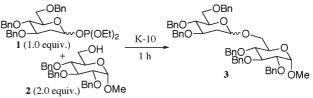
Environmentally Benign and Stereoselective Construction of 2-Deoxy and 2,6-Dideoxy-β-glycosidic Linkages Employing 2-Deoxy and 2,6-Dideoxyglycosyl Phosphites and Montmorillonite K-10


Hideyuki Nagai, Shuichi Matsumura, and Kazunobu Toshima* Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522

(Received June 19, 2002; CL-020511)

The β -stereoselective glycosidations of 2-deoxy- and 2,6dideoxyglycosyl diethyl phosphites with alcohols using a heterogeneous and environmentally benign solid acid, montmorillonite K-10, have been developed.

Highly effective, simple and environmentally benign glycosidations have attracted considerable attention in current synthetic organic chemistry related to both biomolecules and functional materials.¹ Some of the challenges for the greening of chemical glycosidations may include the use of a heterogeneous and reusable solid acid as the activator. On the other hand, deoxy sugars frequently appear in the glycosidic components of the bioactive substances.^{2,3} Among them, 2-deoxyglycosides including 2,6-dideoxyglycosides are some of the most common and important, and found in many biologically attractive natural products. However, the direct and stereoselective β -glycosidation of a 2-deoxy sugar is quite difficult due to the anomeric effect and the lack of the stereodirecting anchimeric assistance from the C-2 position.^{1c,4,5} The most extensively developed strategy for the synthesis of 2-deoxy- β -glycosides utilizes donors with equatorial C-2 heteroatom substituents that are reductively removed after the glycosidation event. Furthermore, most of these methods use a homogeneous Lewis acid as the activator, which contaminates the reaction solvent and can not be reused. Therefore, the development of direct and stereoselective β glycosidations of 2-deoxy sugar in an environmentally compatible manner is of particular interest. Herein, we report the direct and stereoselective glycosidations of the 2-deoxy- and 2,6dideoxyglycosyl diethyl phosphites^{6,7} with alcohols using a heterogeneous and environmentally friendly solid acid, montmorillonite K-10, for the stereoselective synthesis of the 2deoxy- and 2,6-dideoxy- β -glycosides.

In our previous studies, we have demonstrated the novel and stereoselective β -glycosidations of a benzyl-protected glucopyranosyl diethyl phosphite and alcohols using montmorillonite K-10 with a non-participating group.⁸ Therefore, based on these results, we first examined the glycosidations of the totally benzylated 2-deoxyglucopyranosyl diethyl phosphite **1** and an alcohol **2** using montmorillonite K-10⁹ under several conditions. These results are summarized in Table 1. It was unfortunately found that the glycosidation of **1** ($\alpha/\beta = 80/20$) and **2** under the conditions similar to the optimized conditions⁸ for the benzylated glucopyranosyl diethyl phosphite gave the 2-deoxyglucopyranoside **3** in low yield with low stereoselectivity (entry 1 in Table 1). However, when the glycosidation was performed at a lower temperature, -78 °C, a better yield and β -stereoselectivity were obtained (entry 2 in Table 1). In addition, it was found that the
 Table 1. Glycosidations of 1 and 2 using montmorillonite K-10 under several conditions

Entry	K-10 /wt%	Solvent	Temp. /°C	Yield /%	α/β Ratio ^a
1	100	CH ₂ Cl ₂ /MeCN=10:1	-20	58	43/57
2	100	CH ₂ Cl ₂ /MeCN=10:1	-78	78	26/74
3	100	CH ₂ Cl ₂	-78	87	23/77
4	100	EtCN	-78	81	32/68
5	100	PhMe	-78	69	25/75
6	100	THF	-78	84	47/53
7	100	Et ₂ O	-78	87	19/81
8	200	Et ₂ O	-78	82	24/76
9	50	Et ₂ O	-78	80	21/79
10	20	Et ₂ O	-78	63	21/79
11	100	Et ₂ O	-50	80	31/69
12	100	Et ₂ O	-20	77	44/56

