ISSN 1070-3632, Russian Journal of General Chemistry, 2009, Vol. 79, No. 12, pp. 2703–2704. © Pleiades Publishing, Ltd., 2009. Original Russian Text © E.V. Grishkun, O.I. Kolodyazhnyi, 2009, published in Zhurnal Obshchei Khimii, 2009, Vol. 79, No. 12, pp. 2065–2066.

LETTERS TO THE EDITOR

Synthesis of β-Enaminophosphonates and β-Methoxyiminophosphonates

E. V. Grishkun and O. I. Kolodyazhnyi

Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanskaya ul. 1, Kiev, 02094 Ukraine fax: 38(044)573-2555 e-mail: olegkol321@rambler.ru

Received April 22, 2009

DOI: 10.1134/S1070363209120263

We found that reaction of dialkyl lithiummethylphosphonate with nitriles in THF proceeds at low temperature resulting in β -enaminophosphonates **Ia–Id** in high yields. They are stable liquids, which are easily distilled in a vacuum. β -Enaminephosphonates **I** are prototropic forms of iminophosphonates **II**. However, the tautomeric equilibrium $\mathbf{I} \rightleftharpoons \mathbf{II}$ is shifted to enamine form **I**, what is unambiguously indicated by the NMR spectra. They content clear doublet signal of PCH- group proton and two protons of NH₂-group. At the same time β -enaminophosphonates enter easily into the reaction with methyl ether of hydroxylamine typical of imine compound, to form the previously unknown β -methoxyiminophosphonates **III** in quantitative yields [1, 2]. The ¹H and ³¹P NMR spectra of compounds **III** confirm their structure: δ_P values are shifted to 30 ppm, and in the ¹HMR spectra there is a doublet signal belonging to the two protons of PCH₂-group.

$$(RO)_{2}P(O)CH_{2}Li \xrightarrow{R'CN}_{H^{+}} (RO)_{2}P(O)CH = C - NH_{2} \xrightarrow{} (RO)_{2}P(O)CH_{2}C = NH_{2}$$

$$R' \qquad R'$$

$$Ia-Id \qquad II$$

$$\xrightarrow{[MeONH_{3}]^{+}Cl^{-}}_{-NH_{4}Cl} (RO)_{2}P(O)CH_{2}C = NOMe$$

$$R' \qquad IIIa, IIIc, IIId$$

 $R = Me, R' = Ph(a), R = Et, R' = C_6H_4F(b), R = Et, R' = Furyl(c), R = Et, R' = CF_3(d).$

Dimethyl [(*E*)-2-amino-2-phenylethenyl] phosphonate (Ia). To a solution of dimethyl lithiummethylphosphonate generated from 0.01 mol of dimethyl methylphosphonate and 0.011 mol of butyllithium in 5 ml of THF at -80° C was added a solution of 0.01 mol of benzonitrile in 3 ml of THF. The reaction mixture was stirred for 3 h at this temperature. Then the temperature was increased to +20°C, and 10 ml of the saturated aqueous solution of NH₄Cl was added. The organic layer was separated. The water layer was extracted with ethyl acetate. This extract was dried with anhydrous Na₂SO₄ and concentrated in a vacuum. Yield 75%, bp 142°C (0.045 mm Hg), R_f 0.45 (Silufol, ethyl acetate). ¹H NMR spectrum (CDCl₃), $\delta_{\rm H}$, ppm: 1.32 t (6H, *J* 6.9, CH₃), 4.1 d (1H, PCH, *J* 12 Hz), 4.05 m (4H, OCH₂), 5.9 br (2H, NH₂), 7.38–7.54 m (C₆H₅). ³¹P NMR spectrum (CDCl₃), $\delta_{\rm P}$, ppm: 28.8. Found, %: N 6.20; P 13.65. C₁₀H₁₄NO₃P. Calculated, %: N 6.17; P 13.63.

Diethyl [(*E*)-2-amino-2-(4-fluorophenyl)ethenyl] phosphonate (Ib) was prepared similarly. Yield 48%,

bp 165°C (0.03 mm Hg). ¹H NMR spectrum (CDCl₃), $δ_{\rm H}$, ppm: 1.33 t (6H, CH₃, *J* 7.2 Hz), 4.06 m (4H, OCH₂), 4.08 d (1H, PCH=, *J* 10.2 Hz), 5.86 br (2H, NH₂), 7.07 and 7.56 m (4H, C₆H₄).³¹P NMR spectrum (CDCl₃), $δ_{\rm P}$, ppm: 25.9. ¹⁹F NMR spectrum (CDCl₃), $δ_{\rm F}$, ppm: -106.2. Found, %: N 5.18; P 11.32. C₁₂H₁₇FNO₃P. Calculated, %: N 5.13; P 11.34.

