An Easy Approach to the Synthesis of New Fused 3-Aryl-5trifluoromethyl-7,8-dihydro-6*H*-thieno [2,1-*f*] [1,2] thiazine 1-Oxide System

Helio G. Bonacorso*, Renata P. Vezzosi, Roberta L. Drekener, Nilo Zanatta and Marcos A. P. Martins

Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil

Received March 18, 2008: Revised December 10, 2008: Accepted December 11, 2008

Abstract: A new series of 4-alkyl(aryl)-4-tetramethylenesulfoximide-1,1,1-trifluoroalk-3-en-2-ones has been prepared from the *O*,*N*-exchange reactions of 4-alkyl(aryl)-4-alkoxy-1,1,1-trifluoroalk-3-en-2-ones with the cyclic *S*,*S*-tetramethylenesulfoximide in absence of solvent, in good yields. Subsequently, the easy preparation of a new series of a fused heterocyclic system of 3-aryl-5-trifluoromethyl-7,8-dihydro-6*H*-thieno[2,1-*f*][1,2]thiazine 1-oxide derivatives (60-85% yields) from intramolecular cyclization reactions of sulfoximide enones employing potassium *t*-butoxide in diethyl ether at reflux is also reported.

Keywords: Sulfoximides, trifluoromethyl ketones, 1,2-thiazines, enaminoketones.

1. INTRODUCTION

Piroxicam, an N-heterocyclic carboxamide of 1,2-benzothiazine 1,1-dioxide, was the first member of the family of NSAIDs (Non-steroidal anti-inflammatory drugs) used as an inhibitor of prostaglandin biosynthesis, but, as the other NSAIDs, it showed gastrointestinal and renal toxicity. Also, it is known that several 1,2-thiazines and their benzo derivatives have been used as anti-pyretic and anti-inflammatory agents [1]. Other 3,6-dihydrothiazines are precursors for the stereoselective synthesis of vicinal amino alcohols, diamines and highly functionalized amines [2, 3]. Sulfoximides, important from the biological view, can be also employed as precursors for the synthesis of 1,2-thiazines 1-oxide [4]. Moreover, many patents have been issued claiming the use of sulfoximides as defoliant, herbicide, antifungal agent, antihypertensive, and CNS (Central nervous system) depressant [5]. On the other hand, the introduction of a trifluoromethyl group into many bioactive molecules has sometimes resulted in significant enhancement of their potency and duration of their action due to the increase of lipophilicity [6].

The synthesis of 1,2-thiazines has been relatively well explored *via* [4+2] cycloadditions. In general, the most common 1,2-thiazines either have an alkyl, aryl, acyl or a sulfonyl moiety at the 2 position (N-substituents) and a very stable hexavalent sulfur at the ring, as for example 1,1-dioxides [7]. Examples of 1,2-thiazines 1-oxide have been synthesized by intramolecular cyclization [8], however, the reactions are usually carried out in dimethylsulfoxide or N,N-dimethylformamide and sodium hydride under argon or

nitrogen [7-11] or in sodium methoxide/ethanol [12] with low yields in both cases.

In a previous study, a series of 4-dimethylsulfoximide-1,1,1-trifluorobut-3-en-2-ones was prepared by the direct reaction of 4-alkyl(aryl)-4-alkoxy-1,1,1-trifluorobut-3-en-2ones with *S*,*S*-dimethylsulfoximide, in 50 – 95 % yields. In the same study, six 5-trifluoromethylated 3-alkyl or 3-aryl-1methyl-1,2-thiazines 1-oxide derivatives were synthesized in 40 - 76 % yields, by intramolecular cyclization reaction of the respective dimethylsulfoximido enones when the reactions were carried out in presence of sodium methoxide or ethoxide in methanol or ethanol, respectively [13]. However this method only allows the attainment of non fused-bicyclic 1,2-thiazines.

In 1993, several fused *N*-substituted thieno[1,2]thiazines were reported to be very potent carbonic anhydrase inhibitors, useful for treating conditions which derive from the restriction of blood flow to the brain [14]. Thus, for biological evaluations it seemed desirable to develop a general method for the synthesis of new fused thieno[1,2] thiazines, which allow for the introduction of trifluoromethyl, alkyl or aryl substituents to this interesting aza heterocyclic family with the isolation of enaminoketone intermediates (new acyclic sulfoximides).

2. RESULTS AND DISCUSSION

In this study, an efficient method for the synthesis of a series of new 4-alkyl(aryl)-4-tetramethylenesulfoximide-1,1,1-trifluoroalk-3-en-2-ones (**2a-k**) from β -trifluoroacetylated enol ethers [15] or acetals [16, 17], and an interesting synthetic application using intramolecular cyclization reactions to give new cycloalkane geminated 1,2-thiazines 1oxide (**3c-j**), is reported (Scheme 1).

^{*}Address correspondence to this author at the Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria - 97105-900 - Santa Maria, RS - Brazil; Tel/Fax: +55 (55) 3220 8031; E-mail: heligb@base.ufsm.br

Scheme 1. Synthetic Route for thieno-thiazine system.

As a general procedure, firstly the trifluoromethyl enones (1a-k) were treated with S,S-tetramethylenesulfoximide in absence of solvent at 100 °C giving the new 4-alkyl(aryl)-4tetramethylene-sulfoximide-1,1,1-trifluoroalk-3-en-2-ones (2a-k) in 65% to 95% yield. These new compounds (2a-k) have been employed to obtain 3-aryl-5-trifluoromethyl-7,8dihydro-6*H*-thieno[2,1-f][1,2]thiazines 1-oxide (**3c-j**) by intramolecular cyclization reaction, in good yields. The innovation in this synthetic route was the use of commercially available potassium t-butoxide to substitute sodium methoxide or ethoxide in methanol or ethanol under reflux, respectively, or to substitute sodium hydride in dimethylsulfoxide or *N*,*N*-dimethylformamide under argon or nitrogen [7-12]. The reactions described here were easily carried out in the presence of potassium *t*-butoxide in refluxing diethyl ether without an argon or nitrogen atmosphere (Scheme 1). Surprisingly, using this simple reaction condition, tetrahydrothiazine 4k was isolated as a pure compound from 2k.

One can see that the problematic step in this synthetic route, as outlined in the Scheme 1, was the intramolecular cyclization of 2 to give respective thiazines 3 when the compounds 2 are non-substituted or alkyl-substituted at carbon-4 (2a-b).

Unfortunately, poor yields or unidentified dark products were obtained by NMR experiments when the intramolecular cyclization reaction of the respective dimethylsulfoximido enones **2a** and **2b** were carried out in presence of sodium methoxide or ethoxide in methanol or ethanol under reflux, respectively. Attempts to accomplish the synthesis of **2a-b** failed even when potassium hydroxide or sodium hydride was used as base.

The unambiguous ¹H and ¹³C NMR chemical shift assignments of enones **2a-k** and the thiazines **3c-j** were obtained with the help of 1D- and DEPT 135-NMR experiments and by comparison with NMR data of other 1,2thiazines 1-oxide formerly synthesized in our laboratory [13].

The aryl-tetramethylenesulfoximide enones (2b-k), showed ¹H NMR chemical shifts, in CDCl₃, of the olefinic

protons (H-3) as a singlet in the range of 5.88-6.75 ppm. The ¹H NMR spectrum for **2a** showed a doublet at 8.27 ppm for the olefenic proton H-4 and another doublet at 5.96 ppm for the other olefinic proton H-3. The analysis of the ¹H NMR spectrum for 2a gives a coupling constant of 12 Hz for the olefinic protons, which suggests an E configuration at the olefinic bond [13, 18]. However, in the case of compounds **2i** and **2k**, which have substituents $\mathbf{R}^1 = \mathbf{NO}_2$ and 1-naphthyl, respectively, there was a mixture of isomers E and Z at the olefinic bond, with double signals in the ¹H NMR and ¹³C NMR spectra. In addition, compounds 2a-k showed the signals for the tetramethylene hydrogens H-5 and H-8 together as a multiplet in the range of 3.31 - 3.64 ppm, and tetramethylene protons H-6 and H-7 also together as a multiplet in the range of 2.16 - 2.35 ppm. The ¹³C NMR spectra for compounds 2a-k showed the carbonyl carbon (C-2) at an average of 176.5 ppm as a quartet with $J_{CF} = 32 - 33$ Hz, C-4 quaternary in the range of 155.8 - 189.2 ppm, CF3 group in the range of 117.0 - 118.5 ppm as a quartet with $J_{CF} = 292$ Hz, C-3 chemical shifts at an average of 97.7 ppm and tetramethylene carbons at an average of 56 ppm (C-5 and C-8), 23.5 ppm (C-5 and C-8).

The 1,2-thiazines 1-oxide (**3c-j**) showed ¹H NMR chemical shifts of the aromatic proton (H-4) as a singlet at an average of 6.52 - 6.71 ppm, tetramethylene protons as a multiplet at an average of 3.75 ppm (H-8a), 3.47 ppm (H-8b), 3.35 ppm (H-6a), 3.20 ppm (H-6b), 2.57 ppm (H-7a) and 2.31 ppm (H-7b). The ¹³C NMR spectra of compounds **3c-j** showed chemical shifts of C-3 at an average of 152 ppm, C-5 at an average of 133 ppm as a quartet with J_{CF} =33 Hz, CF₃ in the range of 121.4 - 122.8 ppm as a quartet with J_{CF} = 276 Hz, C-5a at an average of 105 ppm, C-4 at an average of 95 ppm, tetramethylene carbons at an average of 53.5 ppm (C-8), 26.2 ppm (C-6) and 20.1 ppm (C-7).

3. CONCLUSION

In summary, the methodology described in this work allows attainment in a single structure of the strong electron withdrawing effect of the CF_3 group, the high bioactiveversatility of the sulfoximide group and a large scope for aryl substituents in cyclic and acyclic new interesting molecules.

4. EXPERIMENTAL

Unless otherwise indicated, all common reagents and solvents were used as obtained from commercial suppliers without further purification. All melting points were determined on a Reichert Thermovar apparatus and were uncorrected. ¹H and ¹³C NMR spectra were acquired on a Bruker DPX 400 spectrometer (¹H at 400.13 MHz and ¹³C at 100.62 MHz), 5 mm sample tubes, 298 K, digital resolution ±0.01 ppm, in CDCl₃ or DMSO- d_6 (4k) using TMS as internal reference. Mass spectra were recorded in a HP 5973 MSD connected to a HP 6890 GC and interfaced by a Pentium PC. The GC was equipped with a split-splitless, injector, auto sampler, cross-linked HP-5 capillary column (30m 0.32 mm of internal diameter), and helium was used as the carrier gas. Infrared spectra were recorded as KBr discs using a Bruker Tensor 27 spectrometer over the range 4000-400 cm⁻¹. The CHN elemental analyses were performed on a Perkin Elmer 2400 CHN elemental analyzer (São Paulo University-USP/Brazil).

