Revised Structure and Synthesis of Celastramycin A, A Potent Innate Immune Suppressor

Haruhisa Kikuchi,* Mizuki Sekiya, Yasuhiro Katou, Kazunori Ueda, Takahiro Kabeya, Shoichiro Kurata, and Yoshiteru Oshima*

Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama, Aoba-ku, Sendai 980-8578, Japan

hal@mail.pharm.tohoku.ac.jp; oshima@mail.pharm.tohoku.ac.jp

Received February 3, 2009

ORGANIC LETTERS 2009 Vol. 11, No. 8

/ 01. 11, No. 8 1693–1695

ABSTRACT

After searching for natural substances that regulate innate immunity using the ex vivo *Drosophila* culture system, a benzoyl pyrrole-type compound, celastramycin A, was identified and isolated as a potent suppressor. By synthesizing the previously reported structure 1 and another benzoyl pyrrole-type compound 2 reported in a Japanese patent, the correct structure of celastramycin A was confirmed to be 2. Compound 2 suppressed the production of IL-8 (IC₅₀ 0.06 μ g/mL) in human umbilical vein endothelial cells (HUVECs).

Innate immunity is the first line of defense against infectious microorganisms,^{1,2} and the basic mechanisms of this process, including pathogen recognition and immune response activation, are evolutionarily conserved.³ In mammals, innate immunity interacts with adaptive immunity and has a key role in regulating the immune response.⁴ Therefore, innate immunity is a good target for the development of immune regulators that suppress unwanted immune responses, such as septic shock, inflammatory diseases, and autoimmunity. For example, eritoran, an LPS (lipopolysaccharide) antagonist,⁵ and TAK-242, an inhibitor of the TLR4 (Toll-like

receptor 4)-induced signaling pathway,⁶ are in clinical trials for treatment of severe sepsis.

To screen pharmaceuticals that target innate immunity, we established an ex vivo culture system based on the innate immune response of *Drosophila*, which is highly useful for identifying immune regulators that act on human innate immunity.⁷ We used this system to search for natural substances that regulate innate immunity and identified and isolated a benzoyl pyrrole-type compound from *Streptomyces* sp. as a potent suppressor. Interestingly, our isolated compound showed the same ¹H and ¹³C NMR and mass spectra as those of both celastramycin A (1)⁸ and another benzoyl pyrrole-type compound in a Japanese patent.⁹ It

⁽¹⁾ Takeda, K.; Akira, S. Int. Immunol. 2005, 17, 1-14.

⁽²⁾ Hoffmann, J. A.; Reichhart, J. M. Nat. Immunol. 2002, 3, 121–126.
(3) Hultmark, D. Curr. Opin. Immunol. 2004, 15, 12–19.

⁽⁴⁾ Janeway, C. A., Jr. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 7461-7468.

^{(5) (}a) Czeslick, E.; Struppert, A.; Simm, A.; Sablotzki, A. *Inflamm. Res.* **2006**, *55*, 511–515. (b) Kim, H. M.; Park, B. S.; Kim, J.-I.; Kim, S. E.; Lee, J.; Oh, S. C.; Enkhbayar, P.; Matsushima, N.; Lee, H.; Yoo, O. J.; Lee, J.-O. *Cell* **2007**, *130*, 906–917.

^{(6) (}a) Yamada, M.; Ichikawa, T.; Ii, M.; Sunamoto, M.; Itoh, K.; Tamura, N.; Kitazaki, T. *J. Med. Chem.* **2005**, *48*, 7457–7467. (b) Kawamoto, T.; Ii, M.; Kitazaki, T.; Iizawa, Y.; Kimura, H. *Eur. J. Pharmacol.* **2008**, *584*, 40–48.

^{(7) (}a) Sekiya, M.; Ueda, K.; Fujita, T.; Kitayama, M.; Kikuchi, H.; Oshima, Y.; Kurata, S. *Life Sci.* **2006**, *80*, 113–119. (b) Sekiya, M.; Ueda, K.; Okazaki, K.; Kikuchi, H.; Kurata, S.; Oshima, Y. *Biochem. Pharmacol.* **2008**, *75*, 2165–2174.

