

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 1405-1409

Tetrahedron Letters

Solid-phase synthesis of 2-amino-3-chloro-5- and 8-nitro-1,4-naphthoquinones: a new and general colorimetric test for resin-bound amines

Christopher Blackburn*

Millennium Pharmaceuticals, 35 Landsdowne Street, Cambridge, MA 02139, USA

Received 17 December 2004; revised 10 January 2005; accepted 11 January 2005

Abstract—Treatment of resin-bound primary or secondary alkyl and arylamines with 2,3-dichloro-5-nitro-1,4-naphthoquinone leads to the rapid formation of intensely colored (red) beads. The resulting 2-amino-3-chloro-5- and 8-nitro-1,4-naphthoquinones can be cleaved rapidly from acid-labile supports in high yields and purities. The reaction is of value as a sensitive and general qualitative test for amino groups on-resin that can be followed by cleavage for characterization and quantification of the chromogen(s) responsible for the color.

© 2005 Elsevier Ltd. All rights reserved.

Over the past decade solid phase synthesis¹ has been applied widely but difficulties in monitoring the progress of reactions remain a barrier toward more widespread use. While colorimetric tests for resin-bound functional groups²⁻⁶ are of value, those for amino groups have their limitations. The Kaiser ninhydrin test⁷ is limited to primary aliphatic amines and the harsh reaction conditions can lead to false positives. Ion pairing with a colored anion⁸ is sensitive but this test will give positive results for any resin-bound base. Likewise, NPIT⁹ reacts with resin-bound alkyl- and arylamines; however, amine quantification relies on the subsequent release of the dimethoxytrityl cation and thus two or more amines on the resin cannot be differentiated. Other tests use colored precursors¹⁰ making the color of the resin difficult to distinguish from that of the solution. The colorimetric test for secondary amines involving reaction with chloranil and acetaldehyde^{11,12} is assumed, on the basis of solution phase precedent,^{13,14} to give enamine quinones. Recently, an additional test,¹⁵ in which resinbound arylamines form red products on treatment with chloranil (in the absence of acetaldehyde) at 100 °C, has been reported. Both these tests are qualitative since the

chromogens responsible for the color have not been cleaved for characterization or quantification. This paper describes the reaction of weakly colored 2,3-dihalo-1,4-naphthoquinones with resin-bound amines to give highly colored beads that release the chromogenic 2-amino-3-chloro-1,4-naphthoquinone derivatives on treatment with TFA.

Reaction of 2,3-dihalo-1,4-naphthoquinones, 1–bf 3 with primary amines results in the displacement of one chlorine to give 2-amino-3-chloro-1,4-naphthoquinones.¹⁶ While quinones 1–3 are pale yellow in solution due to tailing of a $n-\pi^*$ absorption into the visible region, the introduction of the amino group creates $\pi-\pi^*$ donor–acceptor chromogens¹⁷ which absorb more intensely in the 450–500 nM region of the visible spectrum and are thus orange to red in color.¹⁶

Treatment of Rink amide $(RAM)^{18}$ resin with saturated (ca. 200 mM) solutions of **1** or **2** in either DMF or CH₂Cl₂ in the presence of 2,6-di-*tert*-butylpyridine as base, afforded deep red resins **4**-RAM and **5**-RAM (Scheme 1). These resin-bound quinones are, in essence, vinylogous amides, and it was thus of interest to subject them to typical amide cleavage conditions. In fact, amino quinones 7^{19} and 8^{20} were isolated in high purities after treatment with TFA/CH₂Cl₂ and good yields of analytically pure products were obtained after filtration through silica gel (Table 1, entries 1 and 2). In order to

Keywords: 1,4-Naphthoquinone; Solid-phase synthesis; Colorimetric test.

^{*} Tel.: +1 617 761 6811; fax: +1 617 444 1483; e-mail: blackburn@ mpi.com

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.01.049

Scheme 1. Reagents and conditions: (i) Resin–NH₂, 2,6-di-tert-butylpyridine, 25 °C, 2 h; (ii) TFA–CH₂Cl₂ (1:1), 25 °C.

