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Abstract  : C 5-branched vinyltin acetals I and 2 obtained by stannylmetallation of homopropargyl 
acetals with Bu3SnMgMe in the presence of cuprous cyanide have been proved to be efficient 
storable precursors for the synthesis of terpenoids. 

Due to the importance of terpenoids 1, it is of interest to propose building blocks having large potentialities 

for their synthesis. Considering the backbone of this class of compounds, vinylic branched C5-units, having 

both a nucleophilic site and an electrophilic site, appear of high interest and vinyltin acetals 1 and 2 can be 

expected to be appropriate stable precursors. 

OEt Me OEt 

Bu 3 Sn ~ OEt Bu 3 Sn OEt 

1 Me 2 

Unfortunately, the free radical hydrostannation of 3-(diethoxymethyl)-but-l-yne is non-stereospecific 

(thermodynamic mixture of geometrical isomers : E/Z = 87/13 is obtained) 2 and in consequence, we choose 

the stannylmetallation routes to obtain 1 and 2. However, while stannylmetallations of alkynes occur 

generally in a syn fashion, the regioselectivity of the addition is highly dependent on the stannylmetallation 

reagent, on the substrate and on the experimental conditions 3-8. For instance, using the Lipshutz reagent 4, the 

stannylcupration of propargyl acetals occurs cleanly at the 13-position 5,6 while stannylcupration of 

homopropargyl acetals affords mixture of regioisomers 5. Until now, in the latter case, we have been unable to 

drive the reaction of Lipshutz reagent to the desired regioisomer adding, for instance, HMPA in THF in order 

to shift the reaction to the thermodynamic vinylcopper intermediate, as recently described by Oehlschlager 

for the stannylcupration of l-alkoxyalkynesT.The desired vinyltins 1 (R l=Me, R2=H) and 2 (RI=H, R2=Me) 

were obtained using tributylstannylmethylmagnesium in the presence of cuprous cyanide (5%) according to 

Nozaki 8 for the stannylmetallation of the homopropargylic acetals. The advantage of this method, in this 

case, is the good regioselectivity associated with a higher reactivity of the vinylmagnesium intermediate in 

alkylation reactions. 

OEt R 2 OEt 

/1~ 1) Bu3SnMgMe, 5% CuCN, O°C or -20°C, THF, 5 rain Bu3S n ~ ~J,.. /1... 
H ~ ( OEt • ~'~ "~, OEt 

h 1 2) H20 or MeI R' 
1 (75%) ; 2 (54%) 
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In the case of the synthesis of 2, compared to our previous report 5, the preparation has been improved in 

terms of purity since the amount of protonated derivative (R I = R 2 _- H) has been maintained under 2 % 9. 

In such conditions, vinyltin acetals 1 and 2 appear to be reasonably accessible precursors whose potential 

must be evaluated in organic synthesis both as precursors of vinyllithium reagents i I and in cross coupling 
reactions 12. 

Use of  I and 2 as precursors of  vinyllithium reagents : 

When transmetallation reaction of 1 or 2 with butyllithium was attempted in ether at 0°C (method A), the 

yields in vinyllithium reagents 3 or 4 were limited by the transmetallation equilibrium (el table I). To 

circumvent this problem (method B), these vinyltins were first converted into vinyl iodides (12, ether, 20°C, 

lh) before performing the halogen-metal exchange (n-BuLi or t-BuLi, ether, -60°C, lh). According to this 

last route the vinyllithium reagents 3 or 4 were obtained in good yields : 

R 2 OEt 
I I 

Bu3Sn ~ OEt 

1 or 2 R' 

~ I2, ether, 20°C 

1t 2 OEt 

I ~  OEt 

5 o r 6  RI 

BuLi, ether, 0°C (- Bu4Sn) R 2 OEt 
(method A) 

*" Li OEt 

R 1 3or 4 

1, 3, 5 (R' =Me,  R 2 =H)  ; 2, 4, 6 (R l =H,  R 2 =Me)  

R 2 OEt 
RLi~ ether, -600C • /.j.. /J,,~ J,,~ 

(- RI) " ~  "["  -OEt 
R = n-Bu or t-Bu R l 3 or 4 

(method B) 

To exemplify the possibilities brought by this type of reagent, they have been reacted with seneeialdehyde 

and 2-ethylacrolein to give monoterpenoids skeletons. 

