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Dramatic Mechanistic Change in Acid-Catalyzed Arylation of Azafulleroids
Depending on their Ambident N/C Basicity: Formation of Cyclopentene
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Abstract: Azafulleroid, amino-bridged [5,6]-open fullerene,
has the ambident N/C basicity of the incorporated enamine
moiety. Acid-catalyzed arylation of N-substituted azafulle-
roids proceeded via two types of initial N/C protonation to
perform monoarylation or 1,4-bisarylation for the N-alkyl
substituents and shuttlecock-type pentakisarylation for the
N-phenyl substituent. The dramatic product change was ex-
plained by considering the possible mechanism as well as
the DFT computational results.

Azafulleroid[1] is an attractive [5,6] open fullerene deriva-
tive because its amino-bridged highly twisted double bonds
N�C=C (anti-Bredt olefins) seem to exhibit the enamine-
like ambident reactivity depending on the steric and the
electronic nature. For instance, acid-catalyzed hydrolysis of
tricyclic enamine, 9-methyl-9-azabicycloACHTUNGTRENNUNG[3.3L]non-l-ene, pro-
ceeds through the dual N/C-acidification to give N-protonat-
ed intermediate and double bond protonated product, re-
spectively.[2] However, the possible dual reactivity of azaful-
leroid has not been reported so far, although regioselective
additions to the bridgehead double bonds have been found
for azafulleroids,[3] and their analogues methano-bridged
fulleroid[4] and azahomoazafullerene C59N(NH)R.[5] Here,
we report that the acid-induced arylation of N-substituted
azafulleroids results in monoarylation or 1,4-bisarylation for
N-alkyl substituents, while shuttlecock type pentakisaryla-
tion for N-phenyl substituent. We also explain this dramatic
product change in terms of the substituent effects on the ini-
tial protonation at the N/C basic site of the N�C=C linkage.

First, we preliminary estimated the relevant N/C basicity
of the representative N-methyl- and N-phenylazafulleroids
based on the DFT-computational proton affinity (kcal

mol�1)[6,7] as compared with C60, pyridine, and N,N-dimethy-
lenamine (Figure 1). It was noted that N-methylazafulleroid
showed the most effective proton affinity at the N atom,
while N-phenylazafulleroid at the adjacent C(a) atom of
twisted C=C double bond. Their basicities were slightly
lower than that of the weak base pyridine, but considerably
higher than that of pristine C60, indicating some possible re-
activity with acids, in contrast to the lower acid-reactivity of
C60. The comparatively reduced N basicity of N-phenylaza-
fulleroid is explained by the p-delocalization through the
phenyl ring. Therefore, we can assume that N-alkylazafulle-
roids preferably cause the N-protonation, whereas N-aryla-
zafulleroids the C(a)-protonation.

Considering these computational results, we prepared
three alkyl azafulleroids 1 a–c via thermal denitrogenation
of triazolinofullerene[8] and phenylazafulleroid 1 d according
to the previously reported methods.[1a,d] Acid-catalyzed reac-
tion of butyrate-substituted 1 a in the presence of various ar-
omatic compounds including thiophene and pyrene gave the
corresponding 4-monoarylated products 2 a–e. This reaction
involves acid-induced C�N bond cleavage followed by the
nucleophilic arylation and the closure of [5,6] open ring
(Table 1). The stronger protic acid CF3SO3H (TfOH) was
practical for this arylation, similarly to the acidic arylation
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Figure 1. Proton affinities of azafulleroids, pyridine, N,N-dimethylena-
mine, and C60 (B3LYP6-31G** including zero point energy, in vacuum,
kcal mol�1). Bold value is the largest energy.
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of aziridinofullerene;[9] while the weaker CH3SO3H (MsOH)
required far more excess amount of acid. The Lewis acid
BF3

[10] provided relatively low yield of 2 a due to the forma-
tion of unidentified multiadducts. AlCl3 under the anhy-
drous condition also gave a fair amount of 2 a rather than
hydroarylated adducts, which were major products in the
similar reaction of fullerene,[11] probably because of the ab-
sence of hydrolyzed HAlCl4.

Interestingly, the reaction at 100 8C provided 1,4-bisary-
ladduct 3 a probably via the second arylation of monoaryl-
fullerenyl cation arising from the acid-induced deamination
of 2 a (Scheme 1). This elevated temperature reaction is
useful for the cross arylation as represented in Scheme 2.
Although the similar acid-catalyzed homobisarylation was
also reported for the [6,6] closed tosyl aziridinofullerene[9,10]

and fullerene epoxide,[12] these fullerenes cannot be applied
for the stepwise cross arylation because of the lability of pri-
mary monoarylated products. So far, such cross arylation

has been achieved via relatively stable 1,4-arylfullerenols.[13]

Therefore, practical stability of monoarylated 2 a–e can be
ascribed to the less facile leaving group of protonated butyl-
amine than tosyl amine.