^a α : β Ratios were determined by HPLC analysis.

glycosidations of **1** and **2** in Et₂O at -78 °C effectively proceeded to afford **3** in high yield with good β -stereoselectivity (entry 7 in Table 1). Et₂O was shown to be superior to the other solvents (entries 3–7 in Table 1) with respect to both the chemical yield and unusual β -stereoselectivity. Moreover, it was confirmed that the chemical yield and β -stereoselectivity were highly dependent on the amount of montmorillonite K-10 and the reaction temperature. Thus, the highest chemical yield and β -stereoselectivity were realized when 100 wt% montmorillonite K-10 was used in Et₂O at -78 °C for 1 h (entries 7–12 in Table 1). The optimized conditions for selectively giving the 2-deoxy- β glucopyranoside significantly differed from that for the previously reported β -stereoselective glucosylation.

With these favorable new results, next our attention turned to the glycosidations of a typical 2,6-dideoxy sugar, olivose, because β -olivoside is a very common and important 2,6dideoxyglycoside.^{2,3} Therefore, we examined the glycosidations of the benzylated olivosyl diethyl phosphites **4** ($\alpha/\beta = 86/14$), **5** ($\alpha/\beta = 72/28$), **6** ($\alpha/\beta = 89/11$) and **7** ($\alpha/\beta = 79/21$) with **2**. These results are summarized in Table 2. It was found, in this

Table 2. 10	Glycosidations of 4–7 and 2 using montmorillonite K-
Me	Ме

R ² O R ¹ O We OP(OEt) ₂ K (100				$10 R^2 O$ wt%) R ¹	Me	0~_	
	4-7 (1.0 equiv.) BnO BnO 2 (2.0 equiv.) BnO OMe (1.0 equiv.) BnO BnO BnO BnO BnO BnO BnO BnO BnO BnO				BnO BnO BnO OMe		
	Entry	Donor	R^1	R^2	Yield /%	α/β Ratio ^a	
	1	4	Bn	Bn	76	20/80	
	2	5	Bn	Bz	92	10/90	
	3	6	Bz	Bn	72	22/78	
	4	7	Bz	Bz	68	16/84	

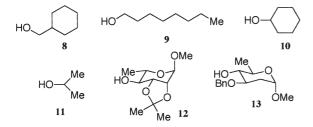

^a $\alpha:\beta$ Ratios were determined by HPLC analysis.

Table 3. Glycosidations of 1 and 5 with 2, 8–13 usingmontmorillonite K-10

K 10

1 or 5 + (1.0 equiv.)	2 , 8-13 (2.0 equiv)	$\frac{(100 \text{ wt}^{6})}{\text{Et}_{2}\text{O}}$ -78 °C, 3	► 2,6-di	2-Deoxy or 2,6-dideoxyglycosides	
Entry	Donor	Accepter	Yield /%	α/β Ratio ^a	
1	1	2	87	19/81	
2	1	8	93	17/83	
3	1	9	94	14/86	
4	1	10	97	22/78	
5	1	11	96	23/77	
6	1	12	88	21/79	
7	1	13	70	29/71	
8	5	2	92	10/90	
9	5	8	86	14/86	
10	5	9	90	10/90	
11	5	10	95	19/81	
12	5	11	86	17/83	
13	5	12	89	17/83	
14	5	13	82	15/85	

^c $a:\beta$ Ratios were determined by HPLC analysis.

case, that the chemical yield and stereoselectivity were significantly dependent on the protecting groups of the C-3 and 4 hydroxy groups of the donors, and the C-4 acyl group significantly assisted the β -stereoselectivity by the participating

effect.¹⁰ Thus, the glycosidations of **5** and **2** using 100 wt% montmorillonite K-10 in Et₂O at -78 °C for 1 h effectively proceeded to furnish the corresponding olivosides in high yield with high β -stereoselectivity (entry 2 in Table 2).

Based on these results, the glycosidations of 1 and 2 using other primary and secondary alcohols 8–13 were next examined. From the results summarized in Table 3, it was found that all the glycosidations of 1 and 5 with 8–13 using 100 wt% montmorillonite K-10 in Et₂O at -78 °C for 1 h, as well as that of 2, effectively proceeded to give the corresponding 2-deoxy- β -glucopyranosides and β -olivosides, respectively, in high yields with good stereoselectivities.

Finally, we tested the solid acid recycling in the glycosidations of **1** and **8**. After filtration, washing with chloroform and methanol, and heating at $100 \degree C/1$ mmHg for 12 h, the montmorillonite K-10 was reused for at least three times and showed high yields and stereoselectivities; 1st (93%, 17/83), 2nd (89%, 17/83), 3rd (89%, 17/83), and 4th (87%, 17/83).

A general experimental procedure: To a stirred solution of the glycosyl phosphite 1 ($\alpha/\beta = 80/20$, 0.1 mmol) or 5 ($\alpha/\beta = 72/28$, 0.1 mmol) and an alcohol (0.2 mmol) in dry Et₂O (1 ml) was added montmorillonite K-10 (100 wt% to the glycosyl donor 1 or 5). After stirring for 1 h at -78 °C, the mixture was filtered and the filtrate was concentrated in vacuo. Purification of the residue by flash column chromatography gave the 2-deoxyglucopyranosides or the olivosides.

References and Notes

- Review: K. Toshima and K. Tatsuta, *Chem. Rev.*, **93**, 1503 (1993); G.-J. Boons, *Tetrahedron*, **52**, 1095 (1996); B. G. Davis, *J. Chem. Soc.*, *Perkin Trans.* 1, **2000**, 2137.
- 2 P. Jütten and R. Greven, in "Polysaccharides in Medicinal Applications," ed. by S. Dumitriu, Marcel Dekker, New York (1996), p 339.
- 3 A. Kirschning, A. F.-W. Bechtold, and J. Rohr, *Top. Curr. Chem.*, **188**, 1 (1997).
- 4 J. Thiem and W. Klaffke, Top. Curr. Chem., 154, 285 (1990).
- 5 C. H. Marzabadi and R. W. Frank, *Tetrahedron*, **56**, 8385 (2000).
- 6 An efficient β-stereoselective glycosidation of 2-deoxygly-copyranosyl diethyl phosphites and trimethylsilyl triflate: S. Hashimoto, A. Sano, H. Sakamoto, M. Nakajima, Y. Yanagiya, and S. Ikegami, *Synlett*, **1995**, 1271.
- Y. Guo and G. A. Sulikowski, *J. Am. Chem. Soc.*, **120**, 1392 (1998); R. Pongdee, B. Wu, and G. A. Sulikowski, *Org. Lett.*, **3**, 3523 (2001).
- 8 H. Nagai, S. Matsumura, and K. Toshima, *Tetrahedron Lett.*, 43, 847 (2002).
- 9 Montmorillonite K-10 was purchased from Aldrich Chemical Company, Inc. and dried at 200 °C/1 mmHg for 12 h before use.
- P. J. Garegg and S. Oscarson, *Carbohydr. Res.*, **50**, C12 (1976); V. Pozsgay, *Carbohydr. Res.*, **69**, 284 (1979); H. Paulsen and R. Lebuhn, *Justus Liebigs Ann. Chem.*, **1983**, 1047; C. A. A. van Boeckel, T. Beetz, and S. F. van Aelst, *Tetrahedron Lett.*, **40**, 4097 (1984); T. Jyojima, N. Miyamoto, Y. Ogawa, S. Matsumura, and K. Toshima, *Tetrahedron Lett.*, **40**, 5023 (1999).