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Abstract: Bi- and tricyclic 9-oxabispidines are smoothly deproto-
nated at –78 °C by s-BuLi at one of the bridgehead carbon atoms to
give a-lithio ethers, which were trapped with electrophiles in good
yields. Rearrangements to ring-contracted N,O-acetals occurred
upon warming in the absence of an electrophile. The a-lithio ether
intermediates are presumably stabilized by negative hyperconjuga-
tion.

Key words: 9-oxabispidines, carbanions, rearrangements, lithia-
tion, bicyclic compounds

The natural alkaloid (–)-sparteine (1, Figure 1)1 and the
(–)-cytisine derived (+)-sparteine surrogate 22 are the aux-
iliaries of choice for almost all s-BuLi-mediated asym-
metric deprotonation–electrophilic trapping reactions.3

The enantioselective total synthesis of such chiral bis-
pidines {3,7-diazabicyclo[3.3.1]nonanes}, however, is
still a time-consuming challenge severely hampering an
efficient design of derivatives.3 We therefore investigated
the closely related bi- and tricyclic 9-oxabispidines of
types 3 and 4, which are more easily accessible due to the
ether bridge.4–6 These diamines, in particular 4, possess
high potential as chiral ligands in transition-metal-cata-
lyzed transformations: The complex [(4)PdBr2] was suc-
cessfully used in the oxidative kinetic resolution of
secondary alcohols,5 and [(4)CuCl2] provided up to 98%
ee in enantioselective Henry reactions.6 Deprotonations
with s-BuLi in the presence of 3 or 4, however, failed,
probably because the 9-oxabispidines are lithiated at one
of the bridgehead carbon atoms.

Figure 1

The stability of nonactivated7 ethers against strong organo-
lithium bases such as s-BuLi widely differs. Et2O, for
example, is relatively inert (t1/2, 35 °C = 31 h)8,9 and there-
fore it is often used as the solvent for deprotonation reac-

tions, whereas THF gets readily deprotonated (t1/2,

35 °C = 10 min).8,10 The resulting a-lithio ethers are usually
highly reactive intermediates11 that undergo fast consecu-
tive reactions like fragmentations,12 [1,2]-alkyl shifts,11a,13

or [2,3]-sigmatropic Wittig rearrangements.11a,13a,b,14

The intermolecular trapping of nonstabilized a-lithio
ethers was as yet only realized with epoxides.15,16 Well
studied is the enantioselective deprotonation of cyclo-
octene oxide (5, Scheme 1) with s-BuLi at –90 °C in the
presence of the chiral auxiliary (–)-sparteine (1).15

Quench of the resulting anion with electrophiles delivered
the a-substituted derivatives 6 in good yields and enantio-
selectivities. The lithiation of 9-oxabicyclo[3.3.1]nona-
2,6-diene (7) with t-BuLi–TMEDA is the only example
for a deprotonation of an oxygen-bridged bicyclic com-
pound.17,18 This process, however, is facilitated by the for-
mation of a stabilized allyl anion intermediate, as obvious
from the regioisomeric products 8A and 8B obtained upon
addition of an electrophile.17

In this letter we report on the deprotonation of the 9-oxa-
bispidines 3 and 4 with s-BuLi at –78 °C leading to stable
a-lithio ethers that were trapped with electrophiles in
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good yields. At higher temperatures, rearrangements oc-
curred.

In order to prove the instability of the 9-oxabispidines to-
wards strong organolithium bases we used a deprotona-
tion–deuteration sequence (Table 1). And indeed,
treatment of 3a–c and 4 with an excess of s-BuLi at
–78 °C in Et2O followed by quench with CD3OD deliv-
ered the monodeuterated derivatives 9A/B and 10A/B in
good isolated yields (75–89%) and with high deuterium
incorporation (73–100%).19 Thus, these 9-oxabispidines
are the first examples of nonstabilized7 and nonoxiranyl-
derived ethers that undergo smooth deprotonation at low
temperatures to give a-lithio ether intermediates which
can be trapped by external electrophiles.