General Procedure for the Preparation of 4-Alkyl(aryl)-4-tetramethylenesulfoximide-1,1,1-trifluorobut-3-en-2ones (2a-k)

A stirred mixture of 4-alkoxy-1,1,1-trifluoro-3-buten-2ones (**1a-k**) (10 mmol) and *S*,*S*-tetramethylenesulfoximide (10 mmol) was heated in an oil bath in absence of solvent for 2 h at 100 °C for **2b-k** or 30 min for **2a**. After cooling, the solid residues **2a-k** were recrystallized from ethanol.

(E)-4-Tetramethylenesulfoximide-1,1,1-trifluorobut-3-en-2-one (2a)

This compound was obtained as white solid; yield 65%; Mp.106-108 °C. ¹H NMR (CDCl₃) $\delta = 8.27$ (d, 1H, J = 12, H-4), 5.96 (d, 1H, J = 12, H-3), 3.37 (m, 4H, H-5, H-8), 2.37 (m, 4H, H-6, H-7). ¹³C NMR (CDCl₃) $\delta = 179.4$ (q, ²J = 33, C-2), 155.8 (C-4), 117.1 (q, ¹J = 292, CF₃), 103.3 (C-3), 54.1 (C-5, C-8), 23.5 (C-6, C-7). GC/MS (EI, 70 eV): m/z (%) for C₈H₁₀NO₂SF₃ (241.04): 241 (M⁺, 16), 172 (100), 105 (39), 55 (60). IR (KBr, v cm⁻¹): 1666 (C=O), 1077 (S=O). Anal. Calcd. for C₈H₁₀NO₂SF₃ (241.04): C, 39.83; H, 4.18; N, 5.81%. Found: C, 39.71; H, 3.83; N, 5.69%.

4-Tetramethylenesulfoximide-1,1,1-trifluoropent-3-en-2one (2b)

This compound was obtained as white solid; yield 71%; Mp.109-111 °C. ¹H NMR (CDCl₃) δ = 5.88 (s, 1H, H-3), 3.54 (m, 2H, H-5), 3.35 (m, 2H, H-8), 2.45 (s, 3H, CH₃), 2.33 (m, 4H, H-6, H-7). ¹³C NMR (CDCl₃) δ = 177.1 (q, ²*J* = 32, C-2), 173.3 (C-4), 117.2 (q, ¹*J* = 292, CF₃), 98.4 (C-3), 53.3 (C-5, C-8), 24.6 (CH₃), 23.7 (C-6, C-7). GC/MS (EI, 70 eV): *m*/*z* (%) for C₉H₁₂NO₂SF₃ (255.05): 255 (M⁺, 6), 55 (100), 186 (55), 82 (15). IR (KBr, v cm⁻¹): 1660 (C=O), 1096 (S=O). Anal. Calcd. for C₉H₁₂NO₂SF₃ (255.05): C, 42.35; H, 4.74; N, 5.49%.Found: C, 42.23; H, 4.77; N, 5.44%.

4-Phenyl-4-tetramethylenesulfoximide-1,1,1-trifluorobut-3en-2-one (2c)

This compound was obtained as yellow solid; yield 97%; Mp. 136-138 °C. ¹H NMR (CDCl₃) δ = 7.73 (m, 2H, Ar),

7.42 (m, 2H, Ar), 6.21 (s, 1H, H-3), 3.59 (m, 4H, H-5, H-8), 2.32 (m, 4H, H-6, H-7). ¹³C NMR (CDCl₃) δ = 176.4 (q, ²*J* = 32, C-2), 164.5 (C-4), 139.8, 130.9; 128.3; 128.2; (6C, Ar), 117.1 (q, ¹*J* = 292, CF₃), 97.7 (C-3), 56.6 (C-5, C-8), 23.4 (C-6, C-7). GC/MS (EI, 70 eV): *m/z* (%) for C₁₄H₁₄NO₂SF₃ (317.07): 317 (M⁺, 20), 55 (100), 248 (90), 116 (87), 77(60), 146 (40). IR (KBr, v cm⁻¹): 1675 (C=O), 1060 (S=O). Anal. Calcd. for C₁₄H₁₄NO₂SF₃ (317.07): C, 52.99; H, 4.45; N, 4.41%. Found: C, 52.59; H, 4.33; N, 4.45%.

4-(4-Tolyl)-4-tetramethylenesulfoximide-1,1,1-trifluorobut-3-en-2-one (2d)

This compound was obtained as yellow solid; yield 74%; Mp. 121-123 °C. ¹H NMR (CDCl₃) δ = 7.58 (m, 2H, Ar), 7.22 (m, 2H, Ar), 6.18 (s, 1H, H-3), 3.55 (m, 4H, H-5, H-8), 2.39 (s, 3H, CH₃), 2.33 (m, 4H, H-6, H-7). ¹³C NMR (CD-Cl₃) δ = 176.1 (q, ²*J* = 32.5, C-2), 164.6 (C-4), 141.5; 136.7; 128.9; 128.3 (6C, Ar), 117.2 (q, ¹*J* = 292, CF₃), 97.0 (C-3), 56.3 (C-5, C-8), 23.3 (C-6, C-7), 21.3 (CH₃). GC/MS (EI, 70 eV): *m/z* (%) for C₁₅H₁₆NO₂SF₃ (331.09): 331 (M⁺, 25), 55 (100), 262 (100), 130 (95), 146 (56), 158 (43). IR (KBr, v cm⁻¹): 1682 (C=O), 1063 (S=O). Anal. Calcd. for C₁₅H₁₆NO₂SF₃ (331.09): C, 54.37; H, 4.87; N, 4.23%. Found: C, 53.97; H, 4.68; N, 4.37%.

4-(4-Methoxyphenyl)-4-tetramethylenesulfoximide-1,1,1trifluorobut-3-en-2-one (2e)

This compound was obtained as yellow solid; yield 71%; Mp. 114-116 °C. ¹H NMR (CDCl₃) δ = 7.82 (m, 2H, Ar), 6.91 (m, 2H, Ar), 6.17 (s, 1H, H-3), 3.87 (s, 3H, OCH₃), 3.58 (m, 4H, H-5, H-8), 2.32 (m, 4H, H-6, H-7). ¹³C NMR (CD-Cl₃) δ = 175.3 (q, ²*J* =32, C-2), 164.3 (C-4), 161.9 (1C, Ar), 117.5 (q, ¹*J* =292, CF₃), 130.2, 113.2 (5C, Ar), 95.4 (C-3), 55.5 (C-5, C-8), 54.9 (OCH₃), 23.0 (C-6, C-7). GC/MS (EI, 70 eV): *m*/*z* (%) for C₁₅H₁₆NO₃SF₃ (347.08): 347 (M⁺, 24), 146 (100), 278 (55), 174 (33), 55 (35). IR (KBr, v cm⁻¹): 1664 (C=O), 1059 (S=O). Anal. Calcd. for C₁₅H₁₆NO₃SF₃ (347.08): C, 51.87; H, 4.64; N, 4.03%. Found: C, 51.39; H, 4.18; N, 3.93%.

4-(4-Fluorophenyl)-4-tetramethylenesulfoximide-1,1,1trifluorobut-3-en-2-one (2f)

This compound was obtained as yellow solid; yield 70%; Mp.112-113 °C. ¹H NMR (CDCl₃) δ = 7.71 (m, 2H, Ar), 7.08 (m, 2H, Ar), 6.17 (s, 1H, H-3), 3.58 (m, 4H, H-5, H-8), 2.29 (m, 4H, H-6, H-7). ¹³C NMR (CDCl₃) δ = 176.3 (q, ²J =33, C-2), 166.9 (C-4), 161.9, 135.4, 130.7, 115.0, (6C, Ar), 117.2 (q, ¹J =292, CF₃), 97.2 (C-3), 56.2 (C-5, C-8), 23.4 (C-6, C-7). GC/MS (EI, 70 eV): *m*/z (%) for C₁₄H₁₃NO₂SF₄ (335.06): 355 (M⁺, 32), 55 (100), 266 (92), 134 (80), 146 (65), 162 (29). IR (KBr, v cm⁻¹): 1666 (C=O), 1065 (S=O). Anal. Calcd. for C₁₄H₁₃NO₂SF₄ (335.06): C, 50.15; H, 3.91; N, 4.18%. Found: C, 50.07; H, 3.56; N, 4.21%.

4-(4-Chlorophenyl)-4-tetramethylenesulfoximide-1,1,1trifluorobut-3-en-2-one (2g)

This compound was obtained as yellow solid; yield 90%; Mp. 148-150 °C. ¹H NMR (CDCl₃) δ = 7.66 (m, 2H, Ar), 7.35 (m, 2H, Ar), 6.16 (s, 1H, H-3), 3.59 (m, 4H, H-5, H-8), 2.29 (m, 4H, H-6, H-7). ¹³C NMR (CDCl₃) δ = 176.5 (q, ²J =32, C-2), 162.7 (C-4), 138.3, 137.1, 129.6, 129.3, 128.8, 128.3 (6C, Ar), 117.1 (q, ¹J =292, CF₃), 97.3 (C-3), 56.7 (C- 5), 54.5 (C-8), 23.4 (C-6, C-7). GC/MS (EI, 70 eV): m/z (%) for $C_{14}H_{13}CINO_2SF_3$ (351.03): 351 (M⁺, 18), 55 (100), 282 (77), 150 (53) 146 (55), 178 (16). IR (KBr, v cm⁻¹): 1670 (C=O), 1063 (S=O). Anal. Calcd. for $C_{14}H_{13}CINO_2SF_3$ (351.03): C, 47.80; H, 3.42; N, 3.98%. Found: C, 47.69; H, 3.44; N, 3.98%.

4-(4-Bromophenyl)-4-tetramethylenesulfoximide-1,1,1trifluorobut-3-en-2-one (2h)

This compound was obtained as yellow solid; yield 73%; Mp. 159-161 °C. ¹H NMR (CDCl₃) δ = 7.54 (m, 4H, Ar), 6.17 (s, 1H, H-3), 3.59 (m, 4H, H-5, H-8), 2.30 (m, 4H, H-6, H-7). ¹³C NMR (CDCl₃) δ = 176.6 (q, ²*J* =32, C-2), 162.7 (C-4), 138.9, 131.4, 129.8 (6C, Ar), 117.1 (q, ¹*J* =292, CF₃), 97.6 (C-3), 56.7 (C-5, C-8), 23.5 (C-6, C-7). GC/MS (EI, 70 eV): *m/z* (%) for C₁₄H₁₃BrNO₂SF₃ (396.98): 397 (M⁺, 10), 55 (100), 328 (53), 196 (30), 146 (52), 224 (10). Anal. Calcd. for C₁₄H₁₃BrNO₂SF₃ (396.98): C, 42.44; H, 3.31; N, 3.54%. Found: C, 41.94; H, 3.12; N, 3.69%.

