Babolsar, Iran <sup>c</sup>Pharmaceutical Sciences Research Center and Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran

An efficient and simple synthesis of 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles is described. The *in situ* prepared amidoximes from the reaction between nitriles and hydroxylamine are condensed with alkyl 2,2-dialkoxyacetates under solvent-free conditions to produce the title compounds in excellent yields.

Keywords: 1,2,4-oxadiazoles, aryl nitriles, amidoximes, alkyl 2,2-dialkoxyacetates, one-pot reaction, solvent-free synthesis

1,2,4-Oxadiazoles, an important class of heterocyclic compounds, are of interest because of their wide range of pharmacological and therapeutic activities.<sup>1,2</sup> They have received considerable attention as heterocyclic amide and ester bioisosteres.<sup>3,4</sup> Thus designing new synthetic approaches for the preparation of 1,2,4-oxadiazoles has attracted much attention.<sup>5,6</sup>

In recent years, some 1,2,4-oxadiazoles syntheses have been reported. Amidoximes treated with chloroacetyl chloride to produce 5-(chloromethyl)-1,2,4-oxadiazole (1, Fig. 1).7-12 Reaction between amidoximes and dichloroacetic acid derivatives (acid, chloride, ester, anhydride or nitrile) afforded 5-dichloromethyl-1,2,4-oxadiazoles (2. Fig. 1).<sup>13-19</sup> Treatment of 2,2-diethoxypropionamide and dimethylacetamide dimethyl acetal gave N-[1-(dimethylamino) ethylidene]-2,2-dimethoxypropanamide which upon reaction with hydroxylamine followed by treatment with acetic acid produced 5-(1,1-diethoxyethyl)-3-methyl-1,2,4-oxadiazole (3a, Fig. 1).<sup>20,21</sup> *p*-Nitrophenyl 3-bromo-2,2-diethoxypropionate treated with acetamidoxime to give the corresponding O-acyl acetamidoxime, the latter on treatment with p-TsOH in refluxing toluene cyclised to 5-(2-bromo-1,1-diethoxyethyl)-3methyl-1,2,4-oxadiazole (**3b**, Fig. 1).<sup>20</sup>

Considering the above reports in conjunction with our previous works on synthesis of 1,2,4-oxadiazoles<sup>22-24</sup> and other heterocyclic compounds and pursuing our studies on multi-component reactions,<sup>25-30</sup> herein, we would like to report a simple, efficient and one-pot method for the preparation of 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles under solvent-free conditions. Thus a mixture of an arylnitrile **4** and hydroxylamine in the presence of a catalytic amount of acetic acid stirred at 150 °C for 40 min under solvent-free conditions to produce the corresponding amidoxime **5**. After nearly complete conversion to the corresponding amidoxime, as was

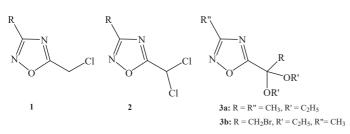
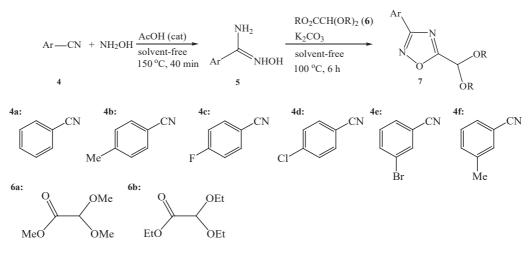
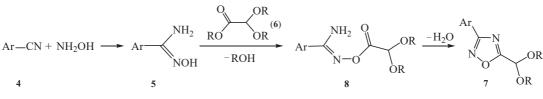



Fig. 1 Some reported 1,2,4-oxadiazoles.


indicated by TLC monitoring, an alkyl 2,2-dialkoxyacetate **6** and potassium carbonate were added to the reaction mixture which was further stirred at 100 °C for 6 h to afford 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles **7a–1** in 90–96% yields. TLC and NMR spectroscopic analysis of the reaction mixtures clearly indicated formation of the corresponding 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles **7**. NMR spectroscopy showed **7** as the only product. A range of 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles **7a–1** were synthesised from the reaction between arylnitriles **4a–f**, hydroxylamine, and methyl 2,2-dimethoxyacetate (**6a**) or ethyl 2,2-diethoxyacetate (**6b**) (Scheme 1, Table 1).