The exclusive formation of the regioisomers 9bA and 9cA
from the unsymmetric bicyclic 9-oxabispidines 3b and 3c
indicates a strong steric shielding of the bridgehead proton
at C1 by the substituents R. In contrast to that, no signifi-
cant differentiation was observed in the deprotonation–
deuteration of the tricyclic diamine 4 possessing the anne-
lated piperidine ring. The regioisomeric products 10A and
10B were obtained in a 55:45 ratio. It should be noted that
the use of s-BuLi is essential since no reaction occurred at
–78 °C with the weaker base n-BuLi; an external activa-
tion of s-BuLi by chelating ligands such as 1, 2, or
TMEDA is not required. It is very likely that the 9-oxabis-

pidines themselves autocatalytically activate the organo-
lithium base by complexation, thus facilitating an
intermolecular proton abstraction (vide supra).

The further lithiation–CD3OD-trapping of 10A/B solely
afforded the dideuterated 9-oxabispidine 11 in 79% yield
(Scheme 2).19 The observed quantitative H/D exchange
implies a highly selective deprotonation–deuteration se-
quence, since any competing dedeuteration–redeuteration
processes would lead to the recovery of formally un-
changed starting material. Consequently, the kinetic iso-
tope effect causing this selectivity must be large;20,21 a kH/
kD value of >94:6 = 15.7 was calculated under the as-
sumption that the lower detection limits of 10A and 10B
in the 1H NMR spectrum of 11 are <3%. If no bridgehead
proton was available, dedeuteration occurred, as found in
the lithiation–protonation of 11 giving a 48:38:14 mixture
of 10A, 10B, and 11 in 87% yield.

Scheme 2

Other electrophiles such as MeI, TMSCl, and BzCl were
also suited for trapping the a-lithiated 9-oxabispidines, as
demonstrated on 4 as the model substrate (Table 2). The
products 12A/B, 13A/B, and 14A/B were obtained in 43–
78% yield and with an improved regioselectivity of up to
73:27 for the sterically more demanding electrophiles
TMSCl and BzCl.19

The attempted further methylation of 12A/B to give the
9-oxabispidine 15, however, failed (Scheme 3). After
deprotonation with s-BuLi, no reaction was observed with
MeI as the electrophile, while stronger methylating agents

Scheme 1
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Table 1 Deprotonation–Deuteration of the 9-Oxabispidines 3a–c and 4

Entry Starting material R1 R2 Product Isolated yield (%) D incorporation (%)a A/Ba

1 3a H Me 9a 89 100 –b

2 3b Et Me 9b 86 85 100:0

3 3c Ph Me 9cc 75 73 100:0

4d 4 -(CH2)4- 10 85 100 55:45

a Determined by 1H NMR.
b 9aA = 9aB.
c According to 1H NMR spectroscopy and mass spectrometry, some deuteration at the phenyl group had occurred, too.
d No reaction was observed with n-BuLi as the base.
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such as MeOTf afforded complex product mixtures hint-
ing at N-methylated oxabispidinium salts. With the depro-
tonation–deuteration of 12A/B resulting in a 64:36
mixture of the deuterated 9-oxabispidines 16A/B (ratio
41:59) and 12A/B, the electrophilic trapping of the a-
lithio ethers of 12A/B with MeI and MeOTf must have
failed for unknown reasons.

Scheme 3

If the unsubstituted 9-oxabispidine 3a was lithiated at
–78 °C and slowly warmed to room temperature in the ab-
sence of an electrophile, a rearrangement to the ring-
contracted N,O-acetal rac-17 occurred (44% yield,
Scheme 4).19 The analogous deprotonation–rearrange-
ment of the unsymmetric tricyclic 9-oxabispidine 4 deliv-
ered the regioisomers 18A/B in a 58:42 ratio and 46%
yield.22 A similar result (18A/18B = 63:37, 36% yield)
was obtained by using n-BuLi as the base, which is appar-
ently capable of lithiating 4 at higher temperatures, but not
at –78 °C (cf. Table 1, footnote d). Quenching the crude
reaction mixture with D2O instead of water furnished, ac-
cording to in-depth NMR and HRMS investigations, a
32:29:29:10 mixture of four compounds, the two expected
monodeuterated N,O-acetals 19A and 19B, and, in addi-
tion, the two 19A-derived dideuterated species 19C and
19D, in which a further H–D exchange at C8 had oc-
curred.23