4-(4-Nitrophenyl)-4-tetramethylenesulfoximide-1,1,1trifluorobut-3-en-2-one (2i)

This compound was obtained as brown solid; yield 80%; Mp.130-132 °C. Data is from the mixture of isomers *E* and *Z* (1: 0.7, from NMR). ¹H NMR (CDCl₃) δ = 8.22 (m, 4H, Ar), 7.88 (m, 2H, Ar), 7.53 (m, 2H, Ar), 6.22, 6.13 (s, 2H, H-3), 3.64 (m, 8H, H-5, H-8), 2.35 (m, 8H, H-6, H-7). ¹³C NMR (CDCl₃) δ = 176.6 (q, ²*J* =33, C-2), 167.9, 160.8 (C-4), 149.0, 148.2, 145.3, 144.8, 129.3, 129.0, 123.4, 123.1 (12C, Ar), 117.1 (q, ¹*J* =292, CF₃), 98.7, 98.1 (C-3), 56.9, 53.3 (C-5, C-8), 23.8, 23.4 (C-6, C-7). GC/MS (EI, 70 eV): *m/z* (%) for C₁₄H₁₃N₂O₄SF₃ (362.05): 362 (M⁺, 10), 55 (100), 293(84), 189 (5), 161 (18), 146 (24). IR (KBr, v cm⁻¹): 1658 (C=O), 1060 (S=O). Anal. Calcd. for C₁₄H₁₃N₂O₄SF₃ (362.05): C, 46.41; H, 3.62; N, 7.73%. Found: C, 46.55; H, 3.37; N, 7.59%.

4-(4,4'-Biphenyl)-4-tetramethylenesulfoximide-1,1,1trifluorobut-3-en-2-one (2j)

This compound was obtained as yellow solid; yield 81%; Mp.98-100 °C. ¹H NMR (CDCl₃) $\delta = 8.00$ (m, 2H, Ar), 7.64 (m, 4H, Ar), 7.42 (m, 3H, Ar), 6.75 (s, 1H, H-3), 3.52 (m, 4H, H-5, H-8), 2.24 (m, 4H, H-6, H-7). ¹³C NMR (CDCl₃) δ = 189.2 (C-4), 177.2 (q, ²*J* =32, C-2), 145.2, 139.8, 136.9, 128.8, 128.7, 128.0, 127.1, 127.0 (12C, Ar), 121.2 (q, ¹*J* =278, CF₃), 104.3 (C-3), 55.8 (C-5, C-8), 23.1 (C-6, C-7). GC/MS (EI, 70 eV): *m/z* (%) for C₂₀H₁₈NO₂SF₃ (393.1): 393 (M⁺, 28), 181 (100), 324 (1), 289 (28), 152 (67), 55 (62). Anal. Calcd. for C₂₀H₁₈NO₂SF₃ (393.10): C, 61.06; H, 4.61; N, 3.56%. Found: C, 61.43; H, 4.48; N, 3.54%.

4-(1-Naphthyl)-4-tetramethylenesulfoximide-1,1,1trifluorobut-3-en-2-one (2k)

This compound was obtained as white solid; yield 84%; Mp.134-136 °C. Data is from the mixture of isomers E and Z (1: 0.5). ¹H NMR (CDCl₃) δ = 7.85 (m, 6H, Ar), 7.44 (m, 8H, Ar), 6.37, 5.93 (s, 2H, H-3), 3.31-3.05 (m, 8H, H-5, H-8), 2.16 (m, 8H, H-6, H-7). ¹³C NMR (CDCl₃) δ = 176.1 (q, ²J = 32, C-2), 168.9, 165.5 (C-4), 137.4, 136.6, 133.2, 130.3, 129.9, 129.7, 128.8, 128.3, 126.7, 126.5, 126.2, 125.9, 125.2, 124.7, 124.5, 124.0 (20C, Ar), 113.9 (q, ¹J = 293, CF₃), 102.9, 101.2 (C-3), 55.3, 53.3 (C-5, C-8), 23.2, 23.0 (C-6, C- 7). GC/MS (EI, 70 eV): m/z (%) for C₁₈H₁₆NO₂SF₃ (367.09): 367 (M⁺, 20), 166 (100), 298 (38), 270 (20), 194 (25), 146 (35), 127 (50), 55 (45). IR (KBr, v cm⁻¹): 1676 (C=O), 1059 (S=O). Anal. Calcd. for C₁₈H₁₆NO₂SF₃ (367.09): C, 58.85; H, 4.39; N, 3.81%. Found: C, 58.78; H, 4.20; N, 3.62%.

General Procedure for the Preparation of 3-Aryl-5trifluoromethyl-7,8-dihydro-6*H*-thieno [2,1-*f*] [1,2] thiazines 1-oxide (3c-j) and 3-(1-Naphthyl)-5-trifluormethyl-5-hidroxy-5a,6,7,8-tetrahydro-5*H*-thieno [2,1-*f*] [1,2] thiazine 1-oxide (4k)

Compounds 4-aryl-4-tetramethylenesulfoximide-1,1,1trifluoro- but-3-en-2-ones (2c-j) (2 mmol) were dissolved in 15 ml of dry diethyl ether. Potassium *t*-butoxide (2.2 mmol) was added in one portion. The resulting slurry solutions were stirred under reflux for 3 h. The products were acidified by the addition of 1 ml of acetic acid followed by 10 ml of water. The organic phase was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The solid residues (**3c-j**) and (**4k**) were recrystallized from ethanol.

