

Concise Synthesis of Key Intermediates of Pyriftalid and Paquinimod via Hydrogenation Method

Zhong Li,[†][©] Bing Li,[‡] An-Jiang Yang,[†] and Fu-Li Zhang^{*,†}

[†]Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmacetical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China

[‡]Zhejiang University of Technology, 18 Chaowang Road, Xiacheng, Hangzhou 310014, China

S Supporting Information

ABSTRACT: An efficient and scalable synthesis of 7-amino-3-methylisobenzofuran-1(3H)-one (1) and 2-amino-6-ethylbenzoic acid (2) has been developed via a one-step catalytic hydrogenation. The triethylammonium salt of 2-acetyl-6-nitrobenzoic acid was used as the starting material and 1 was prepared in a biphasic solvent system of toluene/H₂O, while 2 was obtained when the solvent was replaced with H₂O. Intermediates 1 and 2 could be used to synthesize Pyriftalid and Paquinimod, respectively.

INTRODUCTION

Pyriftalid, an acetolactate synthase (ALS) inhibitor to block the biosynthesis of branched-chain amino acids, can be used to control *Echinochloa*, *Leptochlao*, *Brachiaria*, *Setaria*, and *Ischemeum spp* for the improvement of rice production.^{1–3} 7-Amino-3-methylisobenzofuran-1(3H)-one 1 is used as a key intermediate in the synthesis of Pyriftalid. Compound 1 can be prepared from 2-acetyl-6-nitrobenzoic acid 3 (Scheme 1), via a

two-step reduction with hydrogen and NaBH₄ respectively in 75.4% overall yield (Path A) or 93.7% yield when the order of reducing agents is reversed (Path B). However, usage of NaBH₄ leads to a relatively high cost, and the two-step methods result in inefficient production. Alternatively, **1** can also be obtained directly by catalytic hydrogenation from **3** in 89.7% yield (Path C), with an unacceptable purity of 86.4%, which restricts its application in industry.⁴

Paquinimod belongs to the class of 3-quinolinecarboxamide derivatives, whose molecular target has been identified as S100A9 protein. A phase II study of Paquinimod for patients with systemic lupus erythematosus (SLE) has been completed.⁵ 2-Amino-6-ethylbenzoic acid **2** is the key intermediate used to

prepare paquinimod.^{6,7} Compound **3** is also used as the starting material to prepare **2**, via two-step reduction by catalytic hydrogenation, with PtO₂ as catalyst first, and then Raney-Ni, in 90.0% overall yield (Scheme 2).⁸ Obviously, the catalyst PtO₂ increases the cost dramatically; also, the continuous usage of two catalysts results in inefficient production and inconvenient catalyst recovery.

Scheme 2. Reported Synthetic Route of Key Intermediate 2

In order to explore an economical and industrial process for the production of 1 (for Pyriftalid) and 2 (for Paquinimod), we intended to develop a novel one-step catalytic hydrogenation method, using 3 as the starting material.

RESULTS AND DISCUSSION

As previously reported,⁴ reduction of 3 in a single step afforded 1 in low yield and purity. On this basis, we investigated several types of catalysts and solvents, aiming to improve the yield and purity (Table 1). The reduction process follows the order 3-4-1-6-2.^{8,9} The nitro of 3 was reduced to give amino compound 4, and the benzyl hydroxyl of 4 was then reduced to give lactone compound 1. Partial hydrolysis of 1 produced 6, and the benzyl hydroxyl of 6 was subsequently reduced to obtain 2. Raney-Ni was unable to reduce 4 completely unless HCOOH was added, but 14.69% 2 was generated under these conditions (entries 1, 2). As Pd/C was screened, HCOOH did not work and Pdethylene diamine complex also turned out to be ineffective (entries 3, 4). Toluene appeared to be a better solvent (entry 6); when H₂O was added, only 2.60% 4 remained and the purity of 1

Received: May 16, 2017

Table 1. Conditions for the Hydrogenation of 3

^{*a*}Reaction conditions: **3** (2.00 g), catalyst (0.40 g), solvent (50 mL), autoclave, Model 4760 Pressure Reaction Apparatus, Parr Instrument Company, Moline, IL USA, 300 mL. ^{*b*}Bath temperature. ^{*c*}Compositions were calculated from HPLC area. ^{*d*}2.5 mL of HCOOH was added. ^{*e*}Pd-ethylene diamine complex; ^{10 f}10 mL of H₂O was added.

