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Summary: The reaction of decamethyldizincocene (Cp*2Zn2, 1)
with MesnacnacH proceeds with protonation of the Cp*
substituent and subsequent formation of the zinc-zinc-bonded
complex (Mesnacnac)2Zn2 (3).

The epoch-making synthesis of decamethyldizincocene
(Cp*2Zn2, 1),1 the first stable molecular compound containing
a central Zn-Zn bond with the Zn atoms formally in the +1
oxidation state, has been the starting point of intensely growing
research activity on low-valent organozinc complexes.2 Since
the report by Carmona et al. in 2004, six new Zn-Zn-bonded
complexes of the type R2Zn2 containing sterically encumbered
organic substituents (R ) EtMe4Cp,3 [(2,6-i-Pr2C6H3)N(Me)C]2-
CH (Dippnacnac),4 2,6-(2,6-i-Pr2C6H3)C6H3,

5 [(2,6-i-Pr2C6H3)-
N(Me)C]2,

6 Me2Si[N-(2,6-i-Pr2C6H3)]2,
7 1,2-bis[(2,6-diisopro-

pylphenyl)imino]acenaphthene8) have been structurally char-
acterized. Moreover, the first molecular compounds containing
Cd-Cd5b,9 and Mg-Mg10 bonds have been described. Except
for 1, which was initially prepared by reaction of Cp*2Zn and
Et2Zn, the new metal-metal-bonded complexes R2M2 were
synthesized by a procedure analogous to the Wurtz coupling
reaction of the corresponding halide-substituted compounds
RMX (X ) Cl, Br, I).

Remarkably, even though the nature of the Zn-Zn bond, in
particular that of the Cp-substituted derivatives, has been
theoretically investigated in detail,11 only very limited informa-
tion on the chemical reactivity of such compounds is available.
Reactions of 1 with H2O, t-BuOH, and NCXyl as reported by
Carmona et al.1 only proceeded with disproportionation and
subsequent formation of elemental zinc and the corresponding
Zn(II) complexes, whereas reactions with R2Zn (R ) Me, Mes)
yielded the corresponding half-sandwich complexes Cp*ZnR.
Moreover, the reaction with iodine occurred with oxidation and
subsequent formation of Cp*2Zn and ZnI2,

3 whereas no reaction
was observed with H2, CO, and CO2. Reactions with Lewis
bases such as NMe3, pyridine, PMe3, and others were unsuc-
cessful until we only very recently reported on the reaction of
1 with the strong Lewis base 4-(dimethylamino)pyridine (dmap),
yielding Cp*Zn-Zn(dmap)2Cp* (2), the first Lewis acid-base
adduct of dizincocene.12 Unexpectedly, the two dmap molecules
were found to bind in a geminal binding mode to only one Zn
atom. At the same time, Jones et al. reported on reactions of
several Lewis bases with a low-valent organomagnesium(I)
complex, yielding the corresponding vicinal bis adducts.13

Herein, we report on the reaction of 1 with [((2,4,6-
Me3C6H2)N(Me)C)2CH]H (MesnacnacH) containing an acidic
N-H group.

Results and Discussion

Solutions of Cp*2Zn2 (1) and MesnacnacH in n-pentane were
combined at 0 °C, and the resulting solution was stirred for
12 h. Mesnacnac2Zn2 (3) precipitated as a colorless crystalline
solid, which was isolated by filtration. Careful evaporation of
the solvent of the remaining mother liquor under vacuum yielded
a waxy solid, which was dispersed in 4 mL of cold pentane
(0 °C) and then filtered. Resonances due to the formation of
Cp*H were clearly observable in the filtrate, whereas the
remaining white solid showed resonances of additional com-
plex 3.