3-Phenyl-5-trifluoromethyl-7,8-dihydro-6H-thieno [2,1-f] [1,2] thiazine 1-oxide (3c)

This compound was obtained as brown solid; yield 85%; Mp.107-109 °C. ¹H NMR (CDCl₃) δ = 7.91 (m, 2H, Ar), 7.43 (m, 3H, Ar), 6.65 (s, 1H, H-4), 3.78 (m, 1H, H-8a), 3.49 (m, 1H, H-8b), 3.35 (m, 1H, H-6a), 3.20 (m, 1H, H-6b), 2.57 (m, 1H, H-7a), 2.32 (m, 1H, H-7b). ¹³C NMR (CDCl₃) δ = 152.9 (C-3), 137.4 (1C, Ar), 133.0 (q, ²*J*=33, C-5), 129.8, 128.5, 127.3 (5C, Ar), 122.8 (q, ¹*J* =276, CF₃), 105.9 (C-5a), 95.7 (C-4), 53.6 (C-8), 26.2 (C-6), 20.2 (C-7). GC/MS (EI, 70 eV): *m*/*z* (%) for C₁₄H₁₂NOSF₃ (299.06): 299 (M⁺, 73), 237 (100), 224 (72), 251 (60), 154 (55), 77 (40), 51 (46). IR (KBr, v cm⁻¹): 1049 (S=O). Anal. Calcd. for C₁₄H₁₂NOSF₃ (299.06): C, 56.18; H, 4.04; N, 4.68%. Found: C, 56.09; H, 3.91; N, 4.63%.

3-(4-Tolyl)-5-trifluoromethyl-7,8-dihydro-6H-thieno [2,1-f] [1,2] thiazine 1-oxide (3d)

This compound was obtained as brown solid; yield 73%; Mp.117-119 °C. ¹H NMR (CDCl₃) δ = 7.80 (m, 2H, Ar), 7.22 (m, 2H, Ar), 6.62 (s, 1H, H-4), 3.75 (m, 1H, H-8a), 3.47 (m, 1H, H-8b), 3.35 (m, 1H, H-6a), 3.18 (m, 1H, H-6b), 2.56 (m, 1H, H-7a), 2.30 (m, 1H, H-7b). ¹³C NMR (CDCl₃) δ = 152.9 (C-3), 140.1, 134.6 (2C, Ar), 132.9 (q, ²J =33, C-5), 129.2, 127.1 (4C, Ar), 121.5 (q, ¹J =276, CF₃), 105.4 (C-5a), 95.2 (C-4), 53.6 (C-8), 26.2 (C-6), 21.2 (CH₃), 20.1 (C-7). GC/MS (EI, 70 eV): *m*/*z* (%) for C₁₅H₁₄NOSF₃ (313.07): 313 (M⁺, 57), 251 (100), 238 (48), 264 (44), 168 (28), 91 (18). IR (KBr, v cm⁻¹): 1098 (S=O). Anal. Calcd. for C₁₅H₁₄NOSF₃ (313.07): C, 57.50; H, 4.50; N, 4.47%. Found: C, 57.40; H, 4.32; N, 4.46%.

3-(4-Methoxyphenyl)-5-trifluoromethyl-7,8-dihydro-6Hthieno [2,1-f] [1,2] thiazine 1-oxide (3e)

This compound was obtained as brown solid; yield 70%; Mp.122-124 °C. ¹H NMR (CDCl₃) δ = 7.85 (m, 2H, Ar), 6.93 (m, 2H, Ar), 6.57 (s, 1H, H-4), 3.85 (s, 3H, OCH₃), 3.75 (m, 1H, H-8a), 3.46 (m, 1H, H-8b), 3.31 (m, 1H, H-6a), 3.18 (m, 1H, H-6b), 2.57 (m, 1H, H-7a), 2.31 (m, 1H, H-7b). ¹³C NMR (CDCl₃) δ = 161.0 (1C, Ar), 152.6 (C-3), 132.9 (q, ²*J*=33, C-5), 129.9, 128.7 (3C, Ar), 122.8 (q, ¹*J* =275, CF₃), 113.8 (2C, Ar), 104.8 (C-5a), 94.6 (C-4), 55.2 (OCH₃), 53.5 (C-8), 26.1 (C-6), 20.1 (C-7). GC/MS (EI, 70 eV): m/z (%) for C₁₅H₁₄NO₂SF₃ (329.07): 329 (M⁺, 85), 267 (100), 253(66), 280 (35), 184 (18). IR (KBr, v cm⁻¹): 1035 (S=O). Anal. Calcd. for C₁₅H₁₄NO₂SF₃ (329.07): C, 54.70; H, 4.28; N, 4.25%. Found: C, 54.90; H, 4.08; N, 4.29%.

3-(4-Fluorophenyl)-5-trifluoromethyl-7,8-dihydro-6Hthieno [2,1-f] [1,2] thiazine 1-oxide (3f)

This compound was obtained as brown solid; yield 82%; Mp.122-124 °C. ¹H NMR (CDCl₃) δ = 7.89 (m, 2H, Ar), 7.01 (m, 2H, Ar), 6.58 (s, 1H, H-4), 3.77 (m, 1H, H-8a), 3.47 (m, 1H, H-8b), 3.31 (m, 1H, H-6a), 3.19 (m, 1H, H-6b), 2.57 (m, 1H, H-7a), 2.32 (m, 1H H-7b). ¹³C NMR (CDCl₃) δ = 161.4 (1C, Ar), 151.8 (C-3), 133.6 (1C, Ar), 132.6 (q, ²J =33, C-5), 129.3, 115.6 (4C, Ar), 122.8 (q, ¹J=276, CF₃), 106.1 (C-5a), 95.4 (C-4), 53.6 (C-8), 26.2 (C-6), 20.2 (C-7). GC/MS (EI, 70 eV): *m/z* (%) for C₁₄H₁₁FNOSF₃ (317.05): 317 (M⁺, 58), 255 (100), 243 (67), 172 (62), 270 (49), 95 (33). IR (KBr, v cm⁻¹): 1098 (S=O). Anal. Calcd. for C₁₄H₁₁NOSF₄ (317.05): C, 52.99; H, 3.49; N, 4.41%. Found: C, 51.55; H, 3.47; N, 4.26%.