				HPLC $(\%)^c$				
entry ^a	catalyst	pressure (atm)	$T/t (^{\circ}C/h)^{b}$	4	1	6	2	yield ^d (%)
1	Pd/C	15	120/17	0.71	98.45	0.85	ND	63.9
2	R-Ni	15	120/17	ND	96.68	ND	0.20	76.0
3	R-Ni	15	100/14	ND	99.52	ND	0.14	87.5
4	R-Ni	15	80/6	ND	98.47	0.22	ND	91.3
5	R-Ni	15	80/8	ND	98.70	ND	ND	95.7
6	R-Ni	15	80/14	ND	98.89	0.09	ND	95.1
7	R-Ni	15	60/10	4.08	95.08	ND	ND	27.9
8 ^e	R-Ni	15	60/10	64.65	5.28	1.61	0.08	ND
9	R-Ni	4	80/8	0.52	99.17	ND	ND	98.5
10 ^f	R-Ni	4	80/8	0.09	99.60	ND	ND	98.3
11 ^f	R-Ni	5	80/8	ND	99.68	ND	ND	97.7

^{*a*}Reaction conditions: Triethylammonium salt of 3 (3.00 g), catalyst (0.50 g), toluene (30 mL), H_2O (5 mL), the same autoclave as shown in Table 1. ^{*b*}Bath temperature. ^{*c*}Compositions of toluene phase were calculated from HPLC area. ^{*d*}Isolated yield of 1. ^{*e*}Compositions of aqueous phase of entry 7. ^{*f*}Reused Raney-Ni.

dramatically increased to 86.73% (entry 7). Both Raney-Co and Pt/C were ineffective catalysts,¹³ as compound 4 was obtained as the main product (entries 8, 9). The best result as shown in entry 7 was still not practical enough for scale-up production.

Based on the results of Table 1, it was clear that stopping the reduction at lactone 1 would be challenging. Separating 1 from the system as the reaction proceeds would be an attractive solution. Fortunately, 1 is the only compound without an acidic

Et₃N (2.0 equiv)

Et₃N (2.0 equiv)

1

2

3

4

5

6

7

8

9

11

94.5

ND

Table 3. Conditions of Raney-Ni for Reduction of Triethylammonium Salt of 3 To Prepare 2

^aReaction conditions: triethylammonium salt of 3 (6.20 g), Raney-Ni (1.00 g), H₂O (45 mL), 8 h, the same autoclave as shown in Table 1. ^bBath temperature. ^cCompositions of reaction mixture were calculated from HPLC area. ^dIsolated yield of 2. ^eThe starting material included 3, 1.1 equiv of NaOH. ^JThe starting material included 3; adjust the reaction mixture to pH 11.0 with ammonia.

ND

ND

0.56

4.77

0.72

1.79

98.22

93.45

120

120

11.5

9.5

"Reaction conditions: triethylammonium salt of 3 (6.20 g), H₂O (45 mL), 8 h; the same autoclave as shown in Table 1. "Bath temperature. ^cCompositions of reaction mixture were calculated from HPLC area. ^dIsolated yield of 2.

group in the reduction process. Lactone 1 was further found to be soluble in toluene but insoluble in weak alkaline water (pH = 10). Based on this fact, 3 was prepared as its triethylammonium salt, and toluene/ H_2O was selected as the biphasic solvent system. In principle, the reduction would proceed in water; however, as soon as lactone 1 is generated it presumably would partition more favorably into the toluene layer and not be over-reduced (Scheme 3).

Various conditions were investigated in the biphasic solvent system (Table 2). When Pd/C was chosen as the catalyst, the yield of 1 was 63.9% (entry 1). Raney-Ni turned out to be a promising catalyst, as 1 was obtained in higher yield compared to Pd/C in the same conditions (entry 2). The yield of 1 increased significantly to 95.7% at a lower temperature of 80 °C (entry 5); when the temperature was reduced to 60 °C, the yield dropped to 27.9%, and 4 became the main product which existed in aqueous phase in the form of its triethylammonium salt (entries 7, 8). The yield was 95.1% when the reaction time was prolonged to 14 h (entry 6), which indicated 1 was stable at 80 °C. At a lower pressure of 4 atm, 1 was obtained in higher purity and yield (entry 9). Consequently, the reduction was performed as shown in entry 9, and Raney-Ni could be recovered more than three times (entries 10, 11). After the reduction was complete, the

toluene layer was separated, followed by evaporation of the solvent, affording 1 in high yield and purity, while compounds 3, 4, 6, 2 stayed in water in the form of their triethylammonium salts.

