

Tetrahedron Letters 44 (2003) 5843-5846

TETRAHEDRON LETTERS

Catalytic enantioselective conjugate addition of indoles to simple α , β -unsaturated ketones

Marco Bandini,* Matteo Fagioli, Paolo Melchiorre, Alfonso Melloni and Achille Umani-Ronchi*

Dipartimento di Chimica 'G. Ciamician', Università di Bologna, Via Selmi 2, 40126 Bologna, Italy

Received 27 January 2003; revised 4 June 2003; accepted 5 June 2003

Abstract—Chiral [Al(salen)Cl] complex (10 mol%) in the presence of 2,6-lutidine (10 mol%) was found to be effective in catalysing the enantioselective Friedel–Crafts-type conjugate addition of indoles (3) to (*E*)-arylcrotyl ketones (2), furnishing the corresponding β -indolyl ketones in excellent yield and high enantioselectivity (ee up to 89%). © 2003 Elsevier Ltd. All rights reserved.

The catalytic asymmetric alkylation of aromatic and heteroaromatic compounds is a valuable method for the synthesis of highly functionalised enantiomerically enriched molecules. Since the pioneering study published by Casnati and Casiraghi on the enantioselective *ortho*-hydroxy alkylation of phenol with aldehydes,¹ many efforts have been devoted to the exploitation of new catalytic stereocontrolled Friedel–Crafts procedures.² Of particular relevance are the asymmetric 1,2-

additions and 1,4-additions of electron-rich aromatic compounds to carbonyls mediated by chiral Lewis acids (by homogeneous³ as well as heterogeneous catalysis⁴) and by optically active organic catalysts.⁵

Despite numerous and significant advances in this field, the asymmetric catalytic Friedel–Crafts-type conjugate addition of aromatic compounds to simple α , β -unsaturated ketones still represents a considerable synthetic challenge. In fact, the steric similarity of the two carbonyl substituents renders the stereodifferentiation of the two faces of the unsaturated ketones a difficult task. As a continuation of our previous study on the InBr₃ catalysed addition of indoles to enones,⁶ we now describe the first stereoselective version of this process employing the commercially available chiral (*R*,*R*)-[Al(salen)Cl] complex (Fig. 1, 1) as the catalyst.⁷

Our initial attempts were carried out using (E)-enones **2a–c** and 2-methylindole (**3a**) in the presence of 10 mol% of **1** in toluene at room temperature. The data

Scheme 1. Asymmetric conjugate addition reaction catalysed by [Al(salen)Cl] (1).

Keywords: aluminium; asymmetric catalysis; indole; ketones; Michael reaction. * Corresponding authors. E-mail: bandini@ciam.unibo.it; umani@ciam.unibo.it

0040-4039/\$ - see front matter 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0040-4039(03)01400-X

Figure 1.

Table 1. Screening of amines as possible additives for the [Al(salen)Cl] catalysed conjugate addition of indole 3a (1.5 equiv.) to 2c (1 equiv.)^a

Entry	Additive (%)	<i>t</i> (h)	4ca (%) ^b	Ee (%) ^c
1	None	24	80	55 (R)
2	Aniline (10)	48	70	71 (R)
3	Pyridine (10)	48	54	76 (R)
4	$Et_{3}N$ (10)	48	65	77 (R)
5	2,6-Lutidine (10)	48	65	79 (R)
6	2,6-dit Bu-pyridine (10)	48	59	29 (R)

^a All the reactions were carried out in anhydrous toluene at room temperature.

^b Isolated yield after flash chromatography.