3-(4-Chlorophenyl)-5-trifluoromethyl-7,8-dihydro-6Hthieno [2,1-f] [1,2] thiazine 1-oxide (3g)

This compound was obtained as brown solid; yield 81%; Mp.113-115 °C. ¹H NMR (CDCl₃) δ = 7.76 (m, 2H, Ar), 7.30 (m, 2H, Ar), 6.52 (s, 1H, H-4), 3.68 (m, 1H, H-8a), 3.37 (m, 1H, H-8b), 3.25 (m, 1H, H-6a), 3.07 (m, 1H, H-6b), 2.47 (m, 1H, H-7a), 2.21 (m, 1H, H-7b). ¹³C NMR (CDCl₃) δ = 151.5 (C-3), 132.8 (q, ²J = 33, C-5), 135.8, 128.6, 128.4, (6C, Ar), 122.7 (q, ¹J = 276, CF₃), 106.6 (C-5a), 95.6 (C-4), 53.5 (C-8), 26.2 (C-6), 20.1 (C-7). GC/MS (EI, 70 eV): *m/z* (%) for C₁₄H₁₁CINOSF₃ (333.02): 333 (M⁺, 58), 271 (100), 259 (58), 287 (57), 111 (12). IR (KBr, v cm⁻¹): 1085 (S=O). Anal. Calcd. for C₁₄H₁₁CINOSF₃ (333.02): C, 50.38; H, 3.32; N, 4.20%. Found: C, 50.36; H, 3.24; N, 4.15%.

3-(4-Bromophenyl)-5-trifluoromethyl-7,8-dihydro-6Hthieno [2,1-f] [1,2] thiazine 1-oxide (3h)

This compound was obtained as brown solid; yield 80%; Mp.123-125 °C. ¹H NMR (CDCl₃) δ = 7.78 (m, 2H, Ar), 7.55 (m, 2H, Ar), 6.61 (s, 1H, H-4), 3.81 (m, 1H, H-8a), 3.48 (m, 1H, H-8b), 3.36 (m, 1H, H-6a), 3.18 (m, 1H, H-6b), 2.59 (m, 1H, H-7a), 2.35 (m, 1H, H-7b). ¹³C NMR (CDCl₃) δ = 151.6 (C-3), 136.3 (1C, Ar), 132.9 (q, ²*J*=33, C-5), 131.6, 128.7, 124.3 (5C, Ar), 122.7 (q, ¹*J* =276, CF₃), 106.6 (C-5a), 95.7 (C-4), 53.6 (C-8), 26.2 (C-6), 20.2 (C-7). GC/MS (EI, 70 eV): *m/z* (%) for C₁₄H₁₁BrNOSF₃ (378.21): 378 (M⁺, 49), 315 (100), 75 (78), 51 (68), 303 (61), 330 (60). IR (KBr, v cm⁻¹): 1073 (S=O). Anal. Calcd. for C₁₄H₁₁BrNOSF₃ (378,21): C, 44.46; H, 2.93; N, 3.70%. Found: C, 44.75; H, 2.81; N, 3.71%.

3-(4-Nitrophenyl)-5-trifluoromethyl-7,8-dihydro-6H-thieno [2,1-f] [1,2] thiazine 1-oxide (3i)

This compound was obtained as brown solid; yield 60%; Mp.124-126 °C. ¹H NMR (CDCl₃) δ = 8.24 (m, 2H, Ar), 8.07 (m, 2H, Ar), 6.71 (s, 1H, H-4), 3.86 (m, 1H, H-8a), 3.53 (m, 1H, H-8b), 3.39 (m, 1H, H-6a), 3.23 (m, 1H, H-6b), 2.63 (m, 1H, H-7a), 2.38 (m, 1H, H-7b). ¹³C NMR (CDCl₃) δ

=149.7 (C-3), 148.2, 143.3 (2C, Ar), 132.6 (q, ${}^{2}J$ =33, C-5), 127.7, 123.6 (4C, Ar), 122.5 (q, ${}^{1}J$ =276, CF₃), 108.9 (C-5a), 97.3 (C-4), 53.4 (C-8), 26.2 (C-6), 20.2 (C-7). GC/MS (EI, 70 eV): m/z (%) for C₁₄H₁₁N₂O₃SF₃ (344.04): 344 (M⁺, 49), 295 (100), 222 (77), 283 (53), 269 (32), 249 (27), 153 (22). IR (KBr, v cm⁻¹): 1068 (S=O). Anal. Calcd. for C₁₄H₁₁N₂O₃SF₃ (344.04): C, 48.84; H, 3.22; N, 8.14%. Found: 48.60; H, 3.16; N, 7.92%.

3-(4,4'-Biphenyl)-5-trifluoromethyl-7,8-dihydro-6H-thieno [2,1-f] [1,2] thiazine 1-oxide (3j)

This compound was obtained as brown solid; yield 77%; Mp.168-170 °C. ¹H NMR (CDCl₃) δ = 7.71-7.42 (m, 9H, Ar), 6.57 (s, 1H, H-4), 3.68 (m, 2H, H-8a e H-8b), 3.39 (m, 1H, H-6a), 3.05 (m, 1H, H-6b), 2.48 (m, 1H, H-7a), 2.07 (m, 1H, H-7b). ¹³C NMR (CDCl₃) δ = 142.8 (C-3), 142.5 (1C, Ar), 139.9 (q, ²*J*=34, C-5), 139.8, 135.6, 129.3, 128.9, 127.9, 127.4, 127.0 (11C, Ar), 121.4 (q, ¹*J* =274, CF₃), 111.1 (C-5a), 101.8 (C-4), 54.4 (C-8), 27.7 (C-6), 21.1 (C-7). GC/MS (EI, 70 eV): *m/z* (%) for C₂₀H₁₆NOSF₃ (375.09): 375 (M⁺, 98), 326 (100), 230 (96), 309 (94), 283 (52), 202 (51), 313 (46), 257 (34), 152 (32). Anal. Calcd. for C₂₀H₁₆NOSF₃ (375.09): C, 63.99; H, 4.30; N, 3.73%. Found: C, 63.73; H, 4.15; N, 4.02%.

