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Synthesis of the First Tetracene-[60]fullerene Dyad
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We report on a multistep synthesis of the newly designed
tetracene-[60]fullerene dyad involing a Bingel reaction be-
tween the tetracene and C60 moieties. This strategy prevents
the usual Diels−Alder reaction which would result in the loss
of the tetracene aromaticity in the target dyad.

Introduction

The small reorganization energy of fullerenes in electron-
transfer reactions makes them particularly attractive as elec-
tron-accepting materials for energy conversion and stor-
age.[1] Blends of functionalized [60]fullerenes mixed to-
gether with conjugated polymers such as poly-p-phenyl-
enevinylene allow for the building of photovoltaic cells with
conversion efficiencies of up to 3.5%.[2�4] In these systems,
a fast photoinduced electron transfer from the polymer do-
nor moiety to the fullerene acceptor takes place, followed
by a slow charge recombination. Similarly, donor-linked
[60]fullerenes have been prepared in view of developing
solid state photovoltaic systems.[5�8] A number of poly-
cyclic aromatic hydrocarbons (PAHs) have also been coval-
ently linked as donor moieties to C60.[9�11] However, with
the exception of perylene (Eox � 0.85 V vs. SCE in
MeCN),[11] they all exhibit energy transfer (instead of
charge transfer) under photoexcitation due to a very high
oxidation potential (Eox � 1.09 V).

Surprisingly, higher acenes such as tetracene and penta-
cene possess electrochemical (Eox � 0.77 V) and photophys-
ical properties (1*E � 2.6 eV), which are consistent with the
required donor properties for photoinduced charge transfer.
In particular, in contrast to other PAHs, they possess low
oxidation potentials (Eox � 0.77 V), low singlet excited-
state energies (1*E � 2.6 eV), and a strong absorption in
the visible region. However, they probably have never been
used as donors in C60-donor dyads since they undergo
[4�2] cycloadditions with the [6,6] bonds of C60.[12�15]

Since crystalline tetracene and pentacene possess excellent
hole-transport properties and are currently studied as or-
ganic semiconductors in devices such as field-effect transis-
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tors,[16,17] it is interesting to develop synthetic strategies to
obtain functionalized acenes.

We report here on the multistep synthesis of the newly
designed tetracene-[60]fullerene dyad 1 (Figure 1). The 3,5-
bis(dodecyloxy)benzylic group is introduced to ensure solu-
bility of the dyad in organic solvents.

Figure 1. Tetracene-[60]fullerene dyad 1

Results and Discussion

Our strategy for the synthesis of the tetracene moiety is
based upon the [2�2�2] cycloaddition of propargylic al-
cohol with the 1,7-diyne 7. Preparation of the latter com-
pound was performed in three steps (Scheme 1).

Bromination of commercially available 2,3-dimethylnaph-
thalene quantitatively gave compound 5, which was then
converted into the iodinated derivative in 85% yield. Cop-
per coupling of acetylene Grignard with 6 led to 7 in 57%
yield. The tetracene skeleton 8 was then obtained by rho-
dium-catalyzed [2�2�2] cycloaddition in the presence of
20% of the Wilkinson catalyst in 87% yield .[18] This cycliza-
tion of a 1,7-diyne allowed the generation of two six-mem-
bered rings in a single step with high yields for such a semi-
intermolecular reaction.[19] The choice of rhodium as the
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Scheme 1. Reagents and conditions: (i) NBS, AIBN, CCl4, reflux (97%); (ii) NaI, acetone, reflux (85%); (iii) ethynylmagnesium bromide,
CuI, THF, 60 °C, (57%); (iv) propargylic alcohol, [RhCl(PPh3)2], toluene, reflux (87%)

catalyst [instead of CpCo(CO)2, for example] avoids the tri-
merization of both the 1,7-diyne and propargylic alcohol.
In addition, the use of a ruthenium-based catalyst, as re-
cently proposed by Yamamoto et al. for the efficient cycliza-
tion of 1,6-diynes, has not been adapted for use with 1,7-di-
ynes.[20]

N,N�-dicyclohexylcarbodiimide(DCC)-mediated esterifi-
cation of benzylic alcohol 8 with carboxylic acid 9 afforded
malonate 10. Compound 9 was introduced to ensure the
solubility of the dyad in organic solvents, and was synthe-
sized in 70% yield from 3,5-dihydroxybenzyl alcohol.[21] Ar-
omatization of dihydronaphthacene derivative 10 was per-
formed with DDQ to give the desired donor moiety in good
yield. Finally, the reaction of C60 with compound 11 under
Bingel conditions[22,23] afforded the target dyad 1 in 27%
yield. The Bingel reaction can be carried out at room tem-
perature thus avoiding the undesirable Diels�Alder side-
reaction. After purification by flash chromatography, 1 was
isolated as a black powder. The molecular structure of 1
is unambiguously confirmed by 1H NMR, 13C NMR and
MALDI-TOF MS measurements (m/z � 1520.4). It should
be noted that we also synthesized the insoluble analog of 1,
i.e. a C60-tetracene dyad bearing a methyl group (R � CH3)
instead of the 3,5-bis(dodecyloxy)benzylic group, with the
use of the same strategy. However, because of its insolu-
bility, this compound was only characterized by mass spec-
troscopy.

The 1H NMR spectrum of 1 recorded in CDCl3 at 293 K
shows that all the signals are split. In particular, the two
�CH2O� groups located on each side of the linker appear
as four singlets in the δ � 5.4�5.7 ppm range. Although it
was recently observed for an anthracene-C60 dyad that was
synthesized by the Bingel reaction,[14] an intramolecular
Diels�Alder reaction between the tetracene moiety and the
fullerene can be ruled out here. Firstly, in the 13C NMR
spectrum of 1 in deuterated toluene, there is no signal for a
primary carbon in the 15�100 ppm range and only three
signals for quaternary carbons at δ � 67.5, 69.2, and
69.3 ppm, which correspond to the cyclopropane ring. It is
well-known that the 13C NMR signature of a Diels�Alder
adduct between an acene and a fullerene is a resonance
around 50�60 ppm for the bridging primary carbon of the
acene moiety and a resonance around 70�80 ppm for the
bridging quaternary carbon of the fullerene moiety. More-
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Scheme 2. Reagents and conditions: (i) DCC, DMAP, CH2Cl2, 0
°C to room temperature (73%); (ii) DDQ, benzene, reflux (50%);
(iii) C60, I2, DBU, toluene, room temperature (27%)

over, in the 1H NMR spectrum of 1, singlets that corre-
spond to the central rings of tetracene are deshielded by
0.2 ppm relative to the tetracene derivative 11. In the case of
a [4�2] C60-tetracene adduct, the protons of the remaining
central ring are shielded by 0.5 ppm.[11] Finally, in the
5.0�6.0 ppm range of the 1H NMR spectrum, we only ob-
serve the signals for the two benzylic methylenes, and no
signal that could be assigned to a Diels�Alder adduct is
visible. The absence of a Diels�Alder reaction can be attri-
buted to the position of the malonate linker on carbon 2 of
tetracene (see Figure1), which prevents close overlap of the
π-orbitals of the central rings of tetracene with those of the
[6,6] bonds of the fullerene. This assumption is substan-
tiated by ab initio calculations at the HF/3�21G level
(Gaussian 03).[24] In order to facilitate these calculations,
they have been performed without the introduction of the
bulky solubilizing alkyl chains that were changed into a
methyl group (dyads 12 and 13). The Diels�Alder adduct
of dyad 12 is 5 kcal·mol�1 less stable than dyad 12, whereas
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the Diels�Alder adduct of dyad 13 is 27 kcal·mol�1 more
stable than dyad 13 (see Figure 2).

Figure 2. Tetracene-[60]fullerene dyads 12 and 13

The splitting of all 1H NMR signals of 1 suggests the
coexistence of two rotational isomers, as already reported
for C60-tetrathiafulvalene triads.[25] Besides, the substantial
low-field shift of δ � 0.2�0.5 ppm for all tetracene protons
can be explained by a π-stacking conformation in which the
acene and the C60 moieties achieve close spatial proximity
due to van der Waals attraction. Both π-stacking and the
coexistence of conformers in 1 would be a common conse-
quence of the flexibility of the malonate linker. It should be
noted that intramolecular π-stacking has also been ob-
served in C60-porphyrin and C60-pyrene dyads.[26,27]

π-Stacking in dyad 1 is also supported by its structureless
UV/Vis absorption spectrum and the strong fluorescence
quenching of the tetracene moiety. A solution of 1 in tolu-
ene is a purple�red and its absorption spectrum consists of
a monotonous broad band extending over the 440�600 nm
range. Besides, under UV irradiation, the typical vibronic
feature of tetracene fluorescence in the 400�500 nm region
disappears (Figure 3). This indicates that a charge or energy
transfer (intra- or intermolecular) takes place in solution.
However, since no emission band is observed in the
650�900 nm range, it cannot be concluded that charge
transfer takes place in solution. If charge transfer effectively
occurs, π-stacking would yield excited states that have short
lifetimes, which would be inhibitory for further charge sep-
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Figure 3. Fluorescence emission spectra of tetracene 11 and dyad
1 in dichloromethane (λex � 300 nm. [c] � 9.5 � 10�6 )

aration and efficient photovoltaic effect in the solid state.
However, recent studies show that the charge separation
lifetime of the phthalocyanine-[60]fullerene dyad may be
considerably longer in the solid state than in solution.[5]

We are currently investigating the photophysical properties
of 1.

Conclusion

In conclusion we have successfully synthesized the first
C60-tetracene dyad with the use of an original route that
includes a rhodium-catalyzed [2�2�2] cycloaddition and a
Bingel reaction. Compound 1 has been fully characterized,
which shows, in particular, that the C60 and tetracene moi-
eties do not undergo Diels�Alder reaction and that 1 prob-
ably adopts a π-stacking conformation. We are presently
using this new approach to synthesize a series of substituted
C60-tetracene and C60-[N]phenylene analogs.[28]

Supporting Information (see also the footnote on the first
page of this article): The details of the synthesis and charac-
terization (1H and 13C NMR, FT-IR, elemental analysis) of
all compounds reported here are provided.
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