The structures of the isolated products were deduced on the basis of IR, <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy and mass spectrometry. The mass spectrum of **7h** displayed the molecular ion (M<sup>+</sup>) peaks at m/z 284 and 282, which was consistent with the 1:1:1 adduct of 4-chlorobenzonitrile **4d**, hydroxylamine and ethyl 2,2-diethoxyacetate **6b** with the loss of water and an ethanol molecule. The <sup>1</sup>H NMR spectrum of **7h** exhibited a triplet ( $\delta = 1.31$  ppm, J = 7.2 Hz) arising from the two enantiotopic methyl groups, as well as two doublets of quartets at (3.77 and 3.81 ppm; <sup>2</sup>J = 10.4, <sup>3</sup>J = 7.2 Hz) for the two diastereotopic H-atoms of the two methylene moieties. A sharp singlet was observed at 5.82 ppm due to the acetal H-atom, along with two doublets at 7.46 and 8.06 ppm (J = 8.4Hz) for the four H-atoms of the 4-chlorophenyl substituent. The <sup>1</sup>H-decoupled <sup>13</sup>C NMR spectrum of **7h** showed two signals


Table 1 Synthesis of 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles 7a-I

| Product | Ar                                | R  | %Yield <sup>a</sup> |
|---------|-----------------------------------|----|---------------------|
| 7a      | C <sub>6</sub> H <sub>5</sub>     | Me | 93                  |
| 7b      | C <sub>6</sub> H <sub>5</sub>     | Et | 92                  |
| 7c      | 4-MeC <sub>6</sub> H <sub>4</sub> | Me | 96                  |
| 7d      | 4-MeC <sub>6</sub> H <sub>4</sub> | Et | 96                  |
| 7e      | 4-FC <sub>6</sub> H <sub>4</sub>  | Me | 91                  |
| 7f      | $4 - FC_6H_4$                     | Et | 92                  |
| 7g      | 4-CIC <sub>6</sub> H <sub>4</sub> | Me | 95                  |
| 7h      | 4-CIC <sub>6</sub> H <sub>4</sub> | Et | 96                  |
| 7i      | 3-BrC <sub>6</sub> H <sub>4</sub> | Me | 91                  |
| 7j      | 3-BrC <sub>6</sub> H <sub>4</sub> | Et | 90                  |
| 7k      | 3-MeC <sub>6</sub> H <sub>4</sub> | Me | 93                  |
| 71      | 3-MeC <sub>6</sub> H <sub>4</sub> | Et | 94                  |

<sup>a</sup>lsolated yields.



Scheme 1 One-pot synthesis of 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles 7.



Scheme 2 Suggested reaction mechanism.

at 15.0 and 62.7 ppm for the two ethoxy groups. The signal of C-atom of the acetal moiety was observed at 94.4 ppm, as well as two characteristic resonances at 167.5 and 175.2 ppm for the two C-atoms of the oxadiazole ring, along with other four distinct resonances for the 4-chlorophenyl substituent in agreement with the proposed structure.

A suggested mechanism for the formation of the 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles 7 is provided in Scheme 2. It is reasonable to assume that first, arylnitrile 4 and hydroxylamine are converted *in situ* to amidoxime 5. Next, amidoxime is condensed with the ester 6 to form the *O*-acylamidoxime intermediate 8. Then, this intermediate may undergo an intramolecular condensation-cyclisation to produce 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles 7.

In conclusion, we have developed an efficient one-pot reaction for the preparation of 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles of potential synthetic and pharmacological interest. The simplicity of the starting materials, one-pot as well as solvent-free conditions and excellent yields of the products are the main advantages of this method. Hydrolysis of the obtained 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles gives 3-aryl-1,2,4-oxadiazole-5-carbaldehydes.<sup>31</sup> In view of extensive use of heteroaromatic aldehydes as synthetic intermediates and target compounds, the 3-aryl-5-(dialkoxymethyl)-1,2,4-oxadiazoles prepared in the present study may find useful applications in synthetic organic chemistry.

