
This article was downloaded by: [Umeå University Library] On: 22 November 2014, At: 19:20 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

SOME ASPECTS ON ACYCLO- 4-[QUINAZOLIN-3-YL]BENZENESULFONAMIDE NON-NUCLEOSIDES SYNTHESIS

Abd El-Hamid^a & A. A. Ismail^a ^a Menoufia University, Egypt Published online: 16 Aug 2010.

To cite this article: Abd EI-Hamid & A. A. Ismail (2004) SOME ASPECTS ON ACYCLO- 4-[QUINAZOLIN-3-YL]BENZENESULFONAMIDE NON-NUCLEOSIDES SYNTHESIS, Phosphorus, Sulfur, and Silicon and the Related Elements, 179:6, 1055-1063, DOI: <u>10.1080/10426500490459678</u>

To link to this article: <u>http://dx.doi.org/10.1080/10426500490459678</u>

PLEASE SCROLL DOWN FOR ARTICLE

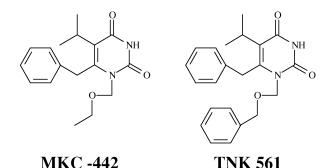
Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

SOME ASPECTS ON ACYCLO-4-[QUINAZOLIN-3-YL]BENZENESULFONAMIDE NON-NUCLEOSIDES SYNTHESIS

Abd El-Hamid and A. A. Ismail Menoufia University, Egypt

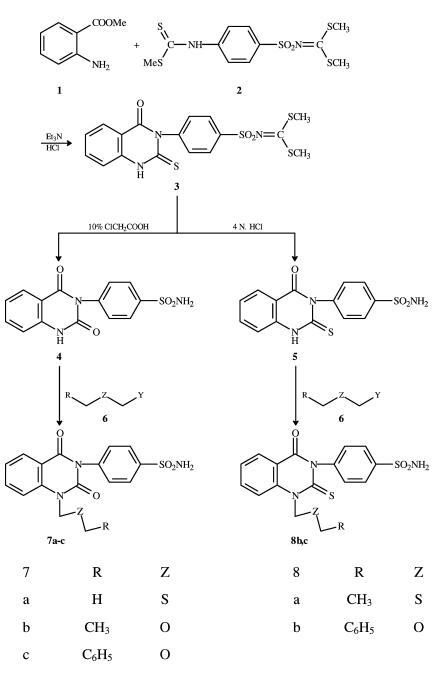
(Received May 18, 2003; accepted October 5, 2003)


The reaction of 4-[1,2,3,4-tetrahydroquinazolin-2,4-dion-3-yl]benzenesulfonamide **4** and 4-[2-thioxo-1,2,3,4 tetrahydroquniazolin-4-on-3yl]benznesulfonamide **5** with chloromethylethyl ether, chloromethylbenzyl ether, and (2-acetoxyethoxy)methyl bromide afforded compounds **7a-c**, **8a,b**, and **13** which are analogues to MKC-442, TNK 561, and HEPT.

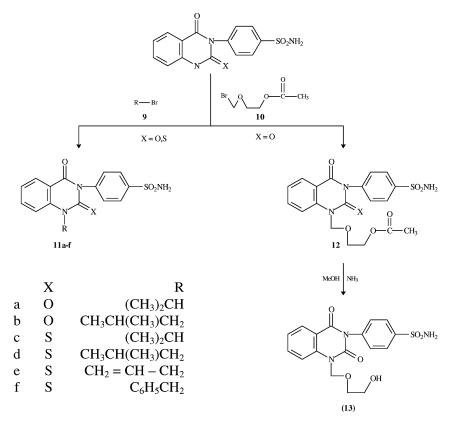
Keywords: Benzenesulfonamide; MKC-442; quinazolines; non-nucleosides; TNK 561

