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Regio- and stereo-controlled opening of 2,3-epoxy amines and 2,3-aziridine amines by the commer-
cially available MgBr2 is described. As reported, this new method could represent a general and useful
approach for the preparation of promising intermediates. Moreover, in particular cases, the reaction
evolves toward an interesting oxazolidin-2-one structure.
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INTRODUCTION

The human immunodeficiency virus (HIV) is the

causative agent of the acquired immunodeficiency syn-

drome (AIDS); the HIV-protease (PR) is one of the

essential viral enzymes to its maturation and infectivity.

Actually, synergy of the two RT and PR inhibitors rep-

resents the most efficacious therapy for the treatment of

this disease called Highly Active Antiretroviral Therapy

(HAART). All the same, the widespread diffusion of the

disease and the development of numerous mutant resist-

ant viruses to this therapy have prompted the research

toward new and selective inhibitors of HIV-PR, see

review [1].

In this field, we synthesized two analogues of Saqui-

navir 1, where the anti stereochemistry of the hydroxy-

ethylene isoster core (anti HEA) was substituted with a

syn one, as shown in Figure 1 [2].

Among the methods already reported for obtaining

syn amino alcohols, see review [3], certainly the multi-

steps strategy largely used by us consisting in (1) Sharp-

less AE of allylic alcohols, (2) regio- and stereoselective

opening of oxirane ring with halides, (3) substitution of

the halogen with azide, and (4) catalytic hydrogenation

to amine, represents, despite the number of steps, a very

general and flexible route to build up the chiral b-amino

alcohols. Following up this approach, we considered the

epoxy amine 3, having the Saquinavir characteristic

Figure 1. Saquinaver and syn HEA analog.
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residue (S,S,S)-decahydroisoquinoline-3-carboxylamide

residue (DIQ) already introduced in the molecule, a

straightforward precursor for our purpose. In fact, its

stereo- and regioselective opening by halide, followed

by steps (3) and (4), would have furnished the suit-

able syn amino alcohol 5, as shown in retrosynthetic

Scheme 1.

Apart from selected examples [4], to our best knowl-

edge, the regio- and stereo-controlled opening of 2,3-

epoxy amines by halides has never been exploited;

therefore, we decided to better study this particular reac-

tivity of these compounds.

RESULTS AND DISCUSSION

During our studies, we have extensively investigated

the metal halides-mediated opening of epoxy alcohols,

esters (see review [5]), and aldehydes [6]. In every case,

we established that the freshly prepared MgI2, or the

commercially available MgBr2, as well as LiX/Amb15

system were able to direct the halide in C-3 position

through a previously postulated chelated complex

between the metal (Mg2þ, Liþ) and the two oxygen of

the epoxide derivative. At this point, we hypothesized

that also in the case of 2,3-epoxy amines, a possible

chelate between metal, epoxide oxygen, and the nitrogen

atom occurred, leading to a C-3 regioselective nucleo-

philic ring opening, Figure 2.

Our preliminary studies were restricted, for conven-

ience, to racemic compounds; the 2,3-epoxy amines

were synthesized in satisfactory yield from the corre-

sponding 2,3-epoxy alcohols through the sequence

described in Scheme 2: (1) transformation of the

hydroxyl function in a good leaving group such as the

mesilate (2) nucleophilic substitution with the suitable

amine.

The prepared 2,3-epoxy amines were then submitted

to the MgBr2-mediated opening reaction employing dry

Et2O as solvent at low temperature [7]. As shown in Ta-

ble 1, the results confirmed our hypothesis: the nucleo-

philic attack of the bromine occurred preferentially in

the C-3 position, as expected for chelation-controlled

ring opening reactions. The regiochemistry of the prod-

ucts was assigned by spin–spin decoupling experiments

carried out on the corresponding acetyl derivatives,

whereas the anti stereochemistry was assigned in ac-

cordance with the SN2 mechanism of the opening

reaction.

As expected, the same reaction conditions applied to

the 2,3-epoxy amine 3 afforded the desired bromoderi-

vative 4, in good yield and excellent regioselectivity

(entry 5); the further elaboration of bromine carried out

to our desired target, the syn amino alcohol 5.

For the sake of completeness and for our interest on

these compounds, the study was extended on 2,3-aziri-

dine amines. Also in this case very few examples [8],

regarding essentially aziridine-fused heterocycles,

are already reported in literature. Likewise 2,3-aziri-

dino alcohols [9], also for 2,3-aziridine amines, a

cyclic chelate may be invoked to control the regiose-

lectivity in the ring opening reaction by metal halides,

Figure 3.

An expeditious sequence was employed to prepare the

starting substrates, consisting on the direct introduction

of the amines on C-1 position, followed by the usual

transformation to the aziridine ring (Scheme 3) [10]. In

this case, the chosen amines have been once again pi-

peridine and, for our specific interest regarding the syn-

thesis of D-treo-PDMP, morpholine [11].

When we submitted compounds 16–19 to MgBr2
reaction, only one product was detected (Table 2); also

Figure 2. Possible cyclic chelate.

Scheme 1
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Scheme 3

Table 1

Controlled opening of 2,3-epoxy amines.

2,3-Epoxy amine Main haloderivative Yield (%) Ratioa C-3/C-2

6 92 98:2

7 65 90:10

8 86 95:5

9 69 90:10

3 4 68 95:5

a Regioisomeric ratio was determined by 1H NMR spectra.

Scheme 2



in this case, the ring opening occurred with an excellent

C-3 regioselectivity (as demonstrated through spin–spin

decoupling experiments), according to the proposed

cyclic chelate model.

An unexpected behavior was observed when the C-3

position of the substrate was very reactive, as for 24 and

25; in this case, the initial 3-bromo derivative underwent

a rearrangement during the time (4–5 h), giving a new

product, the physical data of which were in agreement

with a 2-oxazolidinone structure (Scheme 4). This trans-

formation could be explained through an intramolecular

nucleophilic substitution of the bromine in benzylic and

allylic position (Fig. 4).

In conclusion, the described new method represents a

general and useful approach to the preparation of prom-

ising intermediates, due to the possible elaboration of

the bromine [12]. Moreover, also when the reaction

Table 2

Controlled opening of 2,3-aziridine amines.

2,3-Aziridine amine Main haloderivative Yield (%) Ratioa C-3/C-2

16 81 >95:5

17 78 >95:5

18 78 >95:5

19 69 >90:10

a Regioisomeric ratio was determined by 1H NMR spectra.

Scheme 4

Figure 3. Possible cyclic chelate.
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evolves toward oxazolidin-2-ones, it could be of interest,

considering the importance of oxazolidinones in the ste-

reoselective synthesis of natural products and pharma-

ceuticals [13].
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