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Abstract: Dialkyl acetals containing other functional groups can
participate in stereoselective coupling reactions with chiral titanium
enolates. Such an approach provides the protected g-amino acid
present in bistramides and FR252921 in a highly efficient manner.
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The widespread presence of b-alkoxy oxygenated rela-
tionships in natural products has stimulated the develop-
ment of a plethora of synthetic approaches to the
corresponding b-alkoxy carbonyl compounds,1 most of
them being based on a two-step sequence: (i) stereoselec-
tive aldol reaction2 and (ii) alkylation of the aldol adduct.3

Considering that the second step is often troublesome, and
the integration of a multistep sequence in a single trans-
formation increases the efficiency of a process, we envis-
aged that the stereoselective addition of chiral enolates to
dialkyl acetals might render such b-alkoxy carbonyl com-
pounds in a straightforward manner. In accordance with
this approach, we have reported that the Lewis acid medi-
ated addition of titanium enolates of (S)-4-isopropyl-N-
propanoyl-1,3-thiazolidine-2-thione (1, Scheme 1) to
dimethyl and dibenzyl acetals affords the anti-b-alkoxy-

a-methyl adducts in good yields and diastereomeric ra-
tios.4 This methodology has been already applied to the
construction of the C9–C21 fragment of debromoaplysia-
toxin,5 but it remained unclear if such a procedure would
be compatible with more complex acetals to enable the
construction of structurally complex molecular architec-
tures. Herein, we document the use of dimethyl and diben-
zyl acetals containing other functional groups in the
aforementioned coupling reactions and the successful ap-
plication of this methodology to the synthesis of a highly
functionalized four-carbon fragment present in bistra-
mides and a novel immunosuppressive agent, FR252921
(Scheme 1).6,7

Initially, we examined the reaction of 1 with the dimethyl
acetals shown in Table 1,8 which encompass acetals with
a heteroatom positioned at C2 or other functional groups
that can affect the formation or the reactivity of the puta-
tive oxonium intermediate. Preliminary studies with the
commercially available bromoacetaldehyde dimethyl ace-
tal (a) proved that the experimental conditions established
for alkyl acetals provided a synthetically useless yield (see
entry 1 in Table 1). After an exhaustive optimization,9 it
was found that the stoichiometry was crucial to improve
the yield (compare entries 1–4 in Table 1). Thus, keeping
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at –20 °C a mixture of the titanium enolate from 1 and 0.5
equivalents of SnCl4 and the acetal a permitted to isolate
the anti adduct 2a in good yield and diastereomeric ratio
(dr = 92:8, 65% yield, see entry 4 in Table 1). Parallel re-
sults (see entry 5 in Table 1) were obtained with the me-
thyl 3-oxopropanoate dimethyl acetal (b). In turn, the
diastereoselectivity observed for acetals c–e containing
benzyl ethers was highly dependent on the position of the
benzyloxy group. The poorer stereocontrol was obtained
for acetal c with the OBn group at C2, but it became ex-
cellent if such group is placed at C3 or C4 (acetals d and
e, respectively). In all these cases, the reaction proceeded
faster and the yield did not increase significantly after two
hours (see entries 6–8 in Table 1). Conversely, the acetal
f possessing a phthalimido group at C2 was much less re-
active and required the addition of one equivalent of
SnCl4 to attain a high yield of a single diastereomer (com-
pare entries 9 and 10 in Table 1). 

Next, we focused our attention on dibenzyl acetals shown
in Table 2.10 As well as their dimethyl counterparts, ace-
tals g–i emerged as suitable substrates for such coupling
reactions and afforded the 2,3-anti adducts 3 in high
yields. Interestingly, the addition of one equivalent of
SnCl4 improved the diastereoselectivity of these reac-
tions, and provided the corresponding adduct as a single
diastereomer with the exception of the azidoacetaldehyde
dibenzyl acetal h (dr = 75:25, see entry 5 in Table 2). The
reasons for such low diastereoselectivity are still elusive.

As expected,4 only two of four possible diastereomers
were observed across all the reaction mixtures, which

proves the complete control exerted by the chiral auxiliary
on the configuration of the a-stereocenter. The 2,3-anti re-
lationships on major diastereomers 2 and 3 were assigned
through analysis of the 3J2,3 coupling constants (3J2,3 > 7.0
Hz).11 Furthermore, it was secured for 3i by a thorough
spectroscopic analysis of the isopropylidene acetal 7 rep-
resented in Scheme 2.

