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Abstract—A chiral 3,3�,5,5�-tetrabromosubstituted (salen)manganese(III) complex was found to be an efficient catalyst for
asymmetric C�H amination (up to 89% ee). In the reaction of cycloalkenes, allylic amination occurred in preference to
aziridination. © 2001 Elsevier Science Ltd. All rights reserved.

(Salen)manganese(III) complexes [hereafter referred to
as Mn(salen)] serve as catalysts for aziridination.1 We
have disclosed that some optically active Mn(salen)s,
especially second-generation Mn-salen possessing axial
chirality as a chiral element, catalyze highly enantio-
selective aziridination of styrene derivatives.1b,1c On the
other hand, a nitrido (salen)manganese(V) complex was
recently found to undergo nitrene transfer reactions in
the presence of triflic anhydride or trifluoroacetic anhy-
dride.2 Subsequent to this, an optically active nitrido
(salen)manganese(V) complex was reported to undergo
stoichiometric but highly enantioselective aziridina-
tion.3 These aziridination reactions have been consid-
ered to proceed via nitrenoid intermediates which are
an electrophilic species. In order to expand the scope of
Mn(salen)-catalyzed aziridination, we synthesized

cationic Mn(salen)s 1–10 bearing electron-withdrawing
substituents, expecting that such Mn(salen)s would
show higher catalytic activity. We first examined azirid-
ination of cyclohexene using 14 as the catalyst in the
presence of [N-(p-toluenesulfonyl)imino]phenyliod-
inane. Contrary to our expectation, no aziridination
occurred and allylic C�H amination proceeded exclu-
sively (Scheme 1).

Thus far, many methodologies for C�H amination have
been reported. The first C�H amination was reported
with manganese–porphyrin complexes as catalysts.5

Although C�H amination via a nitrenoid species often
competes with aziridination,6 electron-deficient man-
ganese-,7 ruthenium-,7b and rhodium porphyrin
complexes7c were recently reported to catalyze C�H

Scheme 1.
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amination exclusively. Besides metalloporphyrin com-
plexes, ruthenium cyclic amine and bipyridine
complexes8 have been disclosed to be efficient catalysts
for C�H amination, and copper salts have also been
reported to promote C�H amination selectively under
modified Kharash–Sosnovsky conditions using peroxy-
carbamate as an oxidant.9,10 Efforts have been directed
toward asymmetrization of some of these methodolo-
gies; however, success has been limited.6d,9,11 On the
other hand, our new result seemed to be compatible
with the results observed with electron-deficient metal-
loporphyrin complexes. Therefore, we examined asym-
metric C�H amination with chiral Mn(salen) complexes
bearing electron-withdrawing groups as the catalysts.

We first examined benzylic amination of indan with
various Mn(salen)s as catalysts (Table 1). Non-substi-
tuted Mn(salen) ent-7 showed poor catalytic activity
(entry 8). Mn(salen) 1 bearing electron-withdrawing
fluoro groups exhibited higher catalytic activity as
expected, especially when chloro and bromo groups
were the electron-withdrawing group (entries 1–5).
Complex 3 and its enantiomer ent-3 showed the same
level but opposite sense of enantioselectivity, suggesting
that C�H amination occurred in the coordination
sphere of Mn(salen) (entries 3 and 4). Based on the
reactivity–selectivity principle,12 we expected that enan-
tioselectivity would be improved in the order of the
reactions with 1, 2, 3, and 4. Differing from the expec-
tation, complex 3 showed the best enantioselectivity
(entry 3). We also synthesized Mn(salen)s, 5 and 6,
bearing a diphenylethylenediamine moiety and exam-
ined C�H amination. However, they showed lower
enantioselectivity than the corresponding Mn(salen)s, 1
and 3, bearing a cyclohexanediamine moiety (entries 6
and 7). Mn(salen)s, 8 and 9, bearing nitro groups at the
5- and 5�-positions also showed catalytic activity but
enantioselectivities were only modest (entries 9 and 10).
Introduction of a bulky tert-butyl group at the 3- and

3�-positions had adverse effect on enantioselectivity
(entry 10).

It should be noted that a neutral Mn(salen) such as 10
was inferior to cationic Mn(salen) 3 as the catalyst for
the present reaction in terms of enantioselectivity and
chemical yield (entry 11).13

We next examined the effect of the solvent and reaction
temperature on enantioselectivity by using 3 as the
catalyst (Table 2). The reactions in acetonitrile, ethyl
acetate, acetone, and toluene were slow (entries 2–5). In
general, the reaction proceeded smoothly in halocar-
bons (entries 1 and 6–9) and the best result, in terms of
enantioselectivity and chemical yield, was obtained
when 1,1,2,2-tetrachloroethane was used as the solvent
(entry 9). As reaction temperature was lowered, enan-
tioselectivity was improved without depressing chemical
yield (entries 9–11) and the highest enantioselectivity of
66% ee was achieved at −40°C (entry 11).

Under the optimized conditions, we also examined the
reaction of cyclohexene, cycloheptene, tetralin, 1,1-
dimethyltetralin,14 and 1,1-dimethylindan14 (Table 3).
The reaction of cyclohexene gave 1-[N-(p-toluenesul-
fonyl)amino]cyclohex-2-ene of 67% ee selectively and
no aziridination product was detected, while the reac-
tion of cycloheptene gave 1-[N-(p-toluenesulfonyl)-
amino]cyclohept-2-ene of 41% ee together with a small
amount of the aziridination product (amination
product: aziridination product=4.8:1).15 The benzylic
amination of tetralin and 1,1-dimethyltetralin pro-
ceeded with good enantioselectivity of 77% ee and 82%
ee, respectively. High enantioselectivity of 89% ee was
obtained in the reaction of 1,1-dimethylindan.