^c Determined by chiral HPLC analysis with Chiralcel OD column.

reported in Scheme 1 show that the highest enantioselectivity was achieved when an aromatic group in the ketone's skeleton is bound to the carbonyl moiety, and a small aliphatic group R' is linked to the C–C double bond (**2c**).⁸ In the latter case, the β -indolyl ketone was isolated in 80% yield and 55% ee. A considerable increase of stereoselectivity of the process was achieved by using aluminium-coordinating amines in catalytic amount.⁹ In Table 1, we summarise the chemical and optical outcomes of the 1-4 addition of **3a** to **2c** employing 10 mol% of **1** in the presence of a range of amines. The use of 10 mol%¹⁰ of additive generally reduced the rate of the process. However, the stereoselection significantly increased up to 79% ee when 2,6-dimethylpyridine (2,6-lutidine, lut) was utilised (yield 65%, entry 5).¹¹ On the contrary, by adding the sterically congested 2,6-di*t* butylpyridine (2,6-di*t* Bu-py) a significant drop in stereoinduction was observed (ee = 29% entry 6, Table 1).

The key role of the amines could be rationalised by assuming their coordination on the aluminium centre of 1 leading to a new catalytic species [Al(salen)Cl]/amine. In this context, ¹H NMR studies of equimolar solutions of [Al(salen)Cl] and amine (i.e. Et_3N or lut, dry CD_2Cl_2 , rt) confirmed a quantitative complexation between additive and aluminium complex 1,¹² while analogous experiments carried out in the presence of 2,6-ditBu-py did not show any significant base–aluminium interaction.

Table 2. Stereoselective addition of indoles to (E)-enones catalysed by [Al(salen)Cl]/lut complex^a

Entry	Enone	Indole	Product	Yield (%) ^b	Ee (%) ^c
1	2c	3a	4ca	48 ^d	84 (<i>R</i>)
2	2c	3b	4cb	35	64 (<i>R</i>)
3	2c	3c	4cc	41	65 (R)
4	2d	3a	4da	80	73 (R)
5	2e	3a	4ea	58	49 (R)
6	2f	3a	4fa	96	78 (R)
7	2g	3a	4ga	98	80 (R)
8	2g	3a	4ga	68°	89 (R)
9	2h	3a	4ha	92	78 (R)
10	2h	3a	4ha	78 ^f	86 (R)
11	2i	3a	4ia	90	88 (R)
12	2i	3b	4ib	67	$80 \ (R)^{g}$
13	2j	3a	4ja	95	77 (R)

^a All the reactions were carried out in anhydrous toluene at room temperature for 48 h unless otherwise specified.

^b Isolated yield after flash chromatography.

^c Determined by chiral HPLC analysis with Chiralcel OD column. The absolute configuration was assigned R by assuming, for all the indoles tested, the same spatial stereodifferentiation induced by (R,R)-1 (Fig. 3).

^d The reaction was carried out at 0°C (72 h reaction time).

2i: Ar = C₆F₅; **2j**: Ar = *p*-CF₃C₆H₄

^e The reaction was carried out at -15°C (96 h reaction time).

^f The reaction was carried out at -20°C (72 h reaction time).

^g The reaction was carried out in the presence of 20 mol% of catalytic system.

Figure 2. Mechanism hypothesis for the [Al(salen)Cl]/amine catalysed 1,4-addition.

Figure 3. (a) 5/TFA (20 mol%), H₂O/iPrOH, -30°C. (b) PhMgBr/Et₂O/0°C. (c) MnO₂/CH₂Cl₂/rt.

To prove the generality of the method, a range of (E)-arylcrotyl ketones (**2d**-**j**, 1 equiv.) was synthesised¹³ and reacted with indoles **3a**-**c** (1.5 equiv.) in the presence of 10 mol% of the complex **1**/lut prepared in situ (Table 2). The protocol furnished excellent chemical yields and high ee's with α , β -unsaturated ketones bearing electron poor aromatic rings (**2f**-**j**). In these cases, in fact, the enantioselectivity was good-ranging from 77 to 89%.