On the other hand, benzyl-substituted 1 b,c underwent the
preferential acid-induced intramolecular Friedel–Crafts ary-
lation of benzyl groups to afford tetrahydroisoquinolinoful-
lerenes 5 b,c in excellent yields (Scheme 3). Particularly, tri-

methoxybenzyl-substituted 1 c was activated even with
weaker acid MsOH. Such acid-catalyzed intramolecular ary-
lation of iminofullerenes[14] can be useful pathway for ob-
taining heterocyclic fullerenes.

In marked contrast to the alkyl- and benzylazafulleroids
1 a–c, phenylazafulleroids 1 d in o-xylene solvent under the
excess TfOH demonstrated the elimination of phenylamino
substituents and the formation of shuttlecock-type pentaki-
sarylfullerene 6[15] without forming dihydroindole product[9]

by the intramolecular arylation (Scheme 4). The 1H NMR of

Scheme 1. 1,4-Diarylation of 1 a at elevated temperature. TfOH =

CF3SO3H. o-DCB = o-dichlorobenzene.

Scheme 2. 1,4-Cross arylation of 2a by stepwise treatment.

Scheme 3. Intramolecular Friedel–Crafts reaction of benzyl-substituted
azafulleroids 1b,c. MsOH =CH3SO3H.

Scheme 4. Acid-catalyzed pentakisarylation of phenylazafulleroids 1 d.

Table 1. Acid-catalyzed arylation of azafulleroid 1 a with various aromat-
ic compounds (Ar-H) by several protic and Lewis acids.

Various Ar-H (10 equiv)
with TfOH (5 equiv)

t [h] Yield of 2 [%][a]

3.5 86 (2 a)

3 80 (2 b)

1.3 49 (2 c)

2.5 98 (2 d)

2 94 (2 e)

Toluene (10 equiv)
with various acids

t [h] Yield of 2 a [%][a]

TfOH (1 equiv) 5 no reaction
TfOH (5 equiv) 3.5 86

MsOH (10 equiv) 20 no reaction
MsOH (50 equiv) 3 99

BF3·Et2O (5 equiv) 20 27
AlCl3 (10 equiv) 29 74

[a] Yield of isolated product.

Chem. Asian J. 2014, 9, 3084 – 3088 � 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim3085

www.chemasianj.org Naohiko Ikuma et al.



6 showed multiplet 3H peaks at 4.6–4.7 ppm, and 13C NMR
indicated Cs symmetry of fullerene sphere with ca. 30 sp2

peaks (along with 6 peaks of o-xylene) and five sp3 peaks.
The XRD structural analysis[16] apparently exhibited the
pentakisarylation around the central cyclopentenyl ring (Fig-
ure 2 b) characterized by one short sp2 type C�C bond
(1.34 �) and the other longer sp3 type C�C bonds (1.49–
1.59), in consistent with the calculated lengths by B3LYP/6-
31G(d) (Ar= Ph, Figure 2 c)[7] and the analogous trihydroxy
cyclopentene ring of C60(OH)4ACHTUNGTRENNUNG(OiPr)2ACHTUNGTRENNUNG(OOtBu)2.

[17] Thus, the
present cyclopentenyl pentakisarylated adduct 6 somewhat
structurally differs from the previously reported cyclopenta-
dienyl pentakisarylated adducts (Figure 2 d) derived from
the nucleophilic addition of Grignard reagents under copper
catalysts.[18] By comparison of the DFT structures (Figure 2 c
and 2 d), compound 6 is characterized by the appreciable
opening of three aryl petals (7.15 vs 6.74 �) due to the adja-
cent protonated sp3 carbons. This flower opening will bring
about the different packing features and the electric proper-
ties as compared to the more symmetric cyclopentadienyl
adducts.

We ascribed the dramatic product change to the change
of the initial protonation sites based on the above DFT cal-
culation (Figure 1). To know the structural and electric dif-
ference between the protonated intermediates of alkyl/aryl
azafulleroids, we have carried out the UV-Vis-NIR spectro-
scopic measurements of 1 a,d in neat TfOH vs in o-DCB. In
TfOH, alkylazafulleroid 1 a showed three broad bands in
the range of 500–650, 800–900, and 1050–1100 nm (Fig-
ure 3 a). These absorption bands, though slightly red shifted,