Typical experimental procedure was exemplified by the
benzylic amination of indan with 3 as the catalyst at

Table 1. Asymmetric amination of indan with various Mn(salen)s as catalysts

Complex Time (h) Yield (%)aEntry ee (%)b Config.c

1 1 3 37 5 S
2 32 59 41 S

3 33 S4463
ent-34 43703 R
4 35 44 26 S

6 5 3 54 5 S
7 6 3 58 3 S

ent-7 38 18 6 R
32 169 S8 3

10 3 25 4 S9
310 12 23 S11

a Isolated yield. Yield was calculated based on the amount of [N-(p-toluenesulfonyl)imino]phenyliodinane used.
b Determined by HPLC analysis (DAICEL CHIRALPAK AD, hexane/2-propanol=9:1).
c Determined by comparing the elution order of the present product and the p-toluenesulfonylated commercial (R)-(−)-1-aminoindan (Aldrich

Chemical Co., Inc.) in HPLC analysis (see footnote b).
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Table 2. Asymmetric amination of indan with 3 as the catalyst in various solvents

Temp. (°C) Time (h) Yield (%)a ee (%)b Config.cEntry Solvent

5 31 63CH2Cl2 44 S
2 CH3CN 5 3 0 – –
3 5CH3CO2C2H5 3 19 32 S

5 3 17CH3COCH3 364 S
C6H5CH35 5 3 9 42 S
C6H5Cl6 5 3 62 47 S

5 3 62CHCl3 477 S
8 (CH2Cl)2 5 3 57 44 S

5 3 74(CHCl2)2 549 S
−20 12 72 6110 S(CHCl2)2

−40 24 63 66(CHCl2)2 S11

a Isolated yield. Yield was calculated based on the amount of [N-(p-toluenesulfonyl)imino]phenyliodinane used.
b Determined by HPLC analysis (DAICEL CHIRALPAK AD, hexane/2-propanol=9:1).
c Determined by comparing the elution order of the present product and the p-toluenesulfonylated commercial (R)-(−)-1-aminoindan (Aldrich

Chemical Co., Inc.) in HPLC analysis (see footnote b).

Table 3. Asymmetric C�H amination of various substrates with 3 as the catalysta)

a) Reaction was carried out in 1,1,2,2-tetrachloroethane at −40°C for 24 h.
b) Isolated yield. Yield was calculated based on the amount of [N-(p-toluenesulfonyl)imino]phenyliodinane used.
c) Determined by HPLC analysis (DAICEL CHIRALPAK AD, hexane/ethanol=9:1).
d) Determined by comparison of the specific rotation of tert-butyl cyclohex-2-ene-1-carbamate derived from the product {[� ]D

25 −69.6° (c 0.48,
CHCl3)} with the reported value {(R)-isomer; [� ]D

23 +101° (c 2.80, CHCl3, 95% ee)} (Ref. 16).
e) Formation of a small amount of aziridine derivative was detected by 1H NMR analysis (see text).
f) Determined by comparison of the specific rotation of cyclohept-2-en-1-ylamine hydrochloride derived from the product {[� ]D

23 −6.0° (c 0.095,
CH3OH)} with the reported value {(S)-isomer; [� ]D −14.5° (c 1.04, CH3OH, 96% ee)} (Ref. 17).

g) Determined by HPLC analysis (DAICEL CHIRALPAK AD, hexane/2-propanol=9:1).
h) Determined by comparison of the specific rotation of 1-amino-1,2,3,4-tetrahydronaphthalene derived from the product {[� ]D

25 +33.1° (c 1.48,
C6H6)} with the reported value {(R)-isomer; [� ]D

22 −46° (c 5, C6H6)} (Ref. 18).
i) Determined by HPLC analysis (DAICEL CHIRALPAK AD, hexane/ethanol=19:1).
j) Configuration was not determined.
k) Determined by HPLC analysis (DAICEL CHIRALPAK AD, hexane/2-propanol=40:1).

−40°C: To a mixture of molecular sieves 4 A� (50 mg), 3
(8.4 mg, 10 �mol), and 1,1,2,2-tetrachloroethane (4.0
mL) was added indan (49 �L, 0.4 mmol) under nitrogen
and the whole mixture was stirred for 10 min at −40°C.
To the mixture was added [N-(p-toluenesul-
fonyl)imino]phenyliodinane (61.8 mg, 0.17 mmol) and

the reaction mixture was stirred at −40°C for a further
24 h. The mixture was directly subjected to a pad of
silica gel (hexane/AcOEt=7:3) and the filtrate was
concentrated in vacuo. The residue was further purified
by column chromatography on silica gel (hexane/
AcOEt=9:1 to 7:3) to give (S)-1-[N-(p-toluenesulfonyl)-
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amino]-indan as a colorless solid (29.8 mg, 63%, 66%
ee).

In conclusion, we were able to achieve good to high
enantioselectivity in C�H amination for the first time
by using the (salen)manganese complex appropriately
modified with an electron-withdrawing group as the
catalyst.
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Bernardineli, G.; Jacquier, Y.; Moran, M.; Müler, P.
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