Table 1.

Entry	Resin	Product	Purity ^a (%)	Yield ^b (%)
1	RAM	7	85	75
2	RAM	8	95	70
3	RAM	9	95	90
4	RAM plug	9	95	95
5	PAL	9	75	75
6	MBHA	9	95	55
7	11R = Me	13	90	50
8	11R = n-Pr	14	95	70
9	11R = phenethyl	15	94	50
10	11R = i-Pr	16	90	35
11	11R = Ph	17	50	30
12	Wang-NH-n-Pr	14	95	40

^a LC-MS analysis (see Supplementary data).

^b Isolated yield after chromatography.

develop an improved substrate, further reactions were conducted using the 5-nitro compound 3 which is more reactive toward amines in solution phase reactions affording regioisomeric mixtures of mono-substitution products that have higher extinction coefficients than the parent compounds¹⁶ and is approximately 2-fold more soluble than 1 and 2 in DMF and CH₂Cl₂. After removal of the Fmoc group from commercially available RAM resin by treatment with piperidine–DMF (1:4),²¹ reaction with 3 led to the instantaneous formation of deep red beads of 6-RAM clearly visible in the yellow solution of 3. Cleavage was also rapid, two 15 min treatments with TFA-CH₂Cl₂ (1:1) affording the regioisomeric mixture of amino-quinones 9 in high yield and purity (entry 3). Similar results were obtained with RAM resin in the plugTM format.²² The amine functionalized resins PAL²³ and MBHA²⁴ (Fig. 1) were also allowed to react with quinone 3. On a preparative scale, reactions were allowed to proceed for 2 h at ambient

temperatures although intensely colored resins were observed within seconds.²⁵ Subsequent treatment with TFA/CH₂Cl₂ (1:1) afforded **9** in good yields and purities. These cleavage conditions are noteworthy in the case of MBHA resin for which the standard conditions for release of amides are usually TFMSA or HF.²⁴

The reaction of quinone 3 with resin-bound secondary amines was next investigated. Several primary amines of variable steric and electronic properties were anchored to FDMP resin (Fig. 1)²⁶ under reducing conditions affording resins 11 (Scheme 2). The resultant alkyl derivatives were found to react rapidly with quinone 3 in the presence of 2,6-di-tert-butylpyridine to give the red resin-bound quinones 12. Treatment with TFA:CH₂Cl₂ (1:4) led to very rapid cleavage of quinones 13-16 as regioisomeric mixtures in high purities.27 The isolated yields listed in Table 1 are based on two steps and thus also reflect the relative efficiencies of the reductive amination steps. The regioisomers were formed in approximately equal amounts and were readily separated by chromatography on neutral alumina. In the case of mixture 14, the higher $R_{\rm f}$ component was shown to be the 5nitro isomer 14a and the lower $R_{\rm f}$ component the 8-nitro isomer 14b by ¹H-¹³C (HMBC) analysis. For comparison, *n*-propylamine was anchored to a resin with a less electron-rich linker by reaction with Wang chloride (Fig. 1). Subsequent reaction with 3, followed by cleavage also gave 14a/b in high purity and yield (entry 12). While reactions were allowed to proceed for longer periods on a preparative scale it was possible to conduct a 5 min qualitative test in which alkyl derivatives of resin 11 were allowed to react with 3 for 2 min followed by washing, cleavage for 2 min, and TLC analysis on neutral alumina. Deep red beads that afford a red cleavage solution on treatment with TFA which, on TLC analy-

Scheme 2. Reagents and conditions: (i) RNH₂, HOAc, NaBH(OAc)₃, DMF, 25 °C, 16 h; (ii) ArNH₂, HOAc, NaBH₃CN, DMF, 25 °C, 16 h; (iii) 3, 2,6-di-*tert*-butylpyridine, CH₂Cl₂, 25 °C, 2 h; (iv) TFA–CH₂Cl₂ (1:1), 25 °C, 0.25 h.