are similar in shape to those of chloromethylfullerenyl
cation.[19] On the other hand, aryl azafulleroid 1 d provided
a characteristic sharp peak at 960 nm in TfOH (Figure 3 b).
Although determination of the detailed cationic structures
requires NMR measurements and/or some computational
simulations for the exciting species, the spectra of 1 d indi-
cated the unprecedented cationic intermediate derived from
the initial protonation at the C(a) atom of twisted bridge-
head double bond. Such C-protonated cation of aryl azaful-
leroid should be a key intermediacy for 6. In fact, arylation
of alkyl azafulleroid 1 a with o-xylene under the same reac-
tion condition of 1 d gave a mixture of multiarylated prod-
ucts not containing 6 (Figure S1). In this condition, 1,4-bi-
sadduct similar to 3 can be formed, but further arylation
occurs not regioselectively, because of no specific basic site
in the 1,4-bisadduct.

Finally, we describe a plausible mechanism for the acid-
catalyzed arylation of azafulleroids as shown in Scheme 5.
For alkylazafulleroid 1 a (R= (CH2)3COOMe, path a), the
ammonium ion A by the protonation of nitrogen suffers the
cleavage of one bridged enamine C�N bond and the [5,6]
ring closure to generate fullerenyl cation B.[13, 19] The nucleo-
philic attack of aromatic compounds preferably occurs at
the less hindered para-position[9,10, 12,13] to afford 1,4-mono-
arylated aminofullerenes 2 a-e. However, benzylazafulleroids
1 b,c (R=CH2Ar) become tetrahydroisoquinolinofullerenes
5 b,c via an intramolecular nucleophilic cyclization of the
corresponding fullerenyl cation B at the adjacent ortho-
carbon. On the other hand, due to the reduced N-basicity by
p-conjugation, arylazafulleroid 1 d (R=Ar, path b) would
exhibit the acid-catalyzed arylation at the twisted bridge-
head C(a)=C(b) double bonds by way of the favorable pro-

Figure 2. a,b) Crystal structure of 6 with thermal ellipsoids set at 50%
probability; side view (a), top view (b). c,d) DFT-calculated (B3LYP/6-
31G*) structures[6] of cyclopentenyl (C60H3Ph5, CS symmetry, (c)) and cy-
clopentadienyl (C60HPh5, CS symmetry, (d)) pentakisphenylfullerenes.
Solvent molecule (for (a,b)) and backside atoms (for (b–d)) are omitted
for clarity. The values of the central pentagon (b–d) indicate their C�C
bond lengths (�) and values of outer pentagon (c,d) indicate distances
(�) between C4 ACHTUNGTRENNUNG(para) carbon atoms of the five phenyl substituents.

Figure 3. UV-Vis-NIR spectra (at rt) of a) 1a and b) 1 d in TfOH (solid
line) and in o-DCB (dotted line).
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tonation at the C(a) and the following arylation at the C(b).
The protonated cation C seems to be responsible for the
sharp absorption over 960 nm (Figure 3 b). The second pro-
tonation/arylation will occur at the other bridgehead double
bond, giving rise to bisarylated product E. The bisadduct E
would be protonated at the N atom because the two intro-
duced hydrogens and aromatic rings inhibit the p-conjuga-
tion between the nitrogen and substituent Ph ring to en-
hance the N basicity (the dihedral angle between Ph and
[5,6]-bridge is 458 by DFT, Figure S2). Then it undergoes
the SN2’ (or SN1) displacement by the third aromatic nucleo-
phile leading to the bridge-opened trisarylated adduct G.
The fourth arylation (in H) will be accompanied by the
acid-catalyzed deamination, nucleophilic arylation at the
conjugated C(4) atom, and electron reorganized transannu-
lar [5,6] ring-closure to afford tetrakisarylated adduct I. The
final protonation at the torsionally strained C(6) atom is es-

sential for the final arylation at the adjacent carbocation
center C(5). As a result, pentakisarylation was performed in
a clockwise/counterclockwise direction around the central
pentagon ring depending on which bridge (C�N bond) of F
is first cleaved by the SN2’ reaction.

In conclusion, we have found that the acid-catalyzed ary-
lation of variously N-substituted [5,6] open azafulleroids
much depended on the nature of the substituents R (=alkyl,
benzyl, and phenyl group), because the initial protonation
of the incorporated bridged enamine framework varies with
the substituents. Alkylazafulleroid brought about the mono-
arylation via the [5,6] ring closure and the protonated ami-
nobridge opening. However, benzylazafulleroid gave rise to
tetrahydroisoquinolinofullerene via the preferential intra-
molecular cyclization. On the other hand, phenylazafulleroid
exhibited the protonation at the most strained Ca carbon
and underwent the multi SN2’ type reactions to perform the
metal-free pentakisarylation around the central cyclopen-
tene ring.
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