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Asymmetric synthesis of the erythrinan alkaloid system using a
chiral lithium amide base desymmetrisation as the key step
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Abstract—A new asymmetric approach to the erythrinan alkaloid system is described, which involves chiral base desymmetrisation
of a ring fused imide and a 6-exo-trig radical cyclisation as the key steps.
© 2003 Elsevier Ltd. All rights reserved.

The pyrrolo[2,1-a ]isoquinoline structure is a significant
motif present in the erythrina alkaloid group,1 as well as
representing a biologically active system in its own right.2

Lete and co-workers have proposed that unsaturated
pyrrolo[2,1-a ]isoquinolones of general structure 2 could
represent useful precursors to the complete erythrinan
skeleton 1 by cyclisation of the functionalised side chain
onto the lactam ring in a Michael type fashion.3–5

Although this research group has published a series of

studies aimed at achieving this objective, it has not been
accomplished to date, as far as we are aware.

We became interested in the asymmetric synthesis of
structures 2, since it seemed possible to access such
intermediates by our recently developed chiral lithium
amide base-mediated desymmetrisation of ring-fused
imides.6,7 Our approach is outlined in retrosynthetic form
in Scheme 1.

Scheme 1.
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Scheme 2.

Access to the required intermediates 2 would be by
retro-Diels–Alder reaction of the cyclopentadiene
adduct 3, which in turn would arise by cyclisation of 4
via an N-acyliminium ion intermediate. Compound 4
would be prepared by addition of a suitable Grignard
reagent to imide 5, which would be available in high
levels of enantiopurity from the corresponding simple
meso-imide by application of our earlier chiral base
chemistry.

In the forward sense we expected that the stereochemi-
cal control would arise from initial Grignard reaction
distal to the controlling trimethylsilyl group of 5, fol-
lowed by exo-selective cyclisation of the aromatic
appendage onto the tricyclic nucleus. The final cyclisa-
tion of 2 to give 1 appeared constrained to give only a
single cyclohexane product with respect to the new ring
fusion. Since Lete and co-workers had demonstrated
the viability of this type of N-acyliminium ion cyclisa-
tion and retro Diels–Alder process,3–5 the key issues to
be addressed were the nature of the functionality FG
and choice of reaction mode for the final cyclisation.

This approach would enable a very rapid asymmetric
access to the key pyrrolo[2,1-a ]isoquinolones, and
might allow us to incorporate a choice of side chains
appropriate for completion of the erythrinan skeleton.
Also, the chiral base approach would allow the prepa-
ration of either enantiomeric series. Here we describe
the successful implementation of this plan, which has
resulted in a short, completely stereocontrolled route to
a functionalised tetracyclic intermediate with great
potential for synthesis of naturally occurring alkaloids.

Chiral base reaction of imide 6 using the bis-lithium
amide 7 gave the desired silylated product (−)-8 in 90%
yield and 91% ee, Scheme 2.8

At this stage the absolute configuration of 8 was
assigned by analogy to our previous work on the
corresponding N-phenyl imide,6 but this was later
confirmed by correlation with known compounds (see
below). Reaction of excess Grignard reagent with imide
8 occurred with very high regioselectivity (none of the
minor regioisomer could be observed by 1H NMR) to
give hydroxylactam intermediates 9 or 10. Cyclisation
of these intermediates was best accomplished after desi-
lylation, to give the pentacyclic products 11 and 12 in
good yields and with complete diastereocontrol. In the
case of 10 it was especially significant that clean cyclisa-
tion of the aromatic group occurred onto the N-
acyliminium intermediate, without interference from
the alkenyl side-chain that would lead to spiro-fused
products. This was a key aspect of our choice of a
relatively unreactive side chain, since Lete and co-work-
ers had previously demonstrated that compounds with
an alkenylsilane side chain show the unwanted (in this
context) spiro mode of cyclisation.

The identity of intermediate 11 was then confirmed by
Diels–Alder cycloreversion by heating under reduced
pressure (Scheme 3).

This gave the known unsaturated lactam 13, which had
spectroscopic data in accord with those published by
Lete and co-workers. We were also able to confirm our

Scheme 3.
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Scheme 4.

assignment of absolute stereochemistry by comparison
of [� ]D data.9

With the key stereochemical features of the synthesis
established we then transformed the lactam with the
appended unsaturated side chain as shown in Scheme 4.

Retro-Diels–Alder of 12 reaction proceeded to give 14,
the side chain of which was then cleaved by a conven-
tional two-step oxidation, to give aldehyde 15. Lete and
co-workers had previously conceived a ring closure of
this type of system via a dithiane anion, but we chose
instead to conduct a reductive cyclisation under free
radical conditions.

Thus, exposure of aldehyde 15 to tributyltin hydride,
under conditions described by Muller et al. for cyclisa-
tion of 5�-aldehyde nucleosides led efficiently to the
desired hydroxy lactam 16 as a mixture of
diastereomers at the newly formed carbinol centre.10–12

This outcome was especially welcome, since successful
6-exo-trig closures are rare compared to the 5-exo-trig
variants, and is probably due in part to the lack of a
competing 1-5 hydrogen atom abstraction process in
our system.

In order to transform the mixture of alcohols 16 (ca.
3:1 mixture) into a single substance we also carried out
the oxidation of the separated compounds, each of
which gave the same ketone product 17.13,14

The formation of 16 represents the completion of the
full erythrinan skeleton in a highly stereocontrolled
fashion and a relatively short overall sequence (eight
steps from simple imide 6). Naturally occurring alka-
loids (which are of the opposite enantiomeric series to
the ones made here), often incorporate unsaturation in
the A and B rings, e.g. erysotrine 18 and erysotamidine
19, and may also possess C-11 oxygenation.1

Considering the well-established repertoire of transfor-
mations established for intermediates related to these
compounds, we believe that the functional group ‘han-
dles’ installed in our intermediates should be attractive
for the synthesis of natural products and their rela-
tives.15 Thus, we anticipate that the strategy described
above should be a fruitful source of enantiomerically
pure alkaloids of this family. Extension of this desym-
metrisation strategy to include other types of alkaloid is
planned.
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