A wide spectrum of biological activities associated with quinazolines and their condensed derivatives, some derivatives show antiviral, CNSdepressant, anticonvulsant, antimalaric, and anticancer activity.^{1–5} HIV is known as the causative agent for AIDS,⁶ enormous efforts have been made to understand the life cycle of this retrovirus, in order to define biochemical targets for its selective inhibition by chemotherapeutic agent. Reverse transcriptase (RT), the polymerase specifically coded by HIV, was in this respect one of the first targets to be identified for the development of anti-AIDS drugs. These drugs acting as inhibitors of the reverse transcriptase enzyme, through interaction with reverse transcriptase (RT) at an "allosteric" binding pocket⁷ which is proximal to the catalytic site for DNA synthesis.⁸ Structure activity studies in the 1-[(2-hydroxyethoxymethyl)-6-phenylthio]thymine or HEPT^{9,10} have resulted in the identification of several new promising clinical candidates,

The authors would like to thank DANIDA establishment Denmark, which supports the project "Development of New Drugs Against Hepatitis" at the Chemistry Department, Faculty of Science, Menoufia University for the laboratory facilities and spectroscopic measurements.


Address correspondence to A. A. Ismail, Department of Chemistry, Faculty of Science, Menoufia University, Egypt. E-mail: Abdelhamede2002@yahoo.com including MKC-442 and TNK 561.^{11,*} As a part of our program of research on the synthesis of new glycosides with considerable biological activity.^{12–14}

RESULTS AND DISCUSSION


The aim of the work mentioned in this article, synthesis of analogues MKC-442, TNK 561, and HEPT Which bearing benzensulfonamide 7b,c, 8b,c, and 13. It is expected that the benzenesulfonamide will exhibit high biologically activity.¹⁵ The treatment of dimethyl N-(4-oxo-2-thioxo-1,2,3,4-tetrahydro-3-quinazolinylsulfonyl)] dithiocarbonoimidate 3¹⁶ with 10% ClCH₂COOH vielded 4-[1,2,3,4tetrahydroquina-zolin-2,4-dion-3-yl]benzenesulfonamide 4. While the treatment of compound 3 with 4N HCl afforded 4-[2-thioxo-1,2,3,4tetrahydroquinazolin-4-on-3-yl]benzenesulfonamide 5. 4-(Quinazolin-3-yl)benzenesulfonamide derivatives 4 or 5 were further reacted with chloromethylethyl ether, chloromethylbenzyl ether or chloromethyl methylsulphide in dry DMF and sodium hydride to produce compounds 7a,c and 8a,b which are analogues to MKC-442 and TNK 561. It is expected that the benzenesulfonamide strong electron withdrawing group will directed the electrophilic reaction in 4-[2-thioxo-1,2,3,4tetrahydroquinozolin-4-on-3-yl]benzenesulfonamide 5 towards the nitrogen and not the sulfur atoms to form N^1 - Nucleosides **8a,b**. On the other hand when the benzenesulfonamide was replaced by an aryl group, the electrophilic reaction was directed towards the sulfur atom to produce S^2 -nucleosides.¹⁷

 $^{^{*}}MKC\text{-}442$ demonstrating higher synthestic anti-HIV activity with AZT than neuirapine will soon enter clinical studies.

4-[Quinazolin-3-yl]benzenesulfonamide derivatives **4** or **5** were reacted with isopropyl bromide, secondary butyl bromide, allyl bromide, or benzyl bromide to form non-nucleoside compounds **11a-f**. 4-[1,2,3,4-Tetrahydroquinazolin-2,4-dion-3-yl]benzenesufonamide **4** was reacted with (2-acetoxyethoxy)methyl bromide **10** to furnish **12**. Deacetylation of **12** was done by methanolic ammonia to give 4-[2-(2-hydroxyethoxy)methyl-1,2,3,4-tetrahydroquinazolin-2,4-dion-3-yl] benzenesulfonamide **13** which is analogue to HEPT.

SCHEME 2

EXPERIMENTAL

NMR spectra were recorded on a Bruker 250 FT NMR spectrometer, TMS as internal standard. MS were recorded on a varian MAT. 311A spectrometer. The silica gel (0.040–0.63 nm) was used for CC purchased from Merck. Results of elemental analysis were in acceptable range.