Although the mechanistic details of the present reaction are still under investigation, a working model involving a crucial stereocontrolled formation of an intermediate octahedral Schiff base–aluminium enolate **5** can be supposed (Fig. 2).¹⁴

The absolute configuration of the adduct **4cb** [ee = 64%, $[\alpha]_D = +7.4$ (*c* 1 CHCl₃), Table 2, entry 2] was assigned *R* by comparison of both optical rotation value and chiral HPLC retention times of the compound **4cd** (obtained by *N*H-methylation of **4cb**) with the same adduct synthesised in three steps starting from the enantioselective organocatalytic FC alkylation of **3d** with (*E*)-crotonaldehyde **4l** using the MacMillan's imi-

dazolidinone 6 (Fig. 3).¹⁵ The (*R*)-indolyl aldehyde 4ld (ee=55%) was then reacted with PhMgBr in Et₂O at 0°C to obtain 4'ld in 98% yield and 60:40 diastereoisomeric ratio. Finally, the desired ketone (*R*)-4cd was easily synthesised by oxidation of 4'ld with MnO₂ [ee= 55%, $[\alpha]_{\rm D}$ =+6.4 (*c*=0.9 CHCl₃)].

In summary, this study demonstrates the effectiveness of chiral [Al(salen)Cl]/amine complexes as catalysts for the enantioselective Friedel–Crafts-type conjugate addition of indoles to (*E*)-arylcrotyl ketones. This simple process provides easy access to a large library of highly functionalised β -indolyl ketones possessing a stereocentre in the β -position in excellent yields and high enantiomeric excesses. Studies addressed towards the comprehension of the reaction mechanism are currently under investigation.

Typical experimental procedure: [Al(salen)Cl] (18 mg, 0.03 mmol) and 2,6-lutidine (3.5 μ L, 0.03 mmol) were added to anhydrous toluene (1 mL) and the mixture was stirred for about 5 min at room temperature, then **2g** (54 mg, 0.3 mmol) was added to the solution followed by **3a** (59 mg, 0.45 mmol). During the reaction

the colour of the solution turned red-orange. After 48 h stirring, the reaction was quenched with a saturated solution of NaHCO₃ (5 mL), the two layers were separated and the aqueous phase was extracted with Et_2O (3×5 mL). Finally, the collected organic phases were dried over Na2SO4 and concentrated under reduced pressure to give a pale orange oil, which was then purified by flash chromatography (silica gel, cyclohexane/Et₂O 85/15, $R_f = 0.3$). The (R)-4ga was isolated as a pale yellow viscous oil (92 mg, 98% yield) in 80% ee. Chiral analysis was carried out by HPLC (Chiralcel OD *i*PrOH/hexane (20:80), flow rate 0.7 mL min⁻¹, 225 nm; t_r -(S)=11.44 min, t_r -(R)=15.11 min); $[\alpha]_D = -54$ (c 0.98 in CHCl₃). Analytical data for 4ga: IR (Nujol) v = 3398, 3055, 2963, 1695, 1587, 1456, 1091 cm⁻¹; MS (70 eV): m/z (%): 311 (20) [M⁺], 281 (18), 253 (10), 207 (82), 191 (15), 158 (100), 139 (22), 130 (18), 111 (12), 75 (9); ¹H NMR (200 MHz, CDCl₃, 25°C, TMS): $\delta = 8.4$ (br, 1H), 7.77–7.81 (m, 2H), 7.65–7.69 (m, 1H), 7.23– 7.36 (m, 4H), 7.06–7.14 (m, 2H), 3.73 (q, J=7.0 Hz, 1H), 3.43-3.55 (m, 1H), 3.30 (dd, J=7.0 Hz, J=16.2Hz, 1H), 2.38 (s, 3H), 1.50 (d, J=7.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, 25°C, TMS): $\delta = 198.86$, 160.19, 139.10, 135.47, 130.36, 129.37, 128.63, 120.63, 118.91, 118.87, 115.10, 110.53, 45.50, 27.43, 21.02, 11.88.

Acknowledgements

We thank F.I.R.B., M.I.U.R. (Rome) 'Progetto Stereoselezione in Chimica Organica. Metodologie ed Applicazioni' and University of Bologna (funds for selected research topics) for the financial support of this research.