sis, affords two red bands of approximately equal intensities constitutes a positive test for secondary amines. It should be noted that prior to reaction with **3**, the amines are not readily cleaved from resins **11**. In the case of resin **11** ($\mathbf{R} = \mathbf{Ph}$),⁶ reaction with **3** was noticeably slower. However, heating under microwave irradiation²⁸ for 10 min in dichloroethane at 80 °C afforded intensely red beads of **12** ($\mathbf{R} = \mathbf{Ph}$), cleavage of which afforded **17** in moderate purity.

To assess the value of quinone **3** for monitoring a typical solid-phase synthesis, several coupling reactions between N^{α} -Fmoc- β -Ala-OH and RAM resin were conducted in which the mole ratio of DIC was varied from 0.1 to 4 equiv (Scheme 3). The (partially) coupled resins were deprotected with piperidine then treated with **3** and 2,6-di-*tert*-butylpyridine for 1 h at ambient temperature and cleaved. After cleavage, the coupling involving the use of 4 equiv of DIC afforded **18** in 80% yield.

TLC analysis of the remaining cleavage products showed the presence of isomeric pair 9 (two closely eluting orange spots) and the β -Ala derivatives 18 (two closely eluting red bands) the relative amounts of which were in accord with the amount of DIC used in the coupling step. To assess the sensitivity of this colorimetric test, mixtures of α N-Fmoc–Ala-OH and 3-(3,4-dimethoxy-phenyl)-propionic acid in various mole ratios were coupled to RAM resin, and following Fmoc deprotection, allowed to react with **3** in the presence of 2,6-di*tert*-butylpyridine. A coupling reaction in which the respective mole ratios were 1:99 afforded pink beads that were cleaved and analyzed by TLC showing the presence of **18**; thus, the sensitivity of the test is <10 μ mol/g resin.²⁹

Reaction of **3** with H-Ala-RAM resin proved to be slower than that with the analogous β -Ala-RAM presumably due to both inductive and steric effects. Although orange beads were observed within a few minutes at ambient temperature, overnight reactions were necessary in order to obtain moderate yields of **19** following cleavage. However, microwave irradiation of the reaction mixture for 10 min at 150 °C in dichloroethane led to the formation of intensely red beads from which **19** was isolated following cleavage in 90% yield and 85% purity (Scheme 4).

In conclusion, this paper describes the reaction of 2,3-dichloro-5-nitro-1,4-naphthoquinone (**3**) with resin-bound amines to give highly colored products rapidly with high sensitivity. The resulting 2-amino-1,4-naphthoquinones can be cleaved from acid-labile resins in high yields and purities. The chromogenic products derived from secondary amines are activated toward cleavage and afford intensely colored solutions within seconds that can be analyzed rapidly by TLC, LC–MS or visible spectroscopy. The test provided by Scheme 2 improves on the

Scheme 3. Reagents and conditions: (i) Fmoc-β-Ala-OH, DIEA, DIC, HOBt, DMAP, DMF, 25 °C; (ii) piperidine–DMF (1:4), 0.25 h (iii) 3, 2,6-di-*t*-butylpyridine, CH₂Cl₂, 25 °C, 2 h; (iv) TFA–CH₂Cl₂, (1:1) 25 °C, 0.25 h.

Scheme 4. Reagents and conditions: (i) 3, 2,6-di-tert-butylpyridine, C₂H₂Cl₂, 150 °C, µWI; (ii) TFA-CH₂Cl₂ (1:1).

chloranil test (the products from which are hydrolytically unstable and cannot be cleaved) and is complementary to the 2,4-DNP^{5,6} test for resin-bound aldehyde groups. Further work on the quantitative aspects of the test is in progress and will be reported in due course.

Acknowledgements

The author thanks Ian Parsons for assistance in the orientation of regioisomers by NMR spectroscopy, Claire Santos for HRMS, and Kevin Sprott for helpful comments.