4-[1,2,3,4-Tetrahydroquinazolin-2,4-dion-3-yl]benenesulfonamide (4)

Compound 3 (450 mg, 1 mmol) in 10 ml of 10% ClCH₂COOH was stirred at room temperature for 24 h. The precipitate was formed, filtered off, washed by 50 ml H₂O. The crude product was purified by crystallization from ethanol. Yield 82% as white solid; m.p. > 300°C. ¹H-NMR: 11.55 (s, 1H, NH); 8.01–7.75 (m, 10H, Ar–H and NH₂). ¹³C-NMR: 166.53 (C-2); 154.37(C-4); 148.21, 144.27, 143.16, 139.79, 134.31, 131.99, 130.71, 127.05, 119.75, 118.69(C arom.). MS(EI). m/z 317(M+). (Found C, 53.24; H, 3.33; N, 13.01 Calc. for C₁₄H₁₁N₃O₄S (MW = 317.07) C, 53.00; H, 3.50; N, 13.50).

4-[2-Thioxo-1,2,3,4-tetrahydroquinazolin-4-on-3-yl]benzenesulfonamide (5)

Compounds **3** (450 mg, 1 mmol) in 20 ml of 4N HCl was refluxed for 2 h. After cooling the white precipitate was formed, filtered off, washed by 50 ml H₂O, and crystallization from ethanol. Yield 76% as white solid; m.p. > 300°C. ¹H-NMR: 7.92–7.33 (m, 8 H, Ar–H); 4.43(br, 2 H, NH₂). ¹³C-NMR: 175.60(C=S); 159.75(C-4); 143.66, 142.15, 139.58, 135.71, 129.85, 127.35, 126.48, 124.54, 116.11, 115.76(C arom.); MS(EI): m/z 333(M⁺). (Found: C, 50.31; H, 3.49; N, 12.70. Calc for $C_{14}H_{11}N_3O_3S_2$ (MW = 333.63) C, 50.41; H, 3.33; N, 12.60).

General Procedure for Compounds 7, 8, 11, and 12

Quinazoline derivatives **4** or **5** (5 mmol) and NaH (6 mmol) in 10 ml of dry DMF were stirred at room temperature for 1 h, then compounds **6**, **9**, or **10** (6 mmol) were added and the reaction mixture was stirred 8-24 h at room temperature (monitored by TLC analysis). The solvent was evaporated under vacuum, the residue was dissolved in 20 ml ethyl acetate and 30 ml H₂O. The organic layer was extracted and dried over anhydrous MgSO₄. The product was purified by silica gel column chromatography (10% ethyl acetate/cyclohexane, v:v).

4-[1-Ethoxymethyl-1,2,3,4-tetrahydroquinazolin-2,4-dion-3-yl]benzenesulfonamide (7a)

Yield 73% as a white solid; m.p. 189–190°C. ¹H-NMR: 8.06–7.55 (m, 8H, Ar–H); 5.63 (s, 2H,H-1'); 3.67 (m, 2H, OCH₂–CH₃); 1.20 (t, 3H,

4-[1-Benzyloxymethyl-1,2,3,4-tetrahydroquinazolin-2,4dion-3-yl]benzenesulfonamide (7b)

Yield 63% as a white solid; m.p. 188–170°C. ¹H-NMR: 8.25–7.53 (m, 13H, Ar–H); 4.46 (s, 2H, H-1′); 4.71 (s, 2H, O-C H_2 Ph). MS(EI): m/z 437(M⁺). (Found: C, 60.13; H, 4.55; N, 9.37 Calc. for C₂₂H₁₉N₃O₅S (MW = 437.41) C, 60.36; H, 4.37; N, 9.60).

4-[1-(Methylsulphide)methyl-1,2,3,4-tetrahydroquinazolin-2,4-dion-3-yl]benzenesulfonamide (7c)

Yield 78% as a white solid; m.p. 159-160°C. ¹H-NMR: 8.14–7.51(m, 8H, Ar–H); 4.04(s, 2H, H-1′); 2.60(s, 3H, S-C H_3). ¹³C-NMR: 180–57(C-2); 155(C-4); 146.92 141.77, 139.80, 135.05, 130.57, 127.89, 126.49, 126.17, 126.08, 119.46 (C arom.); 67.87 (C-1′); 39.77(–S–CH₃). (Found: C, 50.97; H, 4.28; N, 11.01 Calc. for C₁₆H₁₅N₃O₄S₂ (MW = 377.41) C, 51.06; H, 4.02; N, 11.16).