The abovementioned synthetic sequence makes clear that
the adducts from dibenzyl acetals can be considered as
protected anti-aldol units. Given that their stereoselective
construction is still challenging12 and the thiazolidineth-
ione chiral auxiliary can be easily removed,4,5,13 this meth-

Table 1 Lewis Acid Mediated Addition of the Titanium Enolate from 1 to Dimethyl Acetals

Entry Acetal R SnCl4 (equiv) Acetal (equiv) Time (h) dr (2:4)a Yield of 2 (%)b

1 a Br 1 1 2 90:10 24

2 a Br 1 0.5 2 93:7 27

3 a Br 0.55 0.5 2 92:8 46

4 a Br 0.55 0.5 17 92:8 65

5 b CO2Me 0.55 0.5 17 92:8 (82)

6 c OBn 0.55 0.5 2 65:35 54 (83)

7 d CH2OBn 0.55 0.5 2 95:5 82

8 e (CH2)2OBn 0.55 0.5 2 97:3 73

9 f NPhth 0.55 0.5 17 >97:3 54

10 f NPhth 1 0.5 2 >97:3 80

a Determined by the HPLC analysis of the reaction mixture.
b Isolated yield of 2. Overall yield is given in parentheses.
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odology represents an appealing entry to highly
functionalized fragments containing those arrays. To con-
firm the efficiency of this approach, we undertook the
synthesis of the protected g-amino acid embedded in bis-
tramides and FR252921, as represented in Scheme 1.

Hence, simple stirring of adduct ent-3i14 in methanol in
the presence of a catalytic amount of DMAP at room tem-
perature for 3.5 hours provided the desired methyl ester 8
in 90% (Scheme 3). This transformation can be carried
out with the crude mixture obtained from the coupling re-
action. Therefore, the two-step sequence only requires a
single chromatographic purification to provide the ester 8
in 77% overall yield.15

Since the C18 carbon is attached to the spiro fragment of
bistramides through an amido link, we speculated about
the opportunity of converting ent-3i into a model amide.
Gratifyingly, the treatment of ent-3i with one equivalent
of BuNH2 led to the butyl amide 9 in 88% yield
(Scheme 3).

The preparation of the related azido derivatives proved to
be troublesome. Since the acetal h containing the azido
group provided a poorly stereoselective reaction, we took

advantage of the better results achieved with the bromo
acetal g (compare entries 3 and 5 in Table 2). Thus, the re-
moval of the chiral auxiliary from the adduct ent-3g led to
the corresponding alcohol and methyl ester, which, in
turn, were subsequently treated with NaN3 to deliver the
desired azido derivatives 10 and 11 in good overall yields
(Scheme 4).16,17 This strategy failed in the case of the bu-
tyl amide, presumably as a consequence of the cyclization
of the bromoamide intermediate.

Scheme 4

In summary, dimethyl and dibenzyl acetals containing dif-
ferent functional groups can participate in highly stereose-
lective Lewis acid mediated coupling reactions with the
titanium enolates from (S)-4-isopropyl-N-propanoyl-1,3-
thiazolidine-2-thione. The resultant anti-3-alkoxy-2-methyl
adducts can be easily manipulated to deliver densely func-
tionalized synthons. The efficiency of such approach has
been proved in the straightforward synthesis of several
protected precursors of the g-amino acid present in
bistramides and a novel immunosuppressive agent,
FR252921.

Table 2 Lewis Acid Mediated Addition of the Titanium Enolate from 1 to Dibenzyl Acetals

Entry Acetal R SnCl4 (equiv) Acetal (equiv) Time (h) dr (3:5)a Yield of 3 (%)b

1 g Br 0.55 0.5 17 91:9 69

2 g Br 1 0.5 2 95:5 34

3 g Br 1 0.5 17 95:5 75

4 h N3 0.55 0.5 17 50:50 (83)

5 h N3 1 0.5 17 75:25 (87)

6 i NPhth 1 0.5 2 >97:3 79

7 i NPhth 1 0.5 17 >97:3 84

a Determined by the HPLC analysis of the reaction mixture.
b Isolated yield of 3. Overall yield is given in parentheses.
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