## Experimental

All the chemicals were obtained from Merck (Germany), and were used without further purification. Melting points were measured on an Electrothermal 9100 apparatus. IR spectra were recorded on a Shimadzu IR-460 spectrometer. Elemental analyses for C, H and N were performed using a Heraeus CHN-O-Rapid analyser. Mass spectra were recorded on an Agilent Technologies (HP) 5973 mass spectrometer operating at an ionisation potential of 20 eV. <sup>1</sup>H and <sup>13</sup>C NMR spectra were measured with Bruker DRX-400 Avance (at

400.1 and 100.6 MHz) instrument using  $\text{CDCl}_3$  solvent with TMS as an internal standard. Chromatography columns were prepared from Merck silica gel 60 mesh.

### Synthesis of compounds **7a–1**; general procedure

A mixture of the appropriate nitrile (4, 2 mmol), hydroxylamine 50% (0.132 g, 2 mmol), and a catalytic amount of AcOH was stirred at 150 °C for 40 min. After nearly complete conversion to the corresponding amidoxime, as was indicated by TLC monitoring, the appropriate 2,2-dialkoxyacetate (6, 2 mmol) and  $K_2CO_3$  (0.276 g, 2 mmol) were added to the reaction mixture which was stirred at 100 °C for further 6 h. After completion of the reaction as indicated by TLC, the reaction mixture was cooled to room temperature and the residue was purified by column chromatography using *n*-hexane-EtOAc (6:1) as eluent. The solvent was removed, and the product was obtained.

5-(*Dimethoxymethyl*)-*3-phenyl-1*,2,4-*oxadiazole* (**7a**): Colourless oil; yield: 0.409 g (93%); IR (KBr) ( $v_{max}$ /cm<sup>-1</sup>): 1575, 1529, 1473, 1446, 1341, 1285, 1195, 1119, 1067 (C – O), 984, 904, 787, 724, 693; <sup>1</sup>H NMR (400.1 MHz, CDCl<sub>3</sub>): δ 3.54 (s, 6H, 2 × OCH<sub>3</sub>), 5.73 (s, 1H, CH), 7.46–7.56 (m, 3H, 3 × CH), 8.14 (dd, *J* = 7.6, 1.2 Hz, 2H, 2 × CH); <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>): δ 54.4, 96.6, 126.8, 128.2, 129.4, 132.0, 168.9, 174.9; EI-MS: *m/z* (%) = 220 ([M]<sup>+</sup>, 34), 190 (42), 161 (20), 118 (12), 75 (100), 51 (6). Anal. calcd for C<sub>11</sub>H<sub>12</sub>N<sub>2</sub>O<sub>3</sub> (220.23): C, 59.99; H, 5.49; N, 12.72; found: C, 60.19; H, 5.57; N, 12.49%.

5-(*Diethoxymethyl*)-3-*phenyl*-1,2,4-*oxadiazole* (**7b**): Colourless oil; yield: 0.456 g (92%); IR (KBr) ( $v_{max}$ /cm<sup>-1</sup>): 1575, 1528, 1476, 1445, 1334, 1284, 1118, 1061 (C–O), 909, 723, 694; <sup>1</sup>H NMR (400.1 MHz, CDCl<sub>3</sub>): δ 1.32 (t, *J* = 7.2 Hz, 6H, 2 × CH<sub>2</sub>CH<sub>3</sub>), 3.78 and 3.83 (2 × dq, <sup>2</sup>*J* = 9.6, <sup>3</sup>*J* = 7.2 Hz, 4H, 2 × OCH<sub>2</sub>CH<sub>3</sub>), 5.83 (s, 1H, CH), 7.52–7.46 (m, 3H, 3 × CH), 8.14 (dd, *J* = 7.6, 1.6 Hz, 2H, 2 × CH); <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>): δ 15.0, 62.6, 94.5, 126.4, 127.6, 128.8, 131.4, 175.0, 168.2; EI-MS: *m/z* (%) = 249 ([M + H]<sup>+</sup>, 31), 218 (4), 204 (65), 175 (15), 147 (12), 132 (4), 119 (38), 103 (100), 75 (19); Anal. calcd for C<sub>13</sub>H<sub>16</sub>N<sub>2</sub>O<sub>3</sub> (248.28): C, 62.89; H, 6.50; N, 11.28; found: C, 62.74; H, 6.64; N, 11.14%.