4-[1-Ethoxymethyl-2-thioxo-1,2,3,4-tetrahydroquinazolin-4-on-3-yl]benzenesulfonamide (8a)

Yield 69% a white solid; m.p. 189–170°C.; ¹H-NMR: 7.06–6.70 (m, 8H, Ar–H); 4.37 (s, 2H, 2H-1'); 3.61(m, 2H, OC H_2 CH₃); 1.56 (t, 3H, OCH₂CH₃). ¹³C-NMR: 187.34 (C=S); 162.22 (C-4); 180.78, 155.01, 148.89, 146.84, 141.63 140.02, 135.05, 130.54, 127.86, 128.23, 128.10 (C arom.); 72.45 (C-1'); 64.69 (OCH₂CH₃), 16.21 (O–CH₂–CH₃). Found C, 52.39 H, 4.01 N, 10.86 Calc. for C₁₇H₁₇N₃O₄S₂(MW = 391.42) C, 52.17 H, 4.38 N, 10.73).

4-[1-Benzyloxymethyl-2-thioxo-1,2,3,4-tetrahydroquinazolin-4-on-3-yl]benzenesulfonamide (8b)

Yield 61%; m.p. 173–175°C. ¹H-NMR: 8.15–7.29 (m, 13H, Ar–H); 5.53 (s, 2H, H-1'); 4.49(s, 2H, OC H_2 Ph). ¹³C-NMR: 187.37(C=S); 180.79 (C-4); 154.81 148.88, 141.65, 139.99, 137.27, 135.07 128.18, 127.79, 127.83, 119.54 (C arom.); 72.127 (C-1'); 70.91 (O–CH₂Ph). (Found: C, 58.03; H,

4.52; N, 8.99 Calc. for $C_{22}H_{19}N_3O_4S_2\ (MW=453.50)$ C, 58.27 H, 4.22 N, 9.27).

4-[1-lsopropyl-1,2,3,4-tetrahydroquinzolin-2,4-dion-3-yl]benzenesulfonamide (11a)

Yield 82% as a white solid, m.p. 170–172°C. ¹H-NMR: 8.12–7.49 (m, 8H, ArH); 3.99 (m, 1H, CH(CH₃)₂) 1.35 (d, J = 6.78 Hz, 6H, CH (CH₃)₂) ¹³C-NMR: 180.51 (C=S); 155.87 (C-4); 147.21, 141.49, 139.87, 134.91, 130.49, 127.78, 128.39, 125.92, 125.87, 119.35 (Ar-C); 37.70 (CH(CH₃)₂), 22.20, 16.15 (CH(CH₃)₂); MS: m/z 359(M⁺) (Found: C, 56.62; H, 4.56; N, 11.55 Calc. for C₁₇H₁₇N₃O₄S (MW = 359.36) C, 56.31 H, 4.77 N, 11.63).

4-[1-(2-Butyl)-1,2,3,4-tetrahydroquinazolin-2,4-dion-3yl]benzenesulfonamide (11b)

Yield 85% as a white solid, m.p. 187–188°C. ¹H-NMR: 8.13–7.47(m, 8H, Ar–H) 3.93 (m, 1H, H-1'); 1.88 (m, 2H, CH₂-CH₃); 1.26 (d, J = 6.95 Hz, 1H, CH₂); 0.95 (m, 3H, CH₂-CH₃) ¹³C-NMR: 181.30 (C=S), 158.65 (C-4); 147.83, 142.15, 140.62, 135.59, 131.09, 128.45, 127.08, 128.62, 126.54, 120.03, (C arom.); 44.58 (C-1'); 29.08 (CH₂-CH₃); 20.48 (CH₃) 11.85 (CH₂-CH₃). (Found: C, 57.63 H, 5.42 N, 11.08 Calc. for C₁₈H₁₉N₃O₄S (MW = 373.40) C, 57.90 H, 5.13 N, 11.25).