A further study focused on the synthesis of 2, which was a key intermediate of Paquinimod. 2 can also be used for the preparation of substituted pyrazolo [1,5-*a*] pyrimidine derivatives as respiratory syncytial virus inhibitors and a nonpeptidic ligand for the molecular imaging of inflammatory processes.^{11,12} The triethylammonium salt of 3 could be used to prepare 2 if the reduction was run in water (Table 3). As the reduction progressed, the lactone compound 1 could not be separated from the reaction system. Partial hydrolysis in alkaline solution would produce 6. The benzyl hydroxyl of 6 would subsequently be reduced to obtain 2. Various conditions were screened as shown in Table 3, the catalyst was still Raney-Ni. The reduction was initially carried out at 80 and 120 °C; less 1 remained as the temperature increased, but the results were still unsatisfactory (entries 1, 2). However, when the sodium or ammonium salt of 3 was used instead of its triethylammonium salt, only a trace of 2 was generated (entries 3, 4). Addition of an extra equivalent of Et_3N promoted the hydrolysis of 1 (entry 5). When 2.0 equiv of Et₃N was added, only 1.04% 1 remained and 2 was obtained in

98.30% purity (entry 6). When the temperature was reduced to 110 and 100 °C, 1 could not be completely converted to 2 (entries 7, 8). The pressure could be reduced to 11.5 atm at a temperature of 120 °C to give 98.22% purity of 2 with only 0.56% of 1 remaining (entry 10). Further reduction of the pressure to 9.5 atm left 4.77% of 1 remaining after 8 h (entry 11). After the reduction was complete, the aqueous phase was adjusted to pH 3.0–3.5 with hydrochloric acid, the product was extracted with *n*-butyl acetate, and then the organic solvent was evaporated to obtain 2. The reaction steps proceeded mostly by sequence; reaction process data could be found in the Supporting Information.

Conditions were investigated when the catalyst was Pd/C (Table 4). The reduction was initially carried out at 80 °C; 41.10% 1 remained (entry 1). When the temperature was increased to 90 °C, the result was still unsatisfactory (entry 2). When the reduction was carried out at 100 °C/11 atm, 1 could be completely converted to 2 (entry 3). At a lower pressure of 5 atm, 40.17% of 1 remained (entry 4). When the amount of Pd/C was reduced to 50%, the reduction could not be completed in 8 h (entry 5).

CONCLUSIONS

An efficient and practical one-step catalytic hydrogenation process for the synthesis of 1 and 2 has been developed. The triethylammonium salt of 3 was used as the starting material. Compound 1 was prepared in a biphasic solvent system of toluene/H₂O, while compound 2 was obtained when the solvent was replaced with water. The reduction was further applied on larger scale; both 1 and 2 were obtained in high, stable yield and purity, which could be used as the key intermediate to synthesize Pyriftalid and Paquinimod, respectively.

EXPERIMENTAL SECTION

General. ¹H NMR and ¹³C NMR spectra were recorded using a Bruker 400 MHz spectrometer. Chemical shift data are reported in δ (ppm) from the internal standard TMS. Mass spectra was recorded on an Agilent 6120B series single quadrupole LC-MS. Melting points were measured on a WRS-1B apparatus. Reaction was monitored by HPLC, and purity was calculated from HPLC area. The HPLC analyses were recorded by a standard method on a Dionex UItiMate 3000 HPLC instrument using an Agilent Extend-C₁₈ column (250 mm \times 4.6 mm, 5 µm), 30 °C, 1 mL/min, 240 nm, 30 min. Mobile phase: A (0.1% phosphoric acid solution), B (acetonitrile). The initial gradient started with 30% of B, and at 15 min it was up to 70%; the ratio was maintained until 22 min. Then B was decreased to 30% at 23 min and continued to 30 min. Compound 3 was prepared according to the literature procedure in 84% overall yield;⁴ mp 199.7–200.1 °C (lit mp 197–198 °C⁴). Pd/C was OURCHEM (China), 10% content, $H_2O \le 1.0\%$. Raney-Ni was Energy Chemical (China), Ni \geq 90%, 50 μ m (water seal), used directly without additional wash. Pt/C was Energy Chemical, 10% on carbon, 55% water. Raney-Co was Aladdin, 50 μm (water seal). Other materials, solvents, and reagents were of commercial origin and used without additional purification.