5-(Dimethoxymethyl)-3-(4-methylphenyl)-1,2,4-oxadiazole (7c): Colourless oil; yield: 0.449 g (96%); IR (KBr) (v<sub>may</sub>/cm<sup>-1</sup>): 1592, 1540, 1479, 1415, 1340, 1253, 1200, 1113, 1066 (C–O), 985, 916, 889, 867, 825, 706, 669; <sup>1</sup>H NMR (400.1 MHz, CDCl<sub>3</sub>):  $\delta$  2.44 (s, 3H, CH<sub>3</sub>), 3.55 (s, 6H, 2 × OCH<sub>3</sub>), 5.73 (s, 1H, CH), 7.31 (d, *J* = 8.4 Hz, 2H, 2 × CH), 8.03 (d, *J* = 8.4 Hz, 2H, 2 × CH); <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>):  $\delta$  21.6, 53.9, 96.1, 123.4, 127.6, 129.6, 141.8, 168.4, 174.2; EI-MS: *m/z* (%) = 234 ([M]<sup>+</sup>, 36), 203 (22), 175 (19), 132 (28), 116 (9), 91 (17), 75 (100), 51 (5); Anal. calcd for C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>O<sub>3</sub> (234.25): C, 61.53; H, 6.02; N, 11.96; found: C, 61.57; H, 6.09; N, 11.86%.

 $\begin{array}{l} 5\text{-}(Dimethoxymethyl)3\text{-}(4\text{-}fluorophenyl)\text{-}1,2,4\text{-}oxadiazole} \ (\textbf{7e}): \ \text{Pale} \\ \text{yellow oil; yield: }0.433 g \ (91\%); \ \text{IR} \ (\text{KBr}) \ (\nu_{\text{max}}/\text{cm}^{-1})\text{: }1605, 1507, 1479, \\ 1417, 1336, 1286, 1232, 1196, 1158, 1119, 1069 \ (\text{C}-\text{O}), 985, 906, 844, \\ 755, 685; \ ^{1}\text{H} \ \text{NMR} \ (400.1 \ \text{MHz}, \text{CDCl}_3)\text{: }\delta \ 3.51 \ (\text{s}, 6\text{H}, 2 \times \text{OCH}_3), 5.70 \\ (\text{s}, 1\text{H}, \text{CH}), 7.15 \ (\text{dd}, {}^3J_{\text{FH}} = 8.8, {}^3J_{\text{HH}} = 8.8 \ \text{Hz}, 2\text{H}, 2 \times \text{CH}), 8.10 \ (\text{dd}, \\ {}^3J_{\text{HH}} = 8.8, {}^4J_{\text{FH}} = 5.6 \ \text{Hz}, 2\text{H}, 2 \times \text{CH}); \ {}^{13}\text{C} \ \text{NMR} \ (100.6 \ \text{MHz}, \text{CDCl}_3)\text{: }\delta \\ 53.8, 96.0, 116.1 \ (\text{d}, {}^2J_{\text{FC}} = 22.0 \ \text{Hz}), 122.5 \ (\text{d}, {}^4J_{\text{FC}} = 3.3 \ \text{Hz}), 129.8 \ (\text{d}, {}^3J_{\text{FC}} \\ = 8.8 \ \text{Hz}), 164.7 \ (\text{d}, {}^{1}J_{\text{FC}} = 250.3 \ \text{Hz}), 167.5, 174.5; \text{EI-MS: } m/z \ (\%) = 238 \\ (\text{[M]}^+, 27), 207 \ (36), 179 \ (23), 151 \ (10), 136 \ (25), 121 \ (13), 109 \ (10), 95 \\ (13), 75 \ (100), 57 \ (9); \ \text{Anal. calcd for } \text{C}_{11}\text{H}_{11}\text{FN}_2\text{O}_3 \ (238.22)\text{: C}, 55.46; \ \text{H}, \\ 4.65; \ \text{N}, 11.76; \ \text{found: C}, 55.38; \ \text{H}, 4.72; \ \text{N}, 11.64\%. \end{array}$ 