⁽⁸⁾ Pullen, C.; Schmitz, P.; Meurer, K; von Bamberg, D. D.; Lohmann, S.; De Castro França, S.; Groth, I.; Schlegel, B.; Möllmann, U.; Gollmick, F.; Gräfe, U.; Leistner, E. *Planta* **2002**, *216*, 162–167.

⁽⁹⁾ Kamigaichi, T.; Ooshima, G.; Tani, H.; Kawamura, Y. (Shionogi Seiyaku KK, Japan). Jpn. Kokai Tokkyo Koho JP 09059249 A 19970304 Heisei.

Scheme 1. Synthesis of Compound 1

was difficult to confirm the structure of our compound by derivatization because we isolated a limited amount of the compound. Therefore, we decided to determine which structure, either 1 or 2, was correct by synthesizing both compounds.

The synthesis of 1 is illustrated in Scheme 1. After O-methylation of commercially available 4-n-hexylresorcinol (3), ortho-lithiation followed by carboxylation gave compound 4.¹⁰ Treating 4 with sulfuryl chloride afforded 3-chloro derivative 5 as the sole product. In regard to the pyrrole moiety, pyrrole-2-carboxylic acid (6) was chlorinated with sulfuryl chloride to produce 4,5-dichloro compound 7. Decarboxylation of 7 with heat in ethanolamine¹¹ and subsequent N-silvlation gave the N-TIPS protected pyrrole 8, which underwent Friedel-Crafts acylation with an acyl chloride derived from 5 to produce β -benzoylpyrrole 9. β -Acylation of **8** was induced by its *N*-TIPS group,¹² which was cleaved during the reaction. In the HMBC spectrum of 10, an *N*-methyl derivative of 9, the correlation peak for H-2' to the N-methyl carbon atom, and the N-methyl proton to C-2' confirmed the position of a benzovl group at C-3' (Figure 1). Finally, demethylation of 9 with BBr₃ allowed us to complete the synthesis of **1**. However, the ¹H and ¹³C

NMR spectra of synthetic 1 were different from those of the compound we isolated and the reported spectra of 1^8 (Table 1).

Table 1. ¹³C NMR Spectral Data of Synthetic and Reported 1 and 2^{a}

	synthetic 1	synthetic 2	reported 1^8	reported 2^9
1	111.6	112.6	112.6	112.6
2	149.6	147.9	148.0	147.9
3	110.3	110.4^c	110.3^{e}	110.3^{g}
4	134.2	133.7	133.7	133.8
5	124.3	124.8	124.8	124.8
6	157.2	157.3	157.3	157.3
7	190.2	182.8	182.8	182.8
2'	122.9	129.0	129.0	128.9
3'	123.9	119.7	119.6	119.8
4'	109.8	110.3^{c}	110.3^{e}	110.3^{g}
5'	114.7	121.6	121.4	121.6
$1^{\prime\prime}$	29.4^{b}	29.4^d	29.4^{f}	29.4^{h}
$2^{\prime\prime}$	29.1^{b}	29.2^d	29.4^{f}	29.3^{h}
3''	29.1^{b}	29.1^d	29.1^{f}	29.1^{h}
$4^{\prime\prime}$	31.7	31.7	31.7	31.7
5''	22.6	22.6	22.6	22.7
$6^{\prime\prime}$	14.1	14.1	14.1	14.1

 a 600 MHz for $^1\mathrm{H}$ and 150 MHz for $^{13}\mathrm{C}$ in pyridine- $d_5.$ b These signals were indistinguishable. c These signals were indistinguishable. d These signals were indistinguishable. f These signals were indistinguishable. h These signals were indistinguishable. h These signals were indistinguishable.

The synthesis of **2** is illustrated in Scheme 2. Carboxylic acid **5** was converted into its acid chloride, and then a Friedel–Crafts reaction with pyrrole gave α -benzoylpyrrole **11**. Chlorination of **11** with sulfuryl chloride afforded 4,5-

dichloro compound 12 selectively. No correlation peak for H-3' to the N-methyl carbon atom and the N-methyl proton to C-3' in the HMBC spectrum of 13, an N-methyl derivative of 12, indicated the position of a benzoyl group at C-2' (Figure 1). Finally, compound 2 was synthesized by treating 12 with BBr₃. The ¹H and ¹³C NMR spectra of synthetic 2 were identical to those of our compound and to the spectra of 1^8 and 2^9 reported in the literature (Table 1). Therefore, the reported structure of celastramycin A (1) is incorrect, and the correct structure for 1 and the compound that we isolated is **2**. The chemical shift (δ_c 182.8) of a carbonyl carbon in synthesized 2 was significantly different from that in synthesized 1 (δ_c 190.2). This fact may be useful to distinguish between α -benzoylpyrrole and β -benzoylpyrrole. In addition, compound 14, an *N*-methyl derivative of 2, was synthesized by treating 13 with BBr₃.