Table I : Reactivity of Vinyllithiums 3 and 4 with Senecialdehyde and 2-Ethylacrolein. 

Entry Vinyltin Vinyllithium Aldehyde Adduct (after hydrolysis) N ° Yield( a ) 

1 1 3(methodA) ~ C  ~ x f ~ . . ~ O E  t 7(b) 4.5% 

2 1 3 (method B) HO [ OH OEt 7CO) 71% 

OH 
3 1 3(methodA) / , , , , ~ C H O  / ~ ~ , , ~ , , < ~ O E t  8 62% 

4 1 3 (method B) oft 8 76% 

5 2 4 (method A) ~ CHO ~ OEt 9 27% 

6 2 4 (method B) I I  OFt 9 74% 
I I  

OFt 
7 2 4(methodB) ~ ' k C  HO " ~ ~ ' "  ~ O E t  10 93% 

(a) Isolated yields from vinyltin acetals I and 2 using stoechiometrical amounts of reagents. Physicochemical data are in 
agreement with the above mentioned structures. Co) 7 isomerized into the conjugated dienic tertiary allylic alcohol in the presence 
of traces of acids. 
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The results summarized in table I underline the remarkable versatility of these reagents to reach usual or 

unusual monoterpenoids, as it is possible to obtain head-to-head, head-to-tall, tall-to-head or tall-to-tail 

monoterpenic skeletons. 

In connexion with this work, we have been also able to obtain retinal from 13-cyclocitral using vinyllithium 4 

(obtained according to method B) in an iterative fashion : the initial hydroxyacetal was hydrolysed into 

[)-ionylidene acetaldehyde which was subsequently reacted with 4 to give retinal after hydrolysis (47 % 

unoptimized yield from B-cyclocitral) 13. 

CHO l) 4 ~ ~ , ¢ c H o  l) 4 ) 

2) HBr / H2 O) 2) HBr / H20 

~ ~ ~ , t , f  ~ CHO 

From these initial results, it appears that vinyllithiums 3 and 4 can complement efficiently other recent 

organometallic approaches to terpenoids 14- ! 7. 

Use of 1 and 2 in cross coupling reactions : 

In order to examine the possibility to reach branched C lO-OXOacetals, we have examined the cross coupling of 

vinyltin acetals with senecioyl chloride and 3-furoyi chloride. As expected in this case, the reaction of acyl 

chloride at the acetal function does not interfer and the desired compounds were obtained in about 60 % 

isolated yields (cf table II), according to : 

R 2 O R 2 

B u 3 S n ~ O E :  + RCOCI PdCI2(CH3CN) 2. R " ~ " ~ ~ I I  | ~OEtoEt 

DMF, 25°C, 3h R 1 

I or 2 11-14 

Table II : Cross Coupling of Vinyltin Acetals 1 and 2 with Senecioyl Chloride and 3-Furoyl Chloride. 

Entry Vin~,ltin Acyl chloride Cl0-ketoacetals N ° Yield (a) 

Cl - . ~ . ~ ~ o F t  11 56% 1 1 
i 8 I 

~~O 
CI -.. ~ . ~ j ~ . ~  OEt 

2 2 I I oBt 12 59% 

0 ~ OFt 

3 1 / ~  o x~ cl oFt 13 64% 

o 
o ? ,  / oFt I I  

4 2 ~ CI ~ OFt 14 58% 

(a) Isolated yields in pure compounds having physicochemical data in agreement with the above mentioned structures. 
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Here again, appropriate combination of vinyltins and acyl chlorides allows access to terpenoids having head- 

to-bead, head-to-tail, tail-to-head or tail-to-tail backbones. The above results demonstrate the great versatility 

of vinyltin acetals 1 and 2 for terpenic synthesis and we are presently developing applications using these 
new building blocks and the obtained functional terpenoid products. 
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