3-(4-Chlorophenyl)-5-(dimethoxymethyl)-1,2,4-oxadiazole (7g): White solid; yield: 0.483 g (95%); m.p. 78–79 °C; IR (KBr) ( $v_{max}$ /cm<sup>-1</sup>): 1591, 1565, 1466, 1408, 1337, 1199, 1112, 1069 (C–O), 1010, 986, 899, 867, 834, 744, 701, 663; 'H NMR (400.1 MHz, CDCl<sub>3</sub>): δ 3.52 (s, 6H, 2 × OCH<sub>3</sub>), 5.71 (s, 1H, CH), 7.45 (d, *J* = 8.8 Hz, 2H, 2 × CH), 8.05 (d, *J* = 8.8 Hz, 2H, 2 × CH); <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>): δ 53.9, 96.0, 124.7, 128.9, 129.2, 137.6, 167.5, 174.6; EI-MS: *m/z* (%) = 256 ([M]<sup>+</sup> <sup>37</sup>Cl, 7), 254 ([M]<sup>+</sup> <sup>35</sup>Cl, 20), 223 (24), 195 (11), 152 (16), 137 (9), 102 (9), 75 (100), 50 (5); Anal. calcd for C<sub>11</sub>H<sub>11</sub>ClN<sub>2</sub>O<sub>3</sub> (254.67): C, 51.88; H, 4.35; N, 11.00; found: C, 51.87; H, 4.36; N, 10.98%.

3-(4-Chlorophenyl)-5-(diethoxymethyl)-1,2,4-oxadiazole (7h): Colourless oil; yield: 0.542 g (96%); IR (KBr) ( $v_{max}$ /cm<sup>-1</sup>): 1596, 1472, 1407, 1331, 1117, 1062 (C–O), 1015, 911, 837, 741, 700; <sup>1</sup>H NMR (400.1 MHz, CDCl<sub>3</sub>): δ 1.31 (t, *J* = 7.2 Hz, 6H, 2 × CH<sub>2</sub>CH<sub>3</sub>), 3.77 and 3.81 (2 × dq, <sup>2</sup>*J* = 10.4, <sup>3</sup>*J* = 7.2 Hz, 4H, 2 × OCH<sub>2</sub>CH<sub>3</sub>), 5.82 (s, 1H, CH), 7.46 (d, *J* = 8.4 Hz, 2H, 2 × CH), 8.06 (d, *J* = 8.4 Hz, 2H, 2 × CH); <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>): δ 15.0, 62.7, 94.4, 124.9, 128.9, 129.2, 137.5, 167.5, 175.2; EI-MS: *m*/*z* (%) = 284 ([M]<sup>+ 37</sup>Cl, 10), 282 ([M]<sup>+ 35</sup>Cl, 29), 238 (67), 209 (65), 181 (22), 153 (100), 138 (40), 111 (29), 103 (51), 75 (57); Anal. calcd for C<sub>13</sub>H<sub>15</sub>ClN<sub>2</sub>O<sub>3</sub> (282.73): C, 55.23; H, 5.35; N, 9.91; found: C, 55.41; H, 5.39; N, 9.79%.