Supplementary data

Synthetic details for the solid-phase synthesis of compounds 7, 8, and 9. Characterization data for compounds 15, 16, and 17. HMBC correlations for 14a and 14b. TLC image of quinones prepared according to Scheme 2. The supplementary data are available online with the paper in ScienceDirect. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2005.01.049.

References and notes

- (a) See for example, *Solid-Phase Synthesis. A Practical Guide*; Kates, S. A., Albericio, F., Eds.; Marcel Decker: New York, 2000; (b) Guillier, F.; Orain, D.; Bradley, M. *Chem. Rev.* 2000, *100*, 3859.
- Kay, C.; Lorthioir, O. E.; Parr, N. J.; Congreve, M.; McKeown, S. C.; Scicinski, J. J.; Ley, S. V. *Biotechnol. Bioeng.* 2002, 71(2), 110–118.
- Bunin, B. A. *The Combinatorial Index*; Academic, 1998, pp. 214–220.
- Gaggini, F.; Porcheddu, A.; Reginato, G.; Rodriquez, M.; Taddei, M. J. Comb. Chem. 2004, 6, 805–810.
- Shannon, S. K.; Barany, G. J. Comb. Chem. 2004, 6, 165– 170.
- Shannon, S. K.; Barany, G. J. Org. Chem. 2004, 69, 4586– 4594.
- (a) Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Anal. Biochem. 1970, 34, 595–598; (b) Sarin, V. K.; Kent, S. B. H.; Tam, J. P.; Merrifield, R. B. Anal. Biochem. 1981, 117, 145–157.
- (a) Krchnak, V.; Vagner, J.; Lebl, M. J. Pept. Protein Res. 1988, 32, 416–425; (b) Krchnak, V.; Vagner, J.; Safar, P.; Lebl, M. Collect. Czech. Chem. Commun. 1998, 53, 2542– 2548; (c) Oded, A.; Houghten, R. A. Pept. Res. 1990, 3, 42.
- Chu, S. S.; Reich, S. H. Bioorg. Med. Chem. Lett. 1995, 5, 1053–1058.
- (a) Shah, A.; Rahman, S. S.; de Biasi, V.; Camilleri, P. Anal. Commun. 1997, 34, 325–328; (b) Madder, A.; Farcy,

N.; Hosten, N. G. C.; De Muynck, H.; De Clerq, P. J.; Barry, J.; Davis, A. P. Eur. J. Org. Chem. 1999, 7, 2787.

- 11. Christensen, T. Acta Chem. Scand. B 1979, 33, 763-766.
- 12. Vojkovsky, I. Pept. Res. 1995, 8, 236-237.
- Buckley, D.; Henbest, H. B.; Slade, P. J. Chem. Soc. 1957, 4891–4900.
- Blackburn, C.; Griffiths, J. J. Chem. Res. S 1983, 7, 168– 169, M, 1556.
- Marik, J.; Song, A.; Lam, K. S. Tetrahedron Lett. 2003, 44, 4319–4320.
- Chu, K. Y.; Griffiths, J. J. Chem. Soc., Perkin Trans. 1 1978, 1083–1087.
- 17. Griffiths, J. The Colour and Constitution of Organic Molecules; Academic, 1976, 173–180.
- Purchased from Polymer Labs., Amherst, MA. This resin is also known as aminomethyl-PS with the Knorr linker, see: Bernatowicz, M. S.; Daniels, S. B.; Koster, H. *Tetrahedron Lett.* 1989, 30, 4645–4648.
- Hoover, J. R. E.; Day, A. R. J. Am. Chem. Soc. 1954, 76, 4148–4152.
- 20. Gaultier, J.; Hauw, C. Acta Crystallogr. 1966, 20, 620–625.
- 21. Failure to wash the resin thoroughly results in formation of the purple piperidine substitution product of **3** which obscures the color of the beads.
- (a) Atrash, B.; Bradley, M.; Kobylecki, R.; Cowell, D.; Reader, J. Angew. Chem., Int. Ed. 2001, 40(5), 938–941;
 (b) Atrash, B.; Reader, J.; Bradley, M. Tetrahedron Lett. 2003, 44, 4779–4782.
- Albericio, F.; Knieb-Cordonire, S.; Biancalana, L.; Gera, L.; Masada, R. I.; Hudson, D.; Barany, G. J. Org. Chem. 1990, 55, 3730–3734.
- 24. Matsueda, G. R.; Stewart, J. M. Peptides 1981, 2, 45-50.
- 25. No reaction was observed when the Fmoc protected versions of the RAM or PAL resins were subjected to the same reaction conditions.
- Boojamra, C. G.; Burow, K. M.; Ellman, J. A. J. Org. Chem. 1995, 60, 5742–5743.
- 27. Resin 11 (Supplementary information) $R = {}^{n}Pr$, (250 mg, 0.35 mmol) was treated with a solution of 3 (2.5 equiv) in CH₂Cl₂ followed by addition of 2,6-di-*tert*-butylpyridine (2 equiv). The reaction mixture was protected from light and allowed to stand for 2 h then washed with CH₂Cl₂, (3×), MeOH (3×), CH₂Cl₂ (5×). Cleavage was effected by treatment with TFA–CH₂Cl₂ (1:4) (2×5 min). The cleavage solution was removed, combined with CH₂Cl₂ washings of the resin, evaporated under reduced pressure and analyzed by LC-MS. Chromatography on a column of neutral alumina eluting with hexane-CH2Cl2 gradient afforded 14a (34 mg, 33% yield) from the more mobile band and 14b (38 mg, 37%) from the slower eluting band. 14a ¹H NMR (CDCl₃, 300 MHz, δ) 8.36 (1H, d, J = 9 Hz), 7.86 (1H, dd, J = 9 Hz), 7.63 (1H, d, J = 9 Hz), 3.80 (2H, m), 1.70 (2H, m), 1.01 (3H, t, J = 7 Hz). λ_{max} 486 nm, ε_{max} $3300 \text{ M}^{-1} \text{ cm}^{-1}$ (CH₂Cl₂). **14b** ¹H NMR (CDCl₃, 300 MHz, 8.22 (1H, d, J = 9 Hz), 7.76 (1H, dd,J = 9 Hz), 7.66 (1H, d, J = 9 Hz), 3.80 (2H, m), 1.72 (2H, m), 1.02 (3H, t, J = 9 Hz). λ_{max} 483 nm, ε_{max} 3400 M⁻¹ cm⁻¹ (CH₂Cl₂). Compounds **13**, **15**, and **16** were prepared similarly and the crude products purified by

filtration through a plug of silica gel and characterized as regioisomeric mixtures (Supplementary information). All new compounds were also characterized by HRMS.

- More prolonged heating at higher temperatures resulted in release of 17 into solution evidently due to thermally induced cleavage. Quinone 17 has been reported previously: Kasai, T.; Kurabayaschi, Y.; Suzuki, Y.; Tsuruoka, S. J. Synth. Org. Chem. Jpn. 1969, 27, 162.
- 29. Mixture couplings were effected using 3 combined equivalent of carboxylic acid, HATU (3 equiv) and DIEA

(3 equiv) in DMF (Ref. 5). When Fmoc- β -Ala-OH and 3-(3,4-dimethoxy-phenyl)-propionic acid were coupled in the ratio 3:1; 1:1; 1:3; and 1:99 the intensity of the bead color decreased from deep red to pink. Cleavage followed by quantification of **18** using visible spectroscopy (the extinction coefficient of pure **18** was found to be 3400 M⁻¹ cm⁻¹) gave respective loadings that were consistent with the relative amounts of the carboxylic acids used in the coupling step, the last of which was $\approx 10 \,\mu$ mol/g. Thus, the sensitivity of the test is <10 μ mol/g.