Triethylammonium 2-Acetyl-6-nitrobenzoate (Triethylammonium Salt of 3). Compound 3 (321.2 g, 1.54 moL) was added to toluene (1600 mL), and then triethylamine (170.8 g, 1.69 moL) was added. The reaction mixture was heated to 50 °C for 3 h. After cooling to 0 °C, the product was filtered off, washed with toluene (100 mL, 0-5 °C), and then dried under vacuum at 60 °C. The product was obtained as a white solid (465.2 g, 97.6%), with a purity of 99.20%. Mp 122.8–125.1 °C. Anal. Calcd for $C_{15}H_{22}N_2O_5$: C, 58.05; H, 7.15; N, 9.03. Found: C, 57.82; H, 7.18; N, 8.89.

7-Amino-3-methylisobenzofuran-1(3H)-one (1). The triethylammonium salt of **3** (341.1 g 1.10 moL) was added to water (570 mL) and toluene (1680 mL), and then Raney-Ni (56.7 g) was added to the mixture. After three vacuum/N2 cycles to remove air, the stirred mixture was hydrogenated at 65 °C, 5 atm, for 8 h. When the reaction was determined to be complete by HPLC (compound 4 in aqueous phase $\leq 5\%$), the catalyst was filtered off. The filtrate was separated to give the organic phase, and the aqueous phase was extracted with toluene (1500 mL \times 2). Then the organic phases were combined and evaporated under vacuum to give 1 as a white solid (170.4 g, 95.0%), with a purity of 99.42%. Mp 77.3-78.5 °C (lit mp 80-81 °C⁴); ¹H NMR (400 MHz, DMSO) δ 7.34 (dd, J = 8.1, 7.3 Hz, 1H), 6.65 (d, J = 8.2 Hz, 1H), 6.61 (d, J = 7.3 Hz, 1H), 6.25 (s, 2H), 5.50 (q, J = 7.3 Hz, 1H), 6.25 (s, 2Hz, 1Hz), 6.25 (s, 2Hz), 6.25 (s, 2Hz, 1Hz), 6.25 (s, 2Hz, 1Hz), 6.25 (s, 2Hz, 1Hz), 6.25 (sJ = 6.6 Hz, 1H), 1.48 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 171.47, 152.83, 148.43, 136.06, 113.71, 108.29, 106.74, 77.46, 20.83.

2-Amino-6-ethylbenzoic Acid (2). The triethylammonium salt of 3 (322.4 g, 1.04 moL) was added to water (2300 mL), and then triethylamine (210.1 g, 2.08 moL) and Raney-Ni (52.0 g) were added to the mixture. After three vacuum/N2 cycles to remove air, the stirred mixture was hydrogenated at 110 °C, 15 atm, for 8 h. When the reaction was complete as determined by HPLC (compound $1 \le 1.5\%$), the catalyst was filtered off. The pH was adjusted to 3.0-3.5 with hydrochloric acid. The mixture was extracted with *n*-butyl acetate (1800 mL \times 3). Then the organic phase was combined and evaporated under vacuum to give 2 as a white loose solid (160.5 g, 93.5%), with a purity of 98.20%. Mp 107.3–108.2 °C (lit mp 107–109 °C⁸); ¹H NMR (400 MHz, DMSO) δ 8.04 (s, 2H), 7.10–6.97 (m, 1H), 6.58 (dd, *J* = 8.2, 0.8 Hz, 1H), 6.42 (d, *J* = 7.0 Hz, 1H), 3.35 (s, 1H), 2.70 $(q, J = 7.5 \text{ Hz}, 2\text{H}), 1.11 (t, J = 7.5 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}),$ DMSO) δ 170.70, 149.05, 144.82, 131.45, 117.43, 115.08, 114.29, 28.14, 16.59.

The triethylammonium salt of **3** (6.20 g, 0.02 moL) was added to water (45 mL), and then Pd/C (1.00 g) was added to the mixture. After three vacuum/N₂ cycles to remove air, the stirred mixture was hydrogenated at 100 °C, 11 atm, for 8 h. The catalyst was filtered off. The pH was adjusted to 3.0-3.5 with hydrochloric acid. Then the mixture was extracted with *n*-butyl acetate (45 mL× 3). The organic phases were combined and evaporated under vacuum to give **2** as a white loose solid (3.06 g, 92.7%), with a purity of 98.50%.