3-(3-Bromophenyl)-5-(dimethoxymethyl)-1,2,4-oxadiazole (7i): Pale yellow oil; yield: 0.544 g (91%); IR (KBr) ( $v_{max}$ /cm<sup>-1</sup>): 1564, 1518, 1452, 1402, 1332, 1195, 1114, 1067, 985, 905, 797, 740, 681; <sup>1</sup>H NMR (400.1 MHz, CDCl<sub>3</sub>):  $\delta$  3.55 (s, 6H, 2 × OCH<sub>3</sub>), 5.73 (s, 1H, CH), 7.38 (t, *J* = 8.0 Hz, 1H, CH), 7.66 (ddd, *J* = 8.0, 1.6, 1.2 Hz, 1H, CH), 8.08 (ddd, J = 8.0, 1.6, 1.2 Hz, 1H, CH), 8.32 (t, J = 1.6 Hz, 1H, CH); <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>): δ 53.9, 96.0, 123.0, 126.1, 128.2, 130.4, 130.6, 134.4, 167.3, 174.7; EI-MS: m/z (%) = 300 ([M]<sup>+ 81</sup>Br, 20), 298 ([M]<sup>+ 79</sup>Br, 20), 269 (28), 241 (7), 239 (8), 198 (5), 196 (5), 157 (5), 155 (5) 102 (9), 75 (100), 50 (7); Anal. calcd for C<sub>11</sub>H<sub>11</sub>BrN<sub>2</sub>O<sub>3</sub> (299.12): C, 44.17; H, 3.71; N, 9.37; found: C, 44.05; H, 3.63; N, 9.25%.

3-(3-Bromophenyl)-5-(diethoxymethyl)-1,2,4-oxadiazole (**7j**): Pale yellow oil; yield: 0.589 g (90%); IR (KBr) ( $v_{max}$ /cm<sup>-1</sup>): 1561, 1466, 1408, 1309, 1268, 1188, 1075, 997, 893, 812, 784, 673; <sup>1</sup>H NMR (400.1 MHz, CDCl<sub>3</sub>): δ 1.32 (t, *J* = 7.2 Hz, 6H, 2 × CH<sub>2</sub>CH<sub>3</sub>), 3.78 and 3.82 (2 × dq, <sup>2</sup>*J* = 9.6, <sup>3</sup>*J* = 7.2 Hz, 4H, 2 × OCH<sub>2</sub>CH<sub>3</sub>), 5.83 (s, 1H, CH), 7.36 (t, *J* = 8.0 Hz, 1H, CH), 7.64 (ddd, *J* = 8.0, 1.6, 1.2 Hz, 1H, CH), 8.06 (ddd, *J* = 8.0, 1.6, 1.2 Hz, 1H, CH), 8.06 (ddd, *J* = 8.0, 1.6, 1.2 Hz, 1H, CH), 8.29 (t, *J* = 1.6 Hz, 1H, CH); <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>): δ 15.0, 62.7, 94.4, 122.9, 126.1, 128.3, 130.4, 130.6, 134.3, 167.2, 175.4; EI-MS: *m/z* (%) = 328 ([M]<sup>+ 81</sup>Br, 13), 326 ([M]<sup>+ 79</sup>Br, 13), 284 (82), 255 (49), 253 (46), 225 (16), 199 (93), 184 (31), 183 (82), 182 (31), 159 (17), 157 (17), 118 (23), 102 (100), 75 (84), 50 (27); Anal. calcd for C<sub>13</sub>H<sub>15</sub>BrN<sub>2</sub>O<sub>3</sub> (327.18): C, 47.72; H, 4.62; N, 8.56; found: C, 47.58; H, 4.43; N, 8.40%.

5-(Dimethoxymethyl)-3-(3-methylphenyl)-1,2,4-oxadiazole (7k): Colourless oil; yield: 0.435 g (93%); IR (KBr) ( $v_{max}/cm^{-1}$ ): 1580, 1520, 1460, 1335, 1284, 1197, 1118, 1070 (C–O), 984, 907, 848, 799, 742, 688; <sup>1</sup>H NMR (400.1 MHz, CDCl<sub>3</sub>): δ 2.43 (s, 3H, CH<sub>3</sub>), 3.54 (s, 6H, 2 × OCH<sub>3</sub>), 5.73 (s, 1H, CH), 7.33 (d, *J* = 7.6 Hz, 1H, CH), 7.38 (t, *J* = 7.6 Hz, 1H, CH), 7.94 (d, *J* = 7.6 Hz, 1H, CH), 7.97 (s, 1H, CH); <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>): δ 21.3, 53.9, 96.0, 124.7, 126.1, 128.2, 128.8, 132.2, 138.7, 168.4, 174.3; EI-MS: *m/z* (%) = 234 ([M]<sup>+</sup>, 45), 203 (36), 175 (27), 147 (9), 132 (27), 116 (10), 91 (24), 75 (100), 51 (6); Anal. calcd for C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>O<sub>3</sub> (234.25): C, 61.53; H, 6.02; N, 11.96; found: C, 61.37; H, 5.95; N, 11.88%.

