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Abstract: R2Zn in the presence of NMP or LiBr promotes the in-
tramolecular rearrangement of 1,1-diiodoalkanes via the formation
of sp3 secondary zinc carbenoid. 
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The intermolecular reaction between a nucleophilic orga-
nometallic and an electrophilic carbon center represents
one of the widest classes of carbon-carbon bond forming
reaction nowadays. Far less common are intramolecular
variants in which both the nucleophilic and electrophilic
partners are bound to the same metal (intramolecular rear-
rangement of carbenoid). When the metal bears a negative
charge, such reactions are defined as 1,2-metallate rear-
rangements and are relatively well known for the migra-
tion of alkyl groups to sp3-, sp2- and sp-hybridized
carbons.1 Particularly attractive is the rearrangement of a-
halo-triorganozincate2 (M = Zn) as well as a-alkoxy-alke-
nyl lithio cuprate (M = Cu, Scheme 1).3 

Scheme 1

However, an excess of electrophile is usually required to
compensate the excess of alkyl groups attached to the
metal. When the metal is not negatively charged, no in-
tramolecular rearrangement is observed and only intermo-
lecular reaction occurs between carbenoid and
organometallic derivative4 to give the alkylated and rear-
ranged organometallics as products.5

It was reported recently by one of us that a polar cosolvent
like N-methylpyrrolidinone (NMP) permitted the 1,4-ad-
dition of R2Zn to enones in the absence of any copper or
transition metal catalyst; named as the uncatalyzed conju-
gate addition reaction.6 R2Zn alone did not react with any
of these enones. The origin of this reaction rate increase in
NMP may result from the ionization of the diorganozinc

by the NMP providing a more reactive pseudozincate.7

So, we wished to use this efficient and economic new
form of activated dialkylzinc (equivalent of zincate deriv-
atives)8 for several different synthetic purposes, and we
report here that these derivatives can be successfully used
for the intramolecular rearrangement of sp3 carbenoids.9

Indeed, treatment of 1,1-diiodoalkane10 1 with 1.2 equiv-
alents of Et2Zn in THF in the presence of NMP allows io-
dine-zinc exchange at –50 °C to form the corresponding
sp3 secondary zinc carbenoid 2. Then, by warming the re-
action mixture to room temperature, the carbenoid 2 un-
dergoes an intramolecular nucleophilic rearrangement
into the secondary organozinc iodide derivative 3 which
can react with different electrophiles in good overall
yields (Scheme 2 and Table).

Scheme 2

In order to prove the stepwise mechanism, intermediate
zinc carbenoid 2 was trapped with Br2 at -50 °C to get 4.
Although, the a,a'-bromo iodo derivative 4 was isolated
in a promising 50% yield, minor amounts of dibromoal-
kanes were always present in the crude reaction mixture
(probably formed by degradation of the carbenoid 2 into
carbene and subsequent reaction with Br2).

The formation of a secondary organozinc halide 3 was
checked by halogenolysis (entries 2 to 4 and entry 9),
oxidation11 (entry 6) and, finally, by allylation and 1,4-ad-
dition reactions after transmetallation of the organozinc
halide into an organocopper derivative (entries 7 and 8).12

The presence of NMP is absolutely necessary for the reac-
tion to proceed13 since in pure THF, no homologation was
observed.
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Moreover, as we have reported recently that lithium ha-
lides may also modify the Lewis character of the zinc at-
om,14 probably via a zincate species,15 we wanted to check
the behavior of the combination of R2Zn/LiBr in this in-
tramolecular rearrangement. 

Indeed,  addition  of R1
2Zn  and  2LiBr  in THF to 1a  at

50 °C also led to the formation of carbenoid 14, which
rearranged cleanly into the secondary zinc iodide 15 and,
after addition of iodine, 6 was isolated in 75% yield (path
A, Scheme 3).

As the combination R1
2Zn, 2LiBr was also successful for

the intramolecular rearrangement, the direct preparation
of this complex was performed by treatment of BuLi with
ZnBr2 in THF at 0 °C to room temperature (path B,
Scheme 3).  Then,  a  solution  of 1a or 1b  was added at
50 °C and the reaction mixture was warmed to room

temperature to furnish the homologated product, which
was classically isolated as iodide 16 and 17 in 75% and
82% yield, respectively (Scheme 3).16 

Scheme 3

Here again, the mechanism of the reaction is divided into
two steps; formation of the carbenoid and its intramolec-
ular rearrangement. The same result was obtained by the
reaction of Bu2Zn, 2MgBr2 (2BuMgBr with ZnBr2) and
1a to furnish 16 in 75% yield.

In conclusion, we have reported a unique and straightfor-
ward intramolecular 1,2-rearrangement by the combina-
tion of R2Zn either in the presence of 2 equivalents of
NMP17 or in the presence of 2 equivalents of LiBr18 (or
MgBr2) with 1,1-diiodoalkane. We believe that the reac-
tive species is an activated form of R2Zn (as zincate) but
in which only two alkyl groups are linked to the metal.
The reactivity of these derivatives with different systems
are currently being studied in our laboratory.
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a) Isolated yields after purification by chromatography on silica gel.
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