4-[1-lsopropyl-2-thioxo-1,2,3,4-tetrahydroquinazolin-4on-3-yl]benzenesulfonamide (11c)

Yield 78% as a white solid; m.p. 173–178°C. ¹H-NMR: 8.17–7.54 (m, 8H, Ar–H) 4.05 (m, 1H, H-1'); 1.38 (d, J = 6.79 Hz, 6H, CH(CH₃)₂.¹³C-NMR: 187.28 (C=S); 180.62 (C-4); 155.89, 147.23, 141.52, 139.89, 134.94, 130.51, 127.81, (m126.41, 125.96, 119.36 (C arom.); 37.73 (CH(CH₃)₂; 16.18 CH(CH₃)₂. (Found: C, 54.50 H, 4.22 N, 11.43 Calc for C₁₇ H₁₇N₃O₃S₂ (MW = 375.47) C, 54.39 H, 4.56 N, 11.19).

4-[1-(2-Butyl)-2-thioxo-1,2,3,4-tetrahydroquinazolin-4-on-3-yl]benzenesulfonamide (11d)

Yield 79% as a white solid; 163–165°C. ¹H-NMR: 8.15–7.51, 8H, ArH), 3.95 (m, 1H, H-1'); 1.72 (m, 2H, CH_2CH_3); 1.35(d, J = 6.85 Hz, CH_3); 0.98(m, 3H, CH_2-CH_3). ¹³C-NMR: 187.23(C=S); 180.62 (C-4);155.98 147.12, 141.48, 139.94, 134.89, 130.51, 130.51, 130.48, 127.78, 126.38, 119.35 (C arom.); 43.89 (C-1'); 28.39 (CH_2CH_3); 19.81 (CH_3); 11.17

 $(CH_2C{\it H}_3).$ (Found: C, 55.61 H, 5.20 N, 10.82 Calc. for $C_{18}H_{19}N_3O_3S_2$ (MW = 389.45) C, 55.48; H, 4.92; N, 10.79).

4-[1-Allyl-2-thioxo-1,2,3,4-tetrahydroquinaolin-4-on-3-yl]benzenesulfonamide (11e)

Yield 61% as a white solid, m.p. 168–170°C. ¹H-NMR: 8.13–7.50 (m, 8H, Ar–H); 5.81 (m, H, C*H*=CH₂), 5.32 (dd, 2H, H-1′); 3.87 (d, J = 6.56 Hz, 2H, CH=C H_2). ¹³C-NMR: 187.97 (C=S); 161.25 (C-4); 158.18, 147.71, 140.42, 135.63, 131.19, 128.49, 127.09, 128.68, 120.04, 119.52 (C arom.). (Found: C, 54.72 H, 3.97 N, 11.48. (Calc. for C₁₇H₁₅N₃O₃S₂ (MW = 373.45) C, 54.68 H, 4.05 N, 11.25).

4-[1-Benzyl-2-thiox-1,2,3,4-tetrahydroquinazolin-4-on-3-yl]benzenesulfonamide (11f)

Yield 83% as a white solid; m.p. 195–197°C. ¹H-NMR: 8.12–7.20 (m, 3 H, Ar–H); 4.46 (s, 2H, CH₂Ph). ¹³C-NMR: 187.96 (C=S); 161.22 (C-4); 156.40, 147.67, 142.28, 127.86, 127.77, 127.12, 126.87, 126.55, 120.07 (C arom.); 36.42 (CH₂Ph). (Found: C, 59.33; H, 4.10; N, 10.14, calc. for $C_{21}H_{17}N_3O_3S_2$ (MW = 423.47) C, 59.56; H, 4.05, N, 9.92).

4-[2-(2-Acetoxyethoxy)methyl-1,2,3,4-tetrahydroquinazolin-2,4-dion-3-yl]benzenesulfonamide (12)

Yield 62% as a white solid; m.p. 160–162°C. ¹H-NMR: 8.42–7.63 (m, 8H, Ar–H); 5.49 (s, 2H, H-1'); 4.32 (m, 2H, O– CH_2 – CH_2) 4.13 (m, 2H, OCH₂- CH_2), 2.18 (s, 3H, COCH₃). ¹³C-NMR: 174.31 (COCH₃), 170.40 (C-2), 163.01 (C-4), 161.06, 147.52, 146.30, 144.03, 134.62, 127.38, 127.20, 127.09, 126.70, 126.26 (C arom.). (Found: C, 52.47; H, 4.55; N, 9.80. (Calc. for C₁₉H₁₉N₃O₇S (MW = 433.73) C, 52.61; H, 4.50,N 9.69).

4-[2-(2-Hydroxyethoxy)methyl-1,2,3,4-tetrahydroquinazolin-2,4-dion-3-yl]benzenesulfonamid (13)

Compound 12 (434.7 mg, 1 mmol) was dissolved in 10 ml methanol/NH₃ and the reaction mixture was stirred at room temperature for 24 h until TLC showed no starting material left. The solvent was evaporated under vacuum and the residue was purified by silica gel column chromatography (50% ethyl acetate/cyclohexane, v:v) affords white solid (370 mg, 86%); m.p. 150–152°C. ¹H-NMR: 8.12–7.43 (m, 8H, Ar–H) 5.43 (s, 2H, H-1'), 3.71 (t, 2H, O–C H_2 –CH₂) 3.60 (t, 2H, OCH₂C H_2). ¹³C-NMR: 180.30 (C=S); 147.49 (C-2); 145.10, 136.20, 134.82, 134.19,

132.82, 127.91, 127.01, 128.64, 126.30, 125.71 (C arom.); 75.11 (C-1'), 70.13 (O-CH₂-CH₂), 59.43 (O-CH₂ - CH₂). (Found: C, 52.00; H, 4.66; N, 10.91 Calc. for $C_{17}H_{17}N_3O_6S$ (MW = 391.35) C, 52.17; H, 4.38; N, 10.86.

REFERENCES

- [1] M. R. Chaurasia and S. K. Sharma, Heterocycles, 14, 176 (1980).
- [2] A. K. Sen Gupta and A. K. Pandey, Pestic Sci., 28, 41 (1989).
- [3] I. K. Kacher and S. H. Jaheer, J. Indian Chem. Soc., 28, 344 (1951).
- [4] K. C. Joshi, V. K. D. S. Singh, R. C. Metha Sharma, and L. Gupta, J. Pharm. Sci., 64, 1428 (1975).
- [5] A. R. Reisch, J. Ram Rao, and C. O. Usifoh, Monat. Für Chemie, 124, 1217 (1993).
- [6] R. C. Gallo, S. Z. Salahuddin, M. Popovic, et al., Science, 224, 500 (1984).
- [7] D. L. Romero, Ann. Rep. In Med. Chem., 29, 123 (1994).
- [8] M. E. Goldman, J. H. Nunberg, J. A. O'Brien, et al., Proc. Natl. Acad. Sci. USA, 88, 6863 (1991).
- [9] T. Miyasaka, H. Tanaka, M. Baba, et al., J. Med. Chem., 32, 2507 (1989).
- [10] J. Balzarini, A. A. Karlsson, E. De Clercq, Molecular Pharmacol., 44, 694 (1993).
- [11] S. Yuasa et al., 9th International Conference on AIDS/4th STD World Congregation [June 6–11] Berlin (1993). Abstract PO-B26-2064, Mitsubisfhi, Kasei Corporation. Annual Report (1993).
- [12] A. H. Ismail, *Pharmazie*, **56**, 534 (2001).
- [13] A. H. Ismail, Synthetic Comm., 32, 2791 (2002).
- [14] A. H. Ismail, A. H. Abdel Aleem, A. H. Abdel-Bary, H. A. El-Assaly, Nucleosides Nucleotides & Nucleic Acid, 21, 469 (2002).
- [15] D. P. Thomas, J. T. John, R. B. Stephen, et al., J. Med. Chem., 40, 1347 (1997).
- [16] S. Franco, E. Melendez, and F. L. Merchan, J. Heterocyclc. Chem., 32, 1181 (1995).
- [17] A. H. Ismail and M. E. Attia, Phosphorous, Sulfur, and Silicon in press.