5- (Diethoxymethyl)-3- (3-methylphenyl)-1,2,4-oxadiazole (71): Colourless oil; yield: 0.493 g (94%); IR (KBr) ( $v_{max}$ /cm<sup>-1</sup>): 1581, 1457, 1333, 1285, 1210, 1118, 1064, 914, 790, 686; <sup>1</sup>H NMR (400.1 MHz, CDCl<sub>3</sub>): δ 1.31 (t, *J* = 7.2 Hz, 6H, 2 × CH<sub>2</sub>CH<sub>3</sub>), 2.42 (s, 3H, CH<sub>3</sub>), 3.78 and 3.81 (2 × dq, <sup>2</sup>*J* = 9.6, <sup>3</sup>*J* = 7.2 Hz, 4H, 2 × OCH<sub>2</sub>CH<sub>3</sub>), 5.82 (s, 1H, CH), 7.32 (d, *J* = 7.6 Hz, 1H, CH), 7.37 (t, *J* = 7.6 Hz, 1H, CH), 7.92 (d, *J* = 7.6 Hz, 1H, CH), 7.95 (s, 1H, CH); <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>): δ 15.0, 21.3, 62.6, 94.5, 124.7, 126.2, 128.2, 128.7, 132.1, 138.6, 168.4, 174.9; EI-MS: *m*/*z* (%) = 262 ([M]<sup>+</sup>, 35), 218 (74), 189 (55), 161 (28), 133 (100), 118 (54), 103 (88), 91 (68), 86 (20), 75 (80), 65 (29); Anal. calcd for C<sub>14</sub>H<sub>18</sub>N<sub>2</sub>O<sub>3</sub> (262.31): C, 64.11; H, 6.92; N, 10.68; found: C, 64.15; H, 7.04; N, 10.49%.

This research was supported by the Research Council of University of Tehran.

Received 22 January 2016; accepted 11 March 2016 Paper 1603865 doi: 10.3184/174751916X14608135651135 Published online: 27 April 2016

#### References

- P.G. Sammes, *Comprehensive medicinal chemistry*, eds. C. Hansch, P.G. Sammes and J.B. Taylor, Pergamon, Oxford, 1990, Vol. 2, Chap. 7.1, pp. 255–270.
- 2 D.A. Erlanson, R.S. McDowell and T. O'Brien, J. Med. Chem., 2004, 47, 3463.
- 3 C.B. Vu, E.G. Corpuz, T.J. Merry, S.G. Pradeepan, C. Bartlett, R.S. Bohacek, M.C. Botfield, B.A. Lynch, I.A. MacNeil, M.K. Ram, M.R. van Schravendijk, S. Violette and T.K. Sawyer, J. Med. Chem., 1999, 42, 4088.
- 4 J.W. Clithirow, P. Beswick, W.J. Irving, D.I.C. Scopes, J.C. Barnes, J. Clapham, J.D. Brown, D.J. Evans and A.G. Hayes, *Bioorg. Med. Chem. Lett.*, 1996, 6, 833.
- 5 K. Hemming, Comprehensive heterocyclic chemistry III, eds. A.R. Katritzky, C.A. Ramsden, E.F.V. Scriven and R.J.K. Taylor, Elsevier Science, Oxford, 2008, Vol. 5, Chap. 4, pp. 243–309; and references therein.
- 6 J.C. Jochims, Comprehensive heterocyclic chemistry II, eds. A.R. Katritzky, C.W. Rees and E.V.F. Scriven, Pergamon Press, London, 1996, Vol. 4, Chap. 4, pp. 179–228; and references cited therein.
- 7 N.P. Rai, V.K. Narayanaswamy, T. Govender, B.K. Manuprasad, S. Shashikanth and P.N. Arunachalam, *Eur. J. Med. Chem.*, 2010, 45, 2677.