The immunosuppressive effects of 1, 2, 12, and 14 on the imd (immune deficiency) pathway in *Drosophila* innate

immunity were evaluated using the ex vivo *Drosophila* culture system.⁷ Compound **2** showed a potent immunosuppressive effect (IC₅₀ 0.008 μ g/mL), while **1**, **12**, and **14** had no effect. These results indicated that the α -benzoylpyrrole moiety, two phenolic hydroxyl groups, and the imino proton in the structure of **2** are crucial for the biological activity.

The TNF- α signaling pathway in humans plays a critical role in the inflammatory response, sepsis, and rheumatoid arthritis by producing costimulatory molecules, cytokines, chemokines, and adhesion molecules through the activation of NF- κ B,¹³ which shares some similarity with the imd pathway in Drosophila innate immunity. To examine whether compound 2 suppresses the mammalian TNF- α signaling pathway as well as the Drosophila imd pathway, we investigated the effect of 2 on TNF- α -stimulated production of IL-8, a neutrophil chemotactic factor, in human umbilical vein endothelial cells (HUVECs). Compound 2 showed a potent suppressive effect (IC₅₀ $0.06 \,\mu g/mL$) on the production of IL-8, like LL-Z-1640-2¹⁴ (5Z-7-oxozeaenol) (IC₅₀ 0.01 μ g/mL). LL-Z-1640-2 is a highly potent inhibitor of TAK1,¹⁵ which regulates the TNF- α signaling pathway.¹⁶ This result indicates that compound 2 can be used as a lead compound for novel immunosuppressive agents. Further investigations on the structure-activity relationship of this compound and its mechanism of action are in progress.

Acknowledgment. This work was supported in part by a Grant-in-Aid for Scientific Research (No. 18032013, 19310135, 18•5061) from the Ministry of Education, Science, Sports and Culture of Japan; Takeda Science Foundation; The Uehara Memorial Foundation; Program for Promotion of Basic Research Activities for Innovative BioSciences; and Chugai Pharmaceutical Co., Ltd.

Supporting Information Available: Experimental methods and NMR spectra of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL9002306

⁽¹⁰⁾ de Paulis, T.; Kumar, Y.; Johansson, L.; Rämsby, S.; Florvall, L.; Hall, H.; Ängeby-Möller, K.; Ögren, S.-O. *J. Med. Chem.* **1985**, *28*, 1263– 1269.

⁽¹¹⁾ Garg, N. K.; Caspi, D. D.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 9552–9553.

⁽¹²⁾ Bray, B. L.; Mathies, P. H.; Naef, R.; Solas, D. R.; Tidwell, T. T.; Artis, D. R.; Muchowsli, J. M. J. Org. Chem. **1990**, 55, 6317–6328.

⁽¹³⁾ Hehlgans, T; Pfeffer, K. Immunology 2005, 115, 1-20.

⁽¹⁴⁾ Ellestad, G. A.; Lovell, F. M.; Perkinson, N. A.; Hargreaves, R. T.; McGahren, W. J. J. Org. Chem. **1978**, 43, 2339–43.

 ⁽¹⁵⁾ Ninomiya-Tsuji, J.; Kajino, T.; Ono, K.; Ohtomo, T.; Matsumoto,
 M.; Shiina, M.; Mihara, M.; Tsuchiya, M.; Matsumoto, K. J. Biol. Chem.
 2003, 278, 18485–18490.

^{(16) (}a) Takaesu, G; Surabhi, R. M.; Park, K.-J.; Ninomiya-Tsuji, J.; Matsumoto, K.; Gaynor, R. B. *J. Mol. Biol.* **2003**, *326*, 105–115. (b) Lee, T. H.; Shank, J.; Cusson, N.; Kelliher, M. A. *J. Biol. Chem.* **2004**, *279*, 33185–33191.