Diethyl [(*E***)-2-amino-2-(2-furanyl)ethenyl]phosphonate (Ic)** was prepared similarly. Yield 74%, bp 152–155°C (0.03 mm Hg), R_f 0.43 (Silufol, ethyl acetate). ¹H NMR spectrum (CDCl₃), $\delta_{\rm H}$, ppm: 1.33 t (6H, CH₃, *J* 6.9 Hz), 4.06 m (4H, OCH₂), 4.46 d (1H, PCH, *J* 10.8 Hz), 5.98 br (2H, NH₂), 6.47 d (1H, *J* 3.5 Hz), 6.73 d (1H, *J* 3.5 Hz), 7.46 s (1H, furyl). ³¹P NMR spectrum (CDCl₃), $\delta_{\rm P}$, ppm: 26.6. Found, %: N 5.74; P 12.60. C₁₀H₁₆ NO₄P. Calculated, %: N 5.71; P 12.63.

Diethyl [(1*E***)-2-amino-3,3,3-trifluoro-1-propenyl]phosphonate (Id)** was prepared similarly. Yield 50%, bp 118°C (0.04 mm Hg). ¹H NMR spectrum (CDCl₃), δ_{H} , ppm: 1.3 t (6H, CH₃, *J* 6.6 Hz), 3.1 d (1H, PCH, *J* 24 Hz), 4.06 m (4H, OCH₂), 6.14 br (2H, NH₂). ³¹P NMR spectrum (CDCl₃), δ_{P} , ppm: 30.64. ¹⁹F NMR spectrum (CDCl₃), δ_{F} , ppm: 106.2. Found, %: F 23.36; N 5.61; P 12.6. C₇H₁₃F₃NO₃P. Calculated, %: F 23.06; N 5.67; P 12.5.

Dimethyl [(2*E***)-2-(methoxyimino)-2-phenylethyl] phosphonate (IIIa)**. To a solution of 1.33 g (5 mmol) of enamine **Ia** in 3 ml of anhydrous methanol was added a solution of 0.46 g (5.5 mmol) of MeONH₂·HCl in 3 ml of anhydrous methanol at room temperature. Then the reaction mixture was heated for 3–5 min at 80°C. The solvent was evaporated and the residue was dissolved in ethyl acetate, filtered, concentrated, and distilled in a vacuum. Yield 75%, bp 140°C (0.05 mm Hg). ¹H NMR spectrum (CDCl₃), δ_{H} , ppm: 3.46 d (2H, PCH₂, *J* 23.7 Hz), 3.67 d (6H, CH₃O, *J* 11.5 Hz), 4.04 s (3H, CH₃O), 7.37 m, 7.71 m (5H, C₆H₅). ³¹P (CDCl₃), δ_{P} , ppm: 30. Found, %: N 5.40; P 12.05. C₁₁H₁₆NO₄P. Calculated, %: N 5.45; P 12.04.

Diethyl [(2*E***)-2-(2-furanyl)-2-(methoxyimine)ethyl]phosphonate (IIIc)** was prepared similarly. Yield 79%, bp 132–135°C (0.045 mm Hg). ¹H NMR spectrum (CDCl₃), $\delta_{\rm H}$, ppm: 1.25 t (6H, CH₃, *J* 6.6 Hz), 3.35 d (1H, PCH₂, *J* 23.1 Hz), 4.02 s (CH₃O), 4.06 m (4H, OCH₂), 6.45 d. d (1H, *J* 1.5, *J* 3 Hz), 6.75 d (1H, *J* 3.5 Hz), 7.46 s (1H). ³¹P NMR spectrum (CDCl₃), $\delta_{\rm P}$, ppm: 30. Found, %: N 6.01; P 11.26. C₁₁H₁₈NO₅P. Calculated, %: N 5.09; P 11.25.

Diethyl [(2*E*)-3,3,3-trifluoro-2-(methoxyimino)propyl]phosphonate (IIId) was prepared similarly. Yield 82%, bp 118–120°C (0.04 mm Hg). ¹H NMR spectrum (CDCl₃), $\delta_{\rm H}$, ppm: 1.32 t (6H, CH₃, *J* 7 Hz), 3.1 d (2H, PCH₂, *J* 24 Hz), 4.04 s (3H, OCH₃), 4.09 m (4H, OCH₂). ³¹P NMR spectrum (CDCl₃), $\delta_{\rm P}$, ppm: 30. Found, %: N 5.16; P 11.19. C₈H₁₅F₃NO₄P. Calculated, %: N 5.05; P 11.17.

The NMR spectra were registered on a Varian-300 spectrometer relative to internal TMS (¹H and ¹³C) and 85% H₃PO₄ in D₂O (³¹P). This work was supported by the grant STCU no. 3558.

REFERENCES

- 1. Savignac, P. and Iorga, B., *Modern Phosphonate Chemistry*, CRC Press, Boca Raton, Florida, 2003.
- 2. Engel, R. and Cohen, J.I., *Synthesis of Carbon-Phosphorus Bonds*, CRC Press, 2003.