The latter result can be explained by the following mech-
anism (Scheme 5): Initial unselective deprotonation of 4
at one of the bridgehead carbon atoms C9 and C1 afforded
the a-lithio ethers 20A/B, which underwent b-elimination

upon warming to give the lithium amides 21A/B under
cleavage of the C10–N11 and the C12–N11 bond, respec-
tively.24 Products arising from a competing breakage of
the C8–N7 or C2–N7 bond in the southern morpholine
moiety were not detected. Intramolecular addition of the
amide group in 21A/B to the enol ether furnished the in-
termediates 22A/B,25 which were deuterated upon workup
to give 19A/B. The latter cyclization, in which a lithium
amide is converted into a primary carbanion, is probably
facilitated by an intramolecular chelation of the lithium
atom with the nitrogen atom in b-position. In contrast to
21B, which seems to be resistant towards further lithia-
tion, the intermediate 21A was again partly deprotonated
at C8 giving the stabilized allylic anion 23A. Twofold

Table 2 Deprotonation–Electrophilic Trapping of 4

Entry EX Product E Yield (%) A/Ba

1 MeI 12 Me 78 56:44

2 TMSCl 13 TMS 52 (65)b 64:36

3 BzCl 14 Bz 43 (56)b 73:27

a Determined by 1H NMR.
b Based on recovered starting material.
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deuteration and ring closure of 23A finally led to the dia-
stereomers 19C and 19D.

The unexpected stability of the bridgehead lithiated 9-oxa-
bispidines at –78 °C is supposedly a consequence of two
effects (Scheme 6): Firstly, the destabilizing interaction
between the s-orbital of the electron-rich C–Li bond and
the free electron pair of the neighboring oxygen atom,
which causes the high reactivity of ‘normal’ a-lithio
ethers,11 should be less pronounced. Assuming that the
lithiated 9-oxabispidines preferentially adopt a double
chair conformation, as known from their nonlithiated
counterparts and from the structurally closely related bis-
pidines,26 the orbitals should be locked in an unfavorable
gauche orientation which minimizes the destabilizing in-
teraction (illustration A). Secondly, the nitrogen atoms in
b-position probably exert a strong stabilizing effect by a
twofold negative hyperconjugation.27 As depicted in illus-
tration B, the required overlap between the electron-rich
s-orbital of the C–Li bond and the two energetically low-
lying s*-orbitals of the two adjacent C–N bonds should be
optimal due to the antiparallel orientation of these orbitals
in the double chair conformation.26 The resulting reduc-
tion of electron density in the C–Li bond in combination
with the addition of some p-character to the s(C–C)-
bonds can also be expressed by the mesomeric structures
C and D.

Scheme 6

The close structural relationship between D and the pro-
posed intermediates 21A/B in the rearrangements of 3a
(see Scheme 5) strongly implies that negative hyperconju-
gation also plays an important role in initiating the latter
process.

In order to prove the pivotal role of the nitrogen atoms of
the 9-oxabispidines in the deprotonation reactions, two
control experiments were done with the ether 24,28 which
possesses the same bicyclic skeleton, but lacks the two ni-
trogen atoms (Scheme 7): Treatment of 24 with s-BuLi
and, subsequently, with CD3OD did not lead to the mono-
deuterated ether 25 or any decomposition products; even
in the presence of activating diamine TMEDA, only un-
changed starting material was recovered in 94% yield.
The reluctance of 24 towards lithiation clearly shows that
the nitrogen atoms of the 9-oxabispidines not only acti-

vate s-BuLi by complexation, but also facilitate the depro-
tonation due to the formation of a-lithio ethers which are
stabilized by negative hyperconjugation.