3-(1-Naphthyl)-5-trifluoromethyl-5-hidroxy-5a,6,7,8tetrahydro-5H-thieno [2,1-f] [1,2] thiazine 1-oxide (4k)

This compound was obtained as brown solid; yield 72%; Mp.168-170 °C. ¹H NMR (DMSO- d_6) $\delta = 8.32$ (m, 1H, Ar), 7.92 (m, 2H, Ar), 7.52 (m, 4H, Ar), 6.67 (s, 1H, H-4), 5.05 (s, 1H, OH), 3.88 (m, 1H, H-5a), 3.51 (m, 1H, H-8a), 3.44 (m, 1H, H-8b), 2.27 (m, 2H, H-6a e H-6b), 2.14 (m, 1H, H-7a), 1.78 (m, 1H, H-7b). ¹³C NMR (DMSO- d_6) $\delta = 147.5$ (C-3), 138.1, 133.1, 130.3, 128.3, 128.0, 125.8, 125.7, 125.6, 125.1 (10C, Ar), 124.9 (q, ¹*J*=286, CF₃), 94.3 (C-4), 72.2 (q, ²*J*=29, C-5), 57.1 (C-5a), 51.7 (C-8), 24.7 (C-6), 18.4 (C-7). IR (KBr, v cm⁻¹): 1061 (S=O). Anal. Calcd. for C₁₈H₁₄NOSF₃ (367.1): C, 58.85; H, 4.39; N, 3.81%. Found: C, 58.61; H, 4.10; N, 4.18%

ACKNOWLEDGEMENT

The authors are thankful for financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (Process N° 473.864/2006-1) for financial support. Fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES (for R.P.V.) is also acknowledged.

REFERENCES

- Lombardino, J.G. Nosteroidal Antiinflammatory Drugs, John Wiley & Sons: NY, 1985.
- [2] Garigipati, R. S.; Cordova, R.; Pavez, M.; Weinreb, S. M. *Tetrahedron*, **1986**, 42, 2979.
- [3] Weinreb, S.M. Acc. Chem. Res., 1988, 21, 287.
- [4] (a) Johnson, C.R.; Kirchhoff, R.A.; Reischer, R.J.; Katekar, G.F. J. *Am. Chem. Soc.*, **1973**, *95*, 4287; (b) Johnson, C.R.; Rogers, P.E. J. *Org. Chem.*, **1973**, *38*, 1793; (c) Johnson, C.R.; Rogers, P.E. J. *Org. Chem.*, **1973**, *38*, 1798; (d) Johnson, C.R.; Lavergne. O. J. *Org. Chem.*, **1989**, *54*, 986; (e) Bobhammer, S.; Gais, H-G. Synthe-sis, **1998**, 919.
- [5] Kennewell, P.D.; Taylor, J.B. Chem. Soc. Rev., 1975, 4, 189.

- [6] Filler, R. in Organofluorine Chemicals and their Industrial Applications, Banks, R.E., Ed.; Ellis Harwood, London, **1979**.
- [7] Katritzky, A.R. e Rees, C.W.; Scriven, E.F.V. Comprehensive Heterocyclic Chemistry II, Elsevier Science: New York, 1996; Vol. 6.
- [8] Rudorf, W.D. Synthesis, 1983, 926.
- [9] Willians, T.R.; Cram, D.J. J. Amer. Chem. Soc., **1971**, 93, 7333.
- [10] Willians, T.R.; Cram, D.J. J. Amer. Chem. Soc., 1973, 38, 20.
- [11] Tamura, Y.; Tsunekava, M.; Miyamoto, T.; Ikeda, M. J. Org. Chem., **1977**, 42, 602.
- [12] (a) Ried, W.; Saynovits, M. Chem. Ber., 1988, 121, 1005; (b) Ried,
 W.; Kuhni, D. Synthesis, 1987, 940.
- [13] Bonacorso, H.G.; Bittencourt, S.R.T.; Lourega, R.V.; Flores, A.F.C.; Zanatta, N.; Martins, M.A.P. Synthesis, 2000, 1431.
- [14] Dean, T.R.; Chen, H.-H.; May, J.A. US Patents, 5240923 (1993); *Chem. Abstr.*, **1994**, *120*, 245133.
- [15] Colla, A.; Martins, M.A.P.; Clar, G.; Krimmer, S.; Fisher, P. Synthesis, 1991, 483.
- [16] Martins, M.A.P.; Siqueira, G.M.; Flores, A.F.C.; Clar, G.; Zanatta, N. Quim. Nova, 1994, 17, 24.
- [17] Bonacorso, H.G.; Martins, M.A.P.; Bittencourt, S.R.T.; Lourega, R.; Zanatta, N.; Flores, A.F.C. J. Fluorine Chem., 1999, 99, 177.
- [18] Gerus, I.I.; Gorbunova, M.G.; Vdovenko, S.I.; Yagupol'skii, Yu. L.; Kukhar, V. P. *Zhur. Org. Khim.*, **1990**, *26*, 1877.