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Abstract: Various 2-monosubstituted pyrroles were prepared in a
one-pot procedure via the reductive amination of formyl groups of
multifunctional substrates 1 by using Bu2SnIH–HMPA system.
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We have been developing the unique reactivities of the
halogen-substituted tin hydride systems such as Bu2SnIH
and Bu2SnClH–HMPA which promote effective reduc-
tion of imines.1 In particular, Bu2SnClH–HMPA affords
effective reductive amination to give a wide range of sec-
ondary and tertiary amines in one pot procedures.2 Pyr-
roles are important heterocycles broadly used in materials
science3 and found in naturally occurring and biologically
important molecules.4 Accordingly, substantial attention
has been paid to develop efficient methods for the synthe-
sis of pyrroles, most known methods are for forming 2,5-
di- or polysubstituted pyrroles. Convenient methods have
scarcely reported for the construction of 2-monosubstitut-
ed pyrrole ring.5 Herein we wish to report a novel, and ef-
ficient method for construction of 2-monosubstituted
pyrroles via the reductive amination by di-n-butyliodotin
hydride (Bu2SnIH)–HMPA system.

As shown in Table 1, first, it was found that enal 1a in the
presence of iodotin hydride in THF at 0 °C for 2 hours un-
derwent reductive amination with p-chloroaniline to give
secondary amine 3a in 74% yield (entry 1).6,7 Although no
cyclization occurred, this result indicates that reductive
amination was carried out effectively without affecting
the remaining enone functionality in 1a. Chloro-substitu-
ent on nitrogen aromatic ring was not reduced. After the
reductive amination, heating the mixture at 80 °C for 2
hours afforded pyrrole 2a in 22% yield with 60% of 3a
(entry 2). In this case, 1,4-dioxane was used as a solvent
to heat the reaction mixture at 80 °C. Noteworthy is that
under the same conditions, pyrrole 2a was obtained in
81% yield in the presence of an equimolar amount of
HMPA (entry 3), in which non-cyclized product 3a was
not obtained at all. The iodo-substituent on the tin center
was essential for the cyclization because chlorotin deriva-

tive, Bu2SnClH–HMPA, gave no pyrrole 2a at all where
only 3a was obtained under the same conditions (entry 4).

Various aromatic amines were applicable to give pyrroles
2b–d in one-pot procedures by the reductive amination of
1 using Bu2SnIH–HMPA system followed by heating at
80 °C (entries 5–7). In the case of 1b, pyrrole 2e was also
obtained (entry 8). Enal having aromatic ketone 1c was
also reactive to give the corresponding pyrroles 2f–h
where reductive amination was carried out at –40 °C
(entries 9–11).

A plausible reaction course is indicated in Scheme 2. Ini-
tially, reductive amination occurs by mixing Bu2SnIH–
HMPA with starting substrate 1 and an aromatic amine
(Scheme 1).

Scheme 1

It is cleared that halogenotin hydride bears high imine-se-
lectivity because formyl and enone groups of 1 were not
reduced at all. In the next stage, the resulting tin-nitrogen
bond adds to the remaining ketone moiety in 1 by heating.
At the last stage, the elimination of tin hydroxide gives
pyrroles 2. The reaction was carried out in a one-pot pro-
cedure hence no intermediates were isolated. The substit-
uent and ligand in the tin complex play important roles for
the synthesis of pyrroles. Bu2SnIH–HMPA is a trigonal
bipyramidal structure in which iodine substituent occu-
pies apical position.8 The Sn-halogen bond is responsible
for high imine-selectivity, which promotes the formation
of an iminium ion (I). As a result, electrophilicity of imine
is increased.1,2 The activated imine thus formed would be
reduced more rapidly than any other functionalities such
as starting formyl and enone moieties. After the imine-
selective reduction, tin-nitrogen bond is formed. High
coordination of tin is important for the intramolecular
addition. Namely, in the pentavalent tin amide (II), the
tin-nitrogen bond occupying the apical position bears
adequate nucleophilicity to the remaining carbonyl
groups.9,10
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In conclusion, various 2-monosubstituted pyrroles could
be prepared in a one-pot procedure by the imine-selective
reduction of in situ formed bifunctional substrates bearing
imine and enone functionalities.
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Table 1 One-Pot Synthesis of 2-Monosubtituted Pyrroles 2a

Entry R Ar Tin hydride Solvent Conditions
1

Condtions
2

Product
[Yield (%)]

1 n-C8H17 (1a) p-ClC6H4 Bu2SnIH THF 0 °C, 2 h 0 °C, 2 h 3a (74)

2 Bu2SnIH Dioxane 0 °C, 2 h 80 °C, 2 h 2a (22)
3a (60)

3 Bu2SnIH–HMPA Dioxane 0 °C, 2 h 80 °C, 2 h 2a (81)

4 Bu2SnClH–HMPA Dioxane 0 °C, 2 h 80 °C, 2 h 3a (98)

5 Ph Bu2SnIH–HMPA Dioxane 0 °C, 2 h 80 °C, 2 h 2b (54)

6 p-Tol Bu2SnIH–HMPA Dioxane 0 °C, 2 h 80 °C, 2 h 2c (60)

7 p-MeOC6H4 Bu2SnIH–HMPA Dioxane 0 °C, 2 h 80 °C, 2 h 2d (66)

8 PhCH2CH2CH2 (1b) p-ClC6H4 Bu2SnIH–HMPA THF 0 °C, 2 h 80 °C, 2 h 2e (60)

9 Ph (1c) p-ClC6H4 Bu2SnIH–HMPA THF –40 °C, 2 h 60 °C, 2 h 2f (46)

10 Ph Bu2SnIH–HMPA THF –40 °C, 2 h 60 °C, 2 h 2g (41)

11 p-MeOC6H4 Bu2SnIH–HMPA THF –40 °C, 2 h 60 °C, 2 h 2h (49)

a Compound 1 1 mmol, ArNH2 1 mmol, tin hydride 1 mmol, (HMPA 1 mmol), 1 1 mmol, solvent 1 mL.
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