In conclusion, the deprotonation of the 9-oxabispidines 3
and 4 with s-BuLi at –78 °C afforded a-lithio ethers,
which are presumably stabilized by negative hyperconju-
gation. Trapping of these intermediates at –78 °C with
electrophiles afforded bridgehead-substituted 9-oxabis-
pidines in good yields, while rearrangements to ring-con-
tracted N,O-acetals occurred in the absence of an
electrophile upon warming.
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3.47 (t, J = 3.5 Hz, 1 H, 1-H A), 3.85 (t, J = 4.1 Hz, 1 H, 9-
H B). 13C NMR (100 MHz, CDCl3): d = 24.6 (CH2 A, B), 
25.1 (CH2 A, B), 28.2 (CH2 A, B), 47.4 (11-Me A, B), 54.4 
(C-12), 54.5 (C-12), 57.2 (C-6 A, B), 57.8 (C-8), 57.9 (C-8), 
58.2 (C-10), 58.3 (C-10), 64.9 (C-2), 65.0 (C-2), 68.3 (t, 
J = 19.8 Hz, C-9 A), 68.7 (C-9 B), 71.4 (t, J = 21.6 Hz, C-1 
B), 71.8 (C-1 A). IR (ATR): n = 2929, 2853, 2784, 1458, 
1354, 1283, 1199, 1161, 1119, 1069, 973, 815, 722 cm–1. 
HRMS (ESI+): m/z calcd for C11H19DN2O [M + H]+: 
198.1711; found: 198.1711.
Compound 11: [a]D

22 +14.9 (c 0.22, MeOH). 1H NMR (400 

MHz, CDCl3): d = 1.36 (m, 3 H, CH2), 1.56 (m, 1 H, CH2), 
1.77 (m, 3 H, CH2, 6-H), 2.19 (s, 3 H, 11-Me), 2.24 (d, 
J = 11.6 Hz, 1 H, 12-H), 2.26 (m, 1 H, 2-H), 2.39 (dd, 
J = 11.4, 1.3 Hz, 1 H, 10-H), 2.55 (dd, J = 11.6, 1.4 Hz, 1 H, 
8-H), 2.81 (d, J = 11.6 Hz, 1 H, 8-H¢), 2.89 (m, 1 H, 6-H¢), 
2.91 (d, J = 11.7 Hz, 1 H, 10-H¢), 2.92 (m, 1 H, 12-H¢). 13C 
NMR (100 MHz, CDCl3): d = 24.8 (CH2), 25.3 (CH2), 28.3 
(CH2), 47.5 (11-Me), 54.5 (C-12), 57.3 (C-6), 57.9 (C-8), 
58.4 (C-10), 64.9 (C-2), 68.4 (t, J = 22.1 Hz, C-9), 71.6 (t, 
J = 22.2 Hz, C-1). IR (ATR): n = 2931, 2754, 1438, 1352, 
1288, 1276, 1176, 1135, 1076, 1056, 1023, 788, 752, 721, 
699 cm–1 HRMS (ESI+): m/z calcd for C11H18D2N2O [M + 
H]+: 199.1774; found: 199.1774.
Compound 12A/B (ratio A/B = 56:44): 1H NMR (400 MHz, 
CDCl3): d = 1.05 (s, 3 H B, 1-Me), 1.10 (s, 3 H A, 9-Me), 
1.27–1.86 (m, 7 H A, 8 H B, CH2, 12-H B), 1.91 (br d, 
J = 10.5 Hz, 1 H, 2-H B), 2.00 (dd,  J = 11.4, 2.4 Hz, 1 H, 
10-H A), 2.11–2.18 (m, 3 H, 2-H A, 8-H A, 12-H A), 2.15 (s, 
3 H, 11-Me), 2.16 (s, 3 H, 11-Me), 2.29 (ddd, J = 11.5, 4.1, 
1.7 Hz, 1 H, 10-H B), 2.55 (ddd, J = 11.5, 4.3, 1.8 Hz, 1 H, 
8-H B), 2.80 (m, 2 H, 8-H¢ A, 8-H¢ B), 2.84–2.93 (m, 3 H A, 
3 H B, 6-H¢, 10-H¢, 12-H¢), 3.54 (t, J = 3.7 Hz, 1 H, 1-H A), 
3.88 (t, J = 4.3 Hz, 1 H, 9-H B). 13C NMR (100 MHz, 
CDCl3): d = 24.8 (CH2), 25.16 (CH2), 25.24 (2 × CH2), 25.7 
(1-Me B), 26.2 (1-Me A), 27.2 (CH2), 28.1 (CH2), 47.32 (11-
Me), 47.34 (11-Me), 53.8 (C-12 A), 57.3 (C-6 A), 57.58 (C-
6 B or C-10 B), 57.62 (C-6 B or C-10 B), 58.0 (C-8 B), 60.6 
(C-12 B), 63.9 (C-8 A), 64.2 (C-2 A), 64.3 (C-10 A), 69.1 
(C-9 B), 70.1 (C-9 A), 70.8 (C-2 B), 72.0 (C-1 B), 73.1 (C-1 
A). IR (ATR): n = 2930, 2854, 2758, 1457, 1357, 1286, 
1260, 1102, 1055, 812 cm–1. HRMS (ESI+): m/z calcd for 
C12H22N2O [M + H]+: 211.1805; found: 211.1805.
Compound 14A/B (ratio A/B = 73:27): 1H NMR (400 MHz, 
CDCl3): d = 1.10–1.65 (m, 4 H A, 4 H B, CH2), 1.70–1.95 
(m, 3 H A, 3 H B, CH2, 6-H), 2.10–2.45 (m, 5 H, 2-H A, 10-
H A, 12-H A, 10-H B, 12-H B,), 2.25 (s, 3 H, 11-Me A), 2.27 
(s, 3 H, 11-Me B), 2.56 (dd, J = 11.7, 2.0 Hz, 1 H, 8-H A), 
2.59 (br d, J = 10.7 Hz, 1 H, 2-H B), 2.82 (ddd, J = 11.7, 4.3, 
1.6 Hz, 1 H, 8-H B), 2.95 (m, 5 H, 6-H¢ A, 12-H¢ A, 6-H¢ B, 
8-H¢ B, 10-H B), 3.20 (d, J = 11.7 Hz, 1 H, 8-H¢ A), 3.30 (d, 
J = 11.5 Hz, 1 H, 10-H¢ A), 3.46 (d, J = 12.2 Hz, 1 H, 12-H¢ 
B), 3.79 (t, J = 4.1 Hz, 1 H, 1-H A), 4.14 (t, J = 4.2 Hz, 1 H, 
9-H B), 7.43 (m, 2 H A, 2 H B, PhH), 7.55 (m, 1 H A, 1 H 
B, PhH), 8.17 (m, 2 H A, PhH), 8.25 (m, 2 H B, PhH). 13C 
NMR (100 MHz, CDCl3): d = 24.67 (CH2 B), 24.70 (CH2 
A), 25.1 (CH2 B), 25.2 (CH2 A), 26.5 (CH2 B), 27.8 (CH2 A), 
47.2 (11-Me A), 47.3 (11-Me B), 53.6 (C-12 A), 56.6 (C-12 
B), 57.1 (C-6 A), 57.4 (C-10 B), 57.7 (C-8 B), 57.9 (C-6 B), 
59.6 (C-8 A), 59.8 (C-10 A), 64.0 (C-2 A), 65.5 (C-2 B), 
69.3 (C-9 B), 72.9 (C-1 A), 80.5 (C-9 A), 81.9 (C-1 B), 127.9 
(PhH A), 128.0 (PhH B), 130.3 (PhH A), 130.6 (PhH B), 
132.7 (PhH A), 132.8 (PhH B), 135.2 (PhH A), 135.5 (PhH 
B), 199.1 (C=O B), 200.7 (C=O A). IR (ATR): n = 2934, 
2852, 2763, 1674, 1446, 1266, 1099, 1054, 708, 689, 665 
cm–1. HRMS (ESI+): m/z calcd for C18H25N2O2 [M + H]+: 
301.1911; found: 301.1910.
Compound rac-17: 1H NMR (400 MHz, CDCl3): d = 1.26 (s, 
3 H, 5-Me), 2.06 (d, J = 11.1 Hz, 1 H, 4-H), 2.21 (s, 3 H, 3-
Me), 2.25 (dd, J = 11.0, 1.8 Hz, 1 H, 2-H), 2.42 (s, 3 H, 6-
Me), 2.54 (dd, J = 11.1, 1.8 Hz, 1 H, 2-H¢), 2.76 (d, J = 11.1 
Hz, 1 H, 4-H¢), 3.03 (dd, J = 8.3, 1.7 Hz, 1 H, 7-H), 3.05 (dd, 
J = 8.3, 5.4 Hz, 1 H, 7-H¢), 4.32 (dq, J = 5.4, 1.8 Hz, 1 H, 1-
H). 13C NMR (100 MHz, CDCl3): d = 20.2 (5-Me), 37.1 (6-
Me), 45.0 (3-Me), 57.8 (C-7), 58.2 (C-2), 62.3 (C-4), 73.0 
(C-1), 92.7 (C-5). IR (ATR): n = 2925, 2853, 1662, 1456, 
1258, 1015, 854, 793 cm–1. HRMS (ESI+): m/z calcd for 
C8H17N2O [M + H]+: 157.1335; found: 157.1335.
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(20) A dilithiation of 10A/B followed by dideuteration, which 
would also explain the quantitative formation of 11, but 
without relying on a high kinetic isotope effect, can be 
excluded since otherwise 11 should also had been formed in 
the lithiation–deuteration of 4.

