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ABSTRACT: A metalloorganic capsule was synthesized where the ligand is a derivative of heptazine with three carboxylic groups
that are coordinated to Cu" cations, forming paddle-wheel motifs. Each nanocapsule is neutral, with 12 Cu"" centers and 8 ligands
adopting a rhombicuboctahedron shape. It has almost 3 nm diameter, and the main intermolecular interactions in the solid are -+ 7
stacking between the C¢N heptazine moieties. The nanocapsules can form monolayers deposited on graphite as observed by atomic

force microscopy, which confirms their stability in solution.

S tudies of the rational synthesis of discrete metal—organic
nanocapsules with specific shapes and structures have been
extensively carried out by several research groups.'”'* An
additional feature of the self-assembly process in the synthetic
process is to provide these nanocapsules with additional
chemical and physical properties. In this case, we have
employed as the ligand a heptazine derivative synthesized
from polymeric derivatives of s-heptazine,'> also known as
graphitic carbon nitride (g-C;N,), which has been recently
proposed for many catalytic processes (Figure 1).16_19 One of
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Figure 1. (left) s-Heptazine, (center) g-C;N,, and (right) s-triazine.

the main problems in working with heptazine derivatives is
their low solubility. The goal of this manuscript is to show that
it is possible to overcome the solubility problems and
synthesize nanocapsules with the C4,N, moieties. In addition,
this approach shows that the larger size of the heptazine
ligands opens the possibility of generating nanocapsules while
the equivalent s-triazine system (Figure 1) results in periodic
metal—organic frameworks (Figure S6).”

The goal was to form a nanocapsule using a 4-connected
paddle-wheel subunit [M,(—COO),] as the vertex, where the
carboxylic binding groups belong to a tritopic heptazine
derivative ligand. The synthesis of this ligand involves several
steps [see Figure 2 and the Supporting Information (SI) for
reaction details].”" The first step is pyrolysis of urea at high
temperature to obtain the polymeric [C¢N,(NH)(NH,)],
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melon 1; depending of the thermal treatment, we can also
reach the dehydrogenated system g-C;N,. The second step is
alkali hydrolysis to synthesize the trialkoxide derivative 2
through a solid-state reaction with PCI to obtain the trichloro
derivative cyameluric chloride (3). Finally, the substitution
reaction with 4-piperidinecarboxylic acid (4pac, also called
isonipecotic acid) results in the ligand 1,1’,1”-(1,3,32',4,6,7,9-
heptaazaphenalene-2,5,8-triyl)tris(piperidine-4-carboxylic
acid) (4 or h3tp4c). It is a microwave-assisted reaction that
uses NaHCOj as the base and 1,4-dioxane as the solvent.

The relative low solubility of 4 makes reaction with the
metal difficult (see Table S1 for the results of multiple
attempts, also including cases with Zn'' cations), but reaction
with Cu(NO;),-3H,0 in dimethyl sulfoxide (DMSO) in a
sealed vial at 110 °C results in the Cu,, nanocapsule 5 (Figure
3). A similar reaction with an equivalent triazine ligand and
Zn"! cations results in a periodic structure’® with a metal/
ligand ratio of 12:4. In that case, on each paddle-wheel
structure, two of the carboxylic acid group ligands are
coordinated to the same moiety, but the other two are
coordinated to a different unit (Figure S6). However, the
relatively large size of the heptazine derivative ligand allows
one to form a nanocapsule with 12 Cu" cations and 8
heptazine ligands, resulting in a neutral system. The structure
of § can be described as a rhombicuboctahedron (Figure S6),
where the six Cu, paddle-wheel subunits (including the
piperidine moiety) form the six edges of the cube and the
heptazine moieties constitute the eight triangular faces.

The charge-neutral nanocapsule 5 packs (Figures 4, bottom,
and S7) through 7— interactions with an interplanar distance
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Figure 3. (above) Structure of complex S [Cuy,(tp4c)s(H,0),].
Orange, blue, gray, and red ellipsoids correspond to Cu, N, C, and O
atoms, respectively. (below) Structure details of the intermolecular
m—n stacking through the heptazine groups between two neighboring
Cu;, nanocapsules.

of 3.5 A between the C4N, heptazine units of the nano-
capsules. The diameter of the nanocapsule is ca. 3 nm with a
2.5 nm distance between the outer paddle-wheel Cu atoms.
The nanocapsule has an internal cavity of 2600 A* (see cavity
details in Figure S8), but because of the moderate resolution of
the diffraction data, none of the DMSO solvent molecules
could be located inside the cavity. The nanocapsule is not
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Figure 4. Space-filling model presentation of the structure of complex
S [Cuy,(tp4c)s(H,0),, showing the shape of the 0.7 nm windows.

completely closed because there are 10 ellipsoidal windows, ca.
0.7 nm in diameter, allowing the small solvent molecules to
“swim” through the cavity in the solution.

In order to complete the structural characterization, we have
employed a 1:100 dilution of the mother liquor to deposit a
monolayer of the complex 5 on highly oriented pyrolytic
graphite (immersion time 30 s). The sample was abundantly
cleaned with DMSO in order to eliminate the molecules that
were not attached to the substrate through z—x interactions.
The sample was measured using atomic force microscopy
(AFM,; see details in the S, section $). We performed a scratch
with the microscope tip of the monolayer to determine the
thickness of the monolayer (Figure S), cleaning the substrate
surface. The thickness value around 2.2 nm is in agreement
with the size of the molecule (the molecule is slightly larger,
almost 3 nm in the direction of the two outer paddle-wheel
groups), assuming that one of the heptazine groups is
interacting with the graphite surface. This fact confirms the
stability of complex S in solution despite its large size.

The photochemical properties of ligand 4 (Figures 6 and
S9) and the dodecanuclear complex 5 (Figure S10) have been
explored. From these data, we can outline some points: (i) The
heptazine-based ligand 4 has a high absorbance with an
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Figure S. (left) AFM image of the monolayer of 5 deposited on highly oriented pyrolytic graphite. (right) Cross-sectional profiles in the tip-
scratched area at the position indicated by the lines in the AFM image.
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Figure 6. Absorption (purple) and emission (orange) spectra of
ligand 4 at 10°° M (Figure S9 at different concentrations in
methanol). The excitation wavelength is 273 nm.

extinction coefficient of 1.1 X 10° M™! em™!, while the value
for the complex is 1 order of magnitude smaller, 1.8 X 10* M
em™. (ii) Ligand 4 has a large Stokes shift of 110 nm
(absorption 273 nm and emission 383 nm; Figure $),
indicating a large structural rearrangement of the molecule in
the excited state. These structural variations should lead to a
new conformation in the lower-energy excited state that might
be responsible for the red shift in the emission maxima. The
quantum yield of ligand 4 determined by using an integrating
sphere is 3.8%. (ii) The quenching effects in
[Cuy,(tp4c)s(H,0)y,] are important, and the system does
not present fluorescence (see the UV—vis spectra; Figure S10).
It is worth noting that a previously reported Cu; complex™
with pyridylheptazine ligands shows fluorescence because the
Cu" do_, orbitals are orthogonal to the 7 system of the
heptazine moieties; however, that is not the case in 5 (see
ligand orbitals in Figure S11 and the relative position of the
heptazine and paddle-wheel groups in Figure SS).

Finally, we explored the host---guest features of the
nanocapsule 5 by replacing the solvent DMSO molecules. A
filtered and cleaned sample was introduced in N,N-
dimethylformamide (DMF) over 1 week. The results for the
IR spectra are represented in Figure 7. The DMSO
characteristic peaks (blue curve) at 3000 and 1025 cm™
decrease or disappear in the DMF sample (green curve; new
DMF characteristic peaks at 2930 and 1093 cm™"). Thus, we
can conclude that there is a replacement of the DMSO by the
DMEF host molecules.
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Figure 7. IR spectra (recorded with attenuated total reflectance) for
ligand 4 (red) provided as a reference and nanocapsule § with DMSO
and DMF (blue and green, respectively). Dashed lines are included to
mark the key differences.

In summary, relatively large metal—organic nanocapsules can
be self-assembled by using carboxylic—heptazine ligands. AFM
experiments show the stability of the nanocapsules in solution.
The presence of the C4N, heptazine moiety in the ligand
opens wide possibilities of combining its photochemical, host--
guest, and catalytic properties with those of the metals.
Furthermore, this is an example of how to circumvent the
problems to synthesize complex systems with low-solubility

ligands.
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