7-Amino-3-hydroxy-3-methylisobenzofuran-1(3H)-one (4). Compound 3 (5.00 g, 23.9 mmoL) was added to ethanol (70 mL), and then Pd/C (3.70 g) was added to the mixture. After three vacuum/N₂ cycles to remove air, the stirred mixture was hydrogenated at 40 °C, 8 atm, for 5 h. After the catalyst was filtered off, the solvent was evaporated under vacuum to give 4 as a yellow solid (4.26 g, 99.5%), with a purity of 97.14%. Mp 158.9–160.3 °C; ¹H NMR (400 MHz, DMSO) δ 7.53 (s, 1H), 7.35 (dd, *J* = 8.1, 7.4 Hz, 1H), 6.69 (d, *J* = 8.1 Hz, 1H), 6.65 (d, *J* = 7.2 Hz, 1H), 6.26 (s, 2H), 1.65 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 169.63, 151.96, 148.07, 136.17, 115.07, 108.66, 107.14, 106.14, 26.79.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.oprd.7b00177.

¹H NMR, ¹³C NMR, MS spectra for compounds **1**, **2**, **4**; reaction process data related to Raney-Ni for reduction of triethylammonium salt of **3** to prepare **2** (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: zhangfuli1@sinopharm.com.

ORCID 0

Zhong Li: 0000-0002-6498-7241

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Engineering Research Center for Improvement & Industrialization of Pharmaceutical Processes for financial support.

REFERENCES

Tse, J. M. T.; Schloss, J. V. Biochemistry 1993, 32, 10398–10403.
 Durner, J.; Gailus, V.; Böger, P. FEBS Lett. 1994, 354, 71–73.

(3) Allard, J.; Kon, K.; Allen, J.; Lüthy, C. CGA 279'233, A new grass herbicide in different rice production system. In *Proceedings of 17th Asian-Pacific Weed Science Society Conference*, Bangkok, MD, Nov 22–

27,1999; Baltazar, A., Ed.; The Organization of 17th Asian-Pacific Weed
Science Society Conference 1999, BKK, 1999; pp 449–454.
(4) Lüthy, C.; Zondler, H.; Rapold, T.; Seifert, G.; Urwyler, B.; Heinis,

(4) Luny, C.; Zonder, H.; Rapold, T.; Seneri, G.; Otwyler, B.; Henns, T.; Steinrucken, H. C.; Allen, J. Pest Manage. Sci. 2001, 57, 205–224.

(5) Markopoulou, A.; Kyttaris, V. *Clin. Immunol.* 2013, 148, 359–368.
(6) Joensson, S.; Andersson, G.; Fex, T.; Fristedt, T.; Hedlund, G.; Jansson, K.; Abramo, L.; Fritzson, I.; Pekarski, O.; Runstrom, A.; Sandin, H.; Thuvesson, I.; Bjork, A. J. Med. Chem. 2004, 47, 2075–2088.

(7) Bock, L. M.; Holmberg, P. H.; Jansson, K. An improved method for manufacturing of quinoline-3-carboxamides. WO 2012004338 A1, Jan 12, 2012.

(8) Jansson, K. Method for the preparation of 2-amino-6-ethylbenzoic acid. WO 2011054874 A1, May 12, 2011.

(9) Finkelstein, J.; Williams, T.; Toome, V.; Traiman, S. J. Org. Chem. **1967**, 32, 3229–3230.

(10) Hattori, K.; Sajiki, H.; Hirota, K. *Tetrahedron* **2001**, *57*, 4817–4824.

(11) Tahri, A.; Vendeville, S. M. H.; Jonckers, T. H. M.; Raboisson, P. J.; Demin, S. D.; Hu, L.; Cooymans, L. P. Preparation of piperidine substituted pyrazolo[1, 5-a]pyrimidine derivatives as respiratory syncytial virus inhibitors. WO 2016091774 A1, June 16, 2016.

(12) Faust, A.; Voeller, T.; Busch, F.; Schafers, M.; Roth, J.; Hermann, S.; Vogl, T. *Chem. Commun.* **2015**, *51*, 15637–15640.

(13) Blaser, H. U.; Steiner, H.; Studer, M. ChemCatChem 2009, 1, 210–221.