- 8 H.R. Lawrence, S.M. Sebti and S. Ozcan, WO Patent: 2012/129564 (A2), 9 Sept 2012.
- 9 Y. Dürüst, H. Karaku , M. Kaiser and D. Tasdemir, *Eur. J. Med. Chem.*, 2012, **48**, 296.
- 10 A.R. Gangloff, J. Litvak, E.J. Shelton, D. Sperandio, V.R. Wang and K.D. Rice, *Tetrahedron Lett.*, 2001, 42, 1441.
- 11 S. Ozcan, A. Kazi, F. Marsilio, B. Fang, W.C. Guida, J. Koomen, H.R. Lawrence and S.M. Sebti, *J. Med. Chem.*, 2013, 56, 3783.
- 12 E. Elzein, R. Kalla, X. Li, T. Perry, E. Parkhill, V. Palle, V. Varkhedkar, A. Gimbel, D. Zeng, D. Lustig, K. Leung and J. Zablocki, *Bioorg. Med. Chem. Lett.*, 2006, 16, 302.
- 13 D. Goff, H. Li and R. Singh, WO Patent: 2005082898 (A1), 9 Sept 2005.
- 14 G.D. Diana and T.J. Nitz, U.S. Patent: 5,349,068 (A1), 8 Aug 1995.
- 15 L.C. Bretanha, V.E. Teixeira, M. Ritter, G.M. Siqueira, W. Cunico, C.M.P. Pereira and R.A. Freitag, *Ultrason. Sonochem.*, 2011, 18, 704.
- 16 V.N. Yarovenko, S.A. Kosarev, I.V. Zavarzin and M.M. Krayushkin, *Russ. Chem. Bull.*, 2002, **51**, 1857.
- 17 U.C. Mashelkar, D.M. Rane and R.S. Kenny, J. Heterocycl. Chem., 2008, 45, 865.
- 18 V.N. Yarovenko, O.V. Lysenko and M.M. Krayushkin, Russ. Chem. Bull., 1993, 42, 2014.
- 19 J.A. Durden Jr. and D.L. Heywood, J. Org. Chem., 1971, 36, 1306.

- 20 J.L. LaMattina and C.J. Mularski, J. Org. Chem., 1984, 49, 4800.
- 21 G. Chen, T.D. Cushing, B. Fisher, X. He, K. Li, Z. Li and L.R. McGee, WO Patent: 2009/158011 (A1), 30 Dec 2009.
- 22 M. Adib, A. Haghighat Jahromi, N. Tavoosi, M. Mahdavi and H.R. Bijanzadeh, *Tetrahedron Lett.*, 2006, **47**, 2965.
- 23 M. Adib, M. Mahdavi, N. Mahmoodi, H. Pirelahi and H.R. Bijanzadeh, Synlett, 2006, 1765.
- 24 M. Adib, S. Bagherzadeh, M. Mahdavi and H.R. Bijanzadeh, *Mendeleev Commun.*, 2010, 20, 50.
- 25 M. Adib, E. Sheikhi and M. Azimzadeh, Tetrahedron Lett., 2015, 56, 1933.
- 26 M. Adib, M. Soheilizad, L.G. Zhu and J. Wu, Synlett, 2015, 26, 177.
- 27 M. Adib, M. Soheilizad, S. Rajai-Daryasarei and P. Mirzaei, Synlett, 2015, 26, 1101.
- 28 M. Adib, M. Bayanati, M. Soheilizad, H. Janatian Ghazvini, M. Tajbakhsh and M. Amanlou, Synlett, 2014, 25, 2918.
- 29 M. Adib, E. Sheikhi, P. Haghshenas, S. Rajai-Daryasarei, H.R. Bijanzadeh and L.G. Zhu, *Tetrahedron Lett.*, 2014, 55, 4983.
- 30 M. Adib, E. Sheikhi, N. Rezaei, H.R. Bijanzadeh and P. Mirzaei, Synlett, 2014, 25, 1331.
- 31 G. Palazzo, L. Baiocchi and G. Picconi, J. Heterocycl. Chem., 1979, 16, 1469.