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ABSTRACT

A general protocol for the conjugate transfer of diphenyl-, dicyclohexyl-, and di-tert-butylphosphinyl groups from silylphosphines to cyclic
and acyclic electron-deficient acceptors employing a bench-stable palladium(II) catalyst is reported. Several E and Z configured r,�-unsaturated
carbonyl and carboxyl acceptors (including imides) as well as nitroalkenes participate in this palladium(II)-catalyzed process in high chemical
yields.

The area of transition-metal-catalyzed conjugate element transfer
onto R,�-unsaturated carbonyl and carboxyl acceptors is cur-
rently witnessing tremendous growth.1 Prior to the C-element
bond forming event, an interelement linkage is usually activated
by a ligand-stabilized transition metal either through oxidative
addition of the element-element bond to the low-valent metal
center2,3 or through element-to-metal transmetalation.3 In-

dicators for the recent substantial progress are several novel
(asymmetric) C-B (B-B bond activation4), C-Si (B-Si5

or Si-Si bond activation6), as well as C-P bond forming
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reactions (Si-P bond activation7). Our contribution is the
disclosure of a rhodium(I)-catalyzed activation of interelement
compounds in basic aqueous media,5,7 a process believed to
hinge upon a hydroxyrhodium(I) complex as the active cata-
lyst. Its Lewis basic oxygen will interact chemoselectively
with the more electronegative element of the interelement
reagent, thereby weakening the element-element bond
eventually resulting in transmetalation of the less electro-
negative element. This general strategy for the conjugate
element transfer was inspired and guided by the related 1,4-
addition of arylboronic acids8 and its mechanism of action.9

As the logical next step, we reasoned that palladium(II)-
catalyzed protocols for conjugate arylation,10 which are
tantamount to the aforementioned rhodium(I) catalysis,8,9

might also qualify for our purposes.5,7 Accordingly, a
transmetalation mechanism involving a hydroxypalladium(II)
complex was verified.11 As we had elaborated an efficient
rhodium(I)-catalyzed 1,4-addition of phosphinyl groups yet
limited in substrate scope,7 we decided to investigate its
unprecedented palladium(II)-catalyzed counterpart. In this
Letter, we report a robust method for the conjugate phos-
phination of electron-deficient acceptors12 using silylphos-
phines7,13 as a source of nucleophilic trivalent phosphorus.14

Catalyst identification commenced with bench-stable palla-
dium(II) catalyst 1 developed by Itami et al. for the hydroary-
lation of fullerene with arylboronic acids.15 This work also
included examples of conjugate arylation of cyclic and acyclic
R,�-unsaturated carbonyls. We were then delighted to see that
1 also facilitated the phosphinyl transfer from t-BuMe2Si-PPh2

(2a)7,16 to cyclic acceptor 4 (Scheme 1). Variation of reaction
conditions (only a selection is shown) led to a straightforward
procedure, affording the adduct in high chemical yield.

To ascertain whether 1 () Pd(O2CC6F5)2·L1) is the ideal
counteranion-ligand combination, we surveyed four different
ligandssPh3P and L1-L3swith Pd(OAc)2 as the palla-
dium(II) source with or without C6F5CO2H as additive15a

(Table 1). Independent of the catalyst loading and the
presence of added acid, a clear trend was observed: Ph3P

10a

performed poorly, while all nitrogen-based ligands10b were
superior in the order L1 > L2 > L3. Any further decrease
in the amount of Pd(OAc)2 gave lower yields.
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Scheme 1. Conjugate Phosphination Using Bench-Stable
Palladium(II) Complex 1

Table 1. Ligand [Pd(OAc)2·L] and Additive Screeninga

entry ligand L mol % C6F5CO2H (mol %) yield (%)

1 Ph3P 20 - 45
2 L1 20 - 76
3 L2 20 - 64
4 L3 20 - 55
5 Ph3P 5.0 - 36
6 L1 5.0 - 74
7 L2 5.0 - 66
8 L3 5.0 - 58
9 Ph3P 5.0 10 41
10 L1 5.0 10 80
11 L2 5.0 10 71
12 L3 5.0 10 63
a Conjugate phosphinations of 4 were conducted using Pd(OAc)2 and

an equimolar amount of the indicated ligand L1-L3 (twice the amount in
the case of Ph3P) as well as 2a (2.5 equiv) in 1,4-dioxane:H2O ) 10:1
(0.20 M) at 60 °C. Yields after oxidation and flash chromatography.
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We then continued to apply this procedure to conventional
cyclic R,�-unsaturated carbonyl compounds 3-5 using both
t-BuMe2Si-PPh2 (2a) and Me2PhSi-PCy2 (2b) representa-
tive for diaryl- and dialkylphosphinyl groups (Table 2). As
in all preceding and subsequent examples, phosphinylfphos-
phinoyl oxidation with H2O2 or sulfurization with S8 allowed
facile purification by flash chromatography on silica gel. The
yields obtained with substrates 3-5 compare well with those
of the rhodium(I)-catalyzed variant.7a

Acyclic R,�-unsaturated carbonyl compounds, e.g., acceptors
9-11, had emerged as unreactive with the rhodium(I) catalytic
system but reacted cleanly under the palladium(II) catalysis
(Table 3). We note that isolated yields were invariably higher
for Z than for E configured precursors (vide infra).

Gratifyingly, R,�-unsaturated imides 15 and 16 with E and
Z double bond geometry extended the scope (Table 4), opening

the door for auxiliary-based, diastereoselective 1,4-additions.17

Again, Z alkenes performed better than E alkenes. Maleimide
19 afforded even higher yields (Scheme 2).

Being aware of the fact that R,�-unsaturated carboxyls are
intrinsically less reactive than carbonyl compounds, we were
nevertheless surprised to learn these were reluctant to
participate in this reaction.18 Conversely, both fumaric (E-
21) and maleic ester (Z-21) gave the desired products in
chemical yields expected for the respective double bond
isomer (Scheme 3).

Table 2. Conjugate Phosphination of Cyclic R,�-Unsaturated
Carbonyl Compounds

entry silylphosphine Si-P acceptor n adduct yield (%)

1 t-BuMe2Si-PPh2 (2a) 3 1 6a 94
2 t-BuMe2Si-PPh2 (2a) 4 2 7a 84
3 t-BuMe2Si-PPh2 (2a) 5 3 8a 90
4 Me2PhSi-PCy2 (2b) 3 1 6b 72
5 Me2PhSi-PCy2 (2b) 4 2 7b 80
6 Me2PhSi-PCy2 (2b) 5 3 8b 88

Table 3. Conjugate Phosphination of Acyclic R,�-Unsaturated
Carbonyl Compounds

entry silylphosphine Si-P acceptor R adduct yield (%)

1 t-BuMe2Si-PPh2 (2a) E-9 Ph 12a 78
2 t-BuMe2Si-PPh2 (2a) Z-9 Ph 12a 91
3 t-BuMe2Si-PPh2 (2a) E-10 Me 13a 84
4 t-BuMe2Si-PPh2 (2a) E-11 n-Bu 14a 71
5 Me2PhSi-PCy2 (2b) E-9 Ph 12b 74
6 Me2PhSi-PCy2 (2b) Z-9 Ph 12b 80
7 Me2PhSi-PCy2 (2b) E-10 Me 13b 85
8 Me2PhSi-PCy2 (2b) E-11 n-Bu 14b 65

Table 4. Conjugate Phosphination of R,�-Unsaturated Imides

entry silylphosphine Si-P acceptor R adduct yield (%)

1 t-BuMe2Si-PPh2 (2a) E-15 Ph 17a 62
2 t-BuMe2Si-PPh2 (2a) Z-15 Ph 17a 73
3 t-BuMe2Si-PPh2 (2a) E-16 n-Bu 18a 58
4 t-BuMe2Si-PPh2 (2a) Z-16 n-Bu 18a 64
5 Me2PhSi-PCy2 (2b) E-15 Ph 17b 51
4 Me2PhSi-PCy2 (2b) Z-15 Ph 17b 55
5 Me2PhSi-PCy2 (2b) E-16 n-Bu 18b 63
6 Me2PhSi-PCy2 (2b) Z-16 n-Bu 18b 82

Scheme 2. Conjugate Phosphination of a Maleimide

Scheme 3. Conjugate Phosphination of Fumaric and Maleic
Esters
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The range of conceivable substrates for this reaction was
completed with nitroalkene E-23, furnishing the 1,4-adduct
in good isolated yield (Scheme 4).

After identification of all these acceptors, we tested
Me2PhSi-Pt-Bu2 (2c) to realize the transfer of the electron-
rich di-tert-butylphosphinyl group (Figure 1). Although
chemical yields were somewhat lower, conjugate phosphi-
nation worked except for R,�-unsaturated imides, thereby
rounding off the scope of this palladium(II) catalysis.

In summary, we elaborated a general method for the
conjugate phosphinyl transfer employing easy-to-handle
silylated diaryl- and dialkylphosphines 2a-c7 (Figure 2).
This novel palladium(II) catalysis for interelement bond
activation is superior to the rhodium(I)-catalyzed process
previously reported by us.7 Future work will be devoted to
mechanistic investigations and the development of enantio-
selective19 and substrate-controlled17,20 variants.
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Scheme 4. Conjugate Phosphination of a Nitroalkene

Figure 1. Selected examples of conjugate Pt-Bu2 transfer using
Me2PhSi-Pt-Bu2 (2c).

Figure 2. Silylphosphines surveyed in this work.7,16
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