References

- Bigi, F.; Casiraghi, G.; Casnati, G.; Sartori, G.; Gasparri Fava, G.; Ferrari Belicchi, M. J. Org. Chem. 1985, 50, 5018–5022.
- (a) Wang, Y.; Ding, K.; Dai, L. Chemtracts-Org. Chem.
 2001, 14, 610-615; (b) Bolm, C.; Hildebrand, J. P.; Muñiz, K.; Hermanns, N. Angew. Chem., Int. Ed. 2001, 40, 3284–3308 and references cited therein.
- (a) Gathergood, N.; Zhuang, W.; Jørgensen, K. A. J. Am. Chem. Soc. 2000, 122, 12517–12522; (b) Ishii, A.; Soloshonok, V. A.; Mikami, K. J. Org. Chem. 2000, 65, 1597–1599; (c) Zhuang, W.; Hansen, T.; Jørgensen, K. A. Chem. Commun. 2001, 347–348; (d) Zhuang, W.; Gathergood, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2001, 66, 1009–1013; (e) Jensen, K. B.; Thorhauge, J.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 160–163; (f) Saaby, S.; Bayón, P.; Aburel, P. S.;

Jørgensen, K. A. J. Org. Chem. 2002, 67, 4352–4361; (g) Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030–9031.

- Corma, A.; García, H.; Moussaif, A.; Sabater, M. J.; Zniber, R.; Redouane, A. *Chem. Commun.* 2002, 1058– 1059.
- (a) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123, 4370–4371; (b) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172–1173; (c) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 7894–7895.
- (a) Bandini, M.; Cozzi, P. G.; Giacomini, M.; Melchiorre, P.; Selva, S.; Umani-Ronchi, A. J. Org. Chem. 2002, 67, 3700–3704;
 (b) Bandini, M.; Fagioli, M.; Melloni, A.; Umani-Ronchi, A. Synthesis 2003, 397–402.
- Chiral aluminium Schiff base complexes have been shown to be effective catalysts in several asymmetric processes: (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 5315–5316; (b) Myers, J. K.; Jacobsen, E. N. J. Am. Chem. Soc. 1999, 121, 8959–8960; (c) Evans, D. A.; Janey, J. M.; Magomedov, N.; Tedrow, J. S. Angew. Chem., Int. Ed. 2001, 40, 1884–1888; (d) Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 4442–4443.
- 8. The use of cyclic enones such as 2-cyclopenten-1-one and 2-cyclohexen-1-one furnished the desired indolyl derivatives only in traces.
- The role of pyridine as an additive in metallo-salen catalysed asymmetric cyclopropanation of olefins was recently discussed: Miller, J. A.; Jin, W.; Nguyen, S. T. Angew. Chem., Int. Ed. 2002, 41, 2953–2956.
- The use of a stoichiometric amount of amine was taken into account as well. However, in this case, the 1-4 adduct was isolated after 48 h in low yield (i.e. Et₃N 100 mol%, 18% yield, 66% ee).
- 11. It is also notable that by using an excess of enone 2c (1.5 equiv.) with respect to the indole 3a (1 equiv.), 4ca was obtained with a comparable enantiomeric excess (77%) but with a significantly higher yield (87%).
- Comparison of diagnostic ¹H NMR signals of commercial **1** and **1**·Et₃N in brackets (CD₂Cl₂, rt, 300 MHz): 8.34[7.80] (2H, CH=N), 7.58[7.41] (2H, Ar), 7.18[7.03] (2H, Ar).
- (a) Oare, D. A.; Henderson, M. A.; Sanner, M. A.; Heathcock, C. H. J. Org. Chem. 1990, 55, 132–157; (b) Arisawa, M.; Torisawa, Y.; Kawahara, M.; Yamanaka, M.; Nishida, A.; Nakagawa, M. J. Org. Chem. 1997, 62, 4327–4329; (c) Toy, P. H.; Dhanabalasingam, B.; Newcombb, M.; Hanna, I. H.; Hollenberg, P. F. J. Org. Chem. 1997, 62, 9114–9122.
- Tetradentate 'N₂O₂' Schiff base aluminium enolates were already utilised as initiators for the methacrylate polymerisation: Cameron, P. A.; Gibson, V. C.; Irvine, D. J. *Angew. Chem., Int. Ed.* 2000, *39*, 2141–2144 and references cited therein.
- Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172–1173.