3 is soluble in organic solvents such as hexane, toluene, and
Et2O. The 1H NMR spectrum of 3 shows resonances due to the
organic groups of the Mesnacnac substituent. No indication for
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the formation of a zinc hydride species was found in the 1H
NMR of 3, and the IR spectra also showed no absorption peak
due to a Zn-H group in the typical range from 1600 to 1900
cm-1.14 Moreover, no disproportionation reaction with formation
of elemental zinc and (Mesnacnac)2Zn was observed.15

Single crystals of 3 suitable for an X-ray structure determi-
nation were obtained from a solution in n-pentane/toluene at
-30 °C (Figure 1). The central structural motif of 3 is the
Zn-Zn bond (2.3813(8) Å), which is, surprisingly, slightly
elongated compared to that observed for the sterically more
hindered complex Dippnacnac2Zn2 (6; 2.3586(7) Å)4 containing
the larger Dipp substituents. The torsion angle (N1-Zn1-Zn1′-
N1′ ) 42.8°) observed for 3 is significantly smaller compared
to that of 6 (86.6°). The Zn-Zn bond length previously observed
for R2Zn2 complexes ranges from 2.29 to 2.35 Å, whereas
comparable Zn-Zn bond lengths were observed for the doubly
reduced diimine derivative (R ) [(2,6-i-Pr2C6H3)N(Me)C]2;
2.3994(6) Å)6 and the very recently reported Lewis acid-base
adduct Cp*Zn-Zn(dmap)2Cp* (2; 2.4184(4) Å).12 The C3N2Zn
rings in 3 are almost planar with the Zn atoms slightly out of
the plane, as was previously observed in Dippnacnac-
ZnN(SiMe3)2

16 and 6.4

DFT calculations were performed to improve the understand-
ing of the formation and the bonding situation of 3. The reaction
of 1 with MesnacnacH is exothermic (-48 kcal/mol), and the
calculated structure of 3 is very similar to the calculated structure
of Dippnacnac2Zn2 (6).4 The Zn atoms in 3 carry a partial charge
of 0.86 (0.85 for 6), and the Zn-Zn bond has mainly s character
(s 94.5%, p 4.25%, d 1.29%), as was observed for 6. The
computed Zn-Zn bond distance of 2.378 Å agrees almost

perfectly with the experimental value observed for 3 (2.3813(8)
Å) as well as the calculated value for 6 (2.392 Å).

The use of Cp*2Zn2 (1) as the starting reagent for the synthesis
of novel low-valent organozinc complexes may open a general
access to this interesting class of compounds, including com-
plexes which cannot be obtained from procedures analogous to
the Wurtz coupling reactions. For instance, several attempts to
synthesize 3 by reduction reactions of MesnacnacZnX (X )
Cl, I)17 with different reducing agents (Na, K, K-graphite,
Na-napthalenide) only resulted in the formation of Zn(II)
complex (Mesnacnac)2Zn (5) in high yield.15 Reactions of 1
with different substituents containing acidic H atoms are
currently under investigation.

Experimental Section

General Comments. All manipulations were performed under
an Ar atmosphere. Solvents were dried over Na/K and degassed
prior to use. 1H and 13C{1H} NMR spectra were recorded on a
Bruker Avance 500 spectrometer and are referenced to internal
C6D5H (1H, δ 7.154; 13C, δ 128.0). The IR spectrum of 3 was
recorded on a ALPHA-T FT-IR spectrometer equipped with a
single-reflection ATR sampling module. The melting point of 3
was measured in a sealed capillary and was not corrected. Elemental
analyses were performed at the Elementaranalyse Labor of the
University of Essen.

Preparation of (Mesnacnac)2Zn2 (3). A 0.32 g portion of
MesnacnacH (1.0 mmol) dissolved in 5 mL of n-pentane was added
at 0 °C to a solution of 0.20 g of Cp*2Zn2 (0.5 mmol) in 10 mL of
n-pentane and the mixture stirred for 2 h at -4 °C. 3 precipitated
as a colorless crystalline solid, which was isolated by filtration.
Yield: 0.12 g (0.38 mmol, 40%). Melting point: 240 °C. Anal.
Found (calcd) for C46H58N4Zn2 (797.73 g/mol): H, 7.21 (7.33); C,
69.07 (69.26); N, 6.94 (7.02). 1H NMR (500 MHz, C6D6, 25 °C):
δ 1.55 (s, 6 H, CMe), 1.84 (s, 12 H, R o-H), 2.29 (s, 6H, R p-H),
4.86 (s, 1 H, CH), 6.89 (s, 4H, m-H). 13C{1H} NMR (125 MHz,
C6D6, 25 °C): δ 19.2 (R o-C), 21.1 (R p-C), 22.6 (CCH3), 95.5
(CH), 129.0 (m-C), 131.3 (o-C), 132.8 (p-C), 146.7 (CN), 164.7
(CCH3). IR: ν 2905, 1532, 1450, 1386, 1259, 1200, 1146, 1013,
852, 800, 741, 567, 497, 388 cm-1.
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Submitted for publication.

(16) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.;
Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738–
8749.

(17) Schulz, S.; Eisenmann, T.; Westphal, U.; Schmidt, S.; Flörke, U.
Z. Anorg. Allg. Chem., in press. (18) Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467.

Figure 1. Solid-state structure of 3. Thermal ellipsoids are shown
at 50% probability levels; H atoms are omitted for clarity. Selected
bond lengths (Å) and angles (deg): Zn1-Zn1a ) 2.3813(8),
Zn1-N1 ) 2.005(2), Zn1-N2 ) 2.000(3), N1-C1 ) 1.336(4),
N1-C11 ) 1.446(4), N2-C3 ) 1.331(4), N2-C21 ) 1.458(4),
C1-C2 ) 1.396(4), C2-C3 ) 1.416(4); N1-Zn1-N2 ) 93.8(2),
N1-Zn1-Zn1a ) 133.0(1), N2-Zn1-Zn1a ) 133.3(1).

Scheme 1. Lewis Acid-Base Adducts of Low-Valent Org-
anozinc and Organomagnesium Complexes

Scheme 2. Synthesis of Complex 3
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Single-Crystal X-ray Analysis. Data were collected on a Bruker
AXS SMART APEX CCD diffractometer, (Mo KR radiation, λ )
0.710 73 Å; T ) 173(2) K). The structure was solved by direct
methods (SHELXS-97)18 and refined by full-matrix least squares
on F2. A semiempirical absorption correction was applied. All non-
hydrogen atoms were refined anisotropically, and hydrogen atoms
were refined by a riding model (SHELXL-97, Program for Crystal
Structure Refinement).19

Data for 3: C46H58N4Zn2, M ) 797.73, colorless crystal (0.15 ×
0.11 × 0.04 mm), monoclinic, space group P2/n, a ) 13.4527(10)
Å, b ) 8.3904(7) Å, c ) 19.4814(14) Å, � ) 103.768(6), V )
2135.8(3) Å3, Z ) 2, µ ) 1.158 mm-1, Fcalcd ) 1.240 g cm-3, 16 314
reflections (2θmax ) 50°), 3753 unique reflections (Rint ) 0.0809),
243 parameters; largest maximum/minimum in the final difference
Fourier synthesis 0.269/-0.336 e Å-3, maximum/minimum trans-
mission 0.9552/0.8455; R1 ) 0.0428 (I > 2σ(I)), wR2 (all data)
) 0.0782.

Computational Calculations. DFT calculations were carried out
with the Gaussian03 suite of programs (M. J. Frisch, et al., Gaussian
03, Revision D.02; Gaussian Inc., Pittsburgh, PA, 2003; the
complete reference is given in the Supporting Information). The
molecular structure of 3 was obtained by performing a complete
energy optimization of all geometric parameters at the b3lyp/svp
level; SVP is the split-valence basis set with the additional
polarization functions of Ahlrichs et al. Atomic charges of 3, which
were calculated from NBO population analyses, are given in the
Supporting Information.
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