(21) For high kinetic isotope effects in (–)-sparteine(1)-mediated 
asymmetric deprotonations, see for example: (a) Hoppe, D.; 
Paetow, M.; Hintze, F. Angew. Chem., Int. Ed. Engl. 1993, 
32, 394. (b) Gallager, D. J.; Beak, P. J. Org. Chem. 1995, 60, 
7092.

(22) The Following Procedure is Representative: 
Rearrangement of Compound 4
s-BuLi (3.30 mL, 4.59 mmol, 1.39 M in cyclohexane) was 
added at –78 °C to a solution of 4 (300 mg, 1.52 mmol) in 
anhyd Et2O (10 mL). The reaction mixture was warmed to 
r.t. within 16 h, quenched with H2O (30 mL), and extracted 
with CH2Cl2 (10 × 30 mL). The combined organic layers 
were dried over MgSO4 and evaporated. Column chroma-
tography (basic alumina, activity V, n-pentane–EtOAc = 
6:1) delivered an inseparable 58:42 mixture of 18A and 18B 
(137 mg, 698 mmol, 46%) as a colorless oil. 1H NMR (400 
MHz, CDCl3): d = 1.07 (m, 1 H, 3-H A), 1.18–1.40 (m, 4 H, 
3-H¢ A, 3-H B, 4-H A, 4-H B), 1.26 (s, 3 H, 1-Me B), 1.29 
(s, 3 H, 9-Me A), 1.46–1.60 (m, 4 H, 3-H¢ B, 5-H A, 5-H¢ A, 
5-H B), 1.66 (m, 1 H, 5-H¢ B), 1.77 (m, 2 H, 4-H¢ A, 4-H¢ B), 
1.88 (dd, J = 10.9, 2.3 Hz, 1 H, 2-H B), 2.03 (m, 1 H, 6-H A, 
6-H B), 2.11 (dt, J = 11.7, 2.0 Hz, 1 H, 2-H A), 2.17 (d, 
J = 11.2 Hz, 1 H, 8-H A), 2.38 (dd, J = 11.4, 1.8 Hz, 1 H, 8-
H B), 2.40 (s, 3 H, 11-Me B), 2.44 (s, 3 H, 10-Me A), 2.53 
(dd, J = 11.1, 2.0 Hz, 1 H, 8-H¢ B), 2.62 (dd, J = 8.9, 6.5 Hz, 
1 H, 10-H B), 2.68 (d, J = 11.2 Hz, 1 H, 8-H¢ A), 2.70 (m, 2 
H, 6-H¢ A, 6-H¢ B), 2.91 (dd, J = 8.7, 6.4 Hz, 1 H, 11-H A), 
3.15 (d, J = 8.8 Hz, 1 H, 11-H¢ A), 3.41 (d, J = 9.0 Hz, 1 H, 
10-H¢ B), 3.97 (d, J = 6.5 Hz, 1 H, 1-H A), 4.27 (dt, J = 6.5, 
2.0 Hz, 1 H, 9-H B). 13C NMR (100 MHz, CDCl3): d = 18.3 
(1-Me B), 19.8 (9-Me A), 24.1 (C-4 A), 24.2 (C-4 B), 24.9 
(C-5 B), 25.4 (C-5 A), 26.3 (C-3 B), 26.7 (C-3 A), 37.5 (10-
Me A), 40.7 (11-Me B), 54.3 (C-6 A), 55.16 (C-6 B, C-11 

A), 58.8 (C-8 B), 60.1 (C-10 B), 62.3 (C-8 A), 63.3 (C-2 A), 
71.4 (C-2 B), 72.2 (C-9 B), 76.9 (C-1 A), 93.5 (C-9 A), 96.0 
(C-1 B). IR (ATR): n = 2925, 2852, 2793, 1730, 1442, 1377, 
1331, 1258, 1181, 1132, 823, 719, 607 cm–1 HRMS (ESI+): 
m/z calcd for C11H21N2O [M + H]+: 197.1648; found: 
197.1648.

(23) 13C NMR and HRMS also indicate the formation of a small 
amount of a trideuterated species, the structure of which is 
unknown.

(24) The proposed b-elimination of 20A/B to 21A/B is 
comparable to the fragmentation of lithiated TMEDA, which 
provides LiNMe2 and N,N-dimethylaminoethylene as 
intermediates, see: Köhler, F. H.; Hertkorn, N.; Blümel, J. 
Chem. Ber. 1987, 120, 2081.

(25) The proposed cyclization of 21A/B to 22A/B is similar to the 
LiHMDS/TMEDA-catalyzed hydroamination of electron-
rich C–C double bonds, see: Horillo-Martinez, P.; Hultsch, 
K. C.; Gil, A.; Branchadell, V. Eur. J. Org. Chem. 2007, 
3311.

(26) According to preliminary quantum chemical calculations, 
the double chair conformation is highly favored for 2-endo-
substituted 9-oxabispidines such as 3 and 4. The same 
preference was found for the bispidines, see:  (a) Galasso, 
V.; Goto, K.; Miyahara, Y.; Kovač, B.; Klasinc, L. Chem. 
Phys. 2002, 277, 229. (b) Galasso, V.; Asaro, F.; Berti, F.; 
Kovač, B.; Habuš, I.; Sacchetti, A. Chem. Phys. 2003, 294, 
155.

(27) (a) Hoffmann, R.; Radom, L.; Pople, J. A.; Schleyer, P.v.R.; 
Hehre, W. J.; Salem, L. J. Am. Chem. Soc. 1972, 94, 6221. 
(b) Schleyer, P.v.R.; Kos, A. J. Tetrahedron 1983, 39, 1141. 
(c) Petillo, P. A.; Lerner, L. E. ACS Symp. Ser. 1993, 539, 
156. (d) Lill, S. O. N.; Rauhaut, G.; Anders, E. Chem. Eur. 
J. 2003, 9, 3143; and references cited therein. (e) Karni, M.; 
Bernaconi, C. F.; Rappoport, Z. J. Org. Chem. 2008, 73, 
2980; and references cited therein.

(28) Compound 24 was prepared from cycloocta-1,5-diene 
according to: Bordwell, F. G.; Douglass, M. L. J. Am. Chem. 
Soc. 1966, 88, 993.
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