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Abstract 

The challenge for Glycogen Synthase Kinase-3 (GSK-3) inhibitor design lies in achieving high 

selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid 

leukemia (AML) may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors 

developed by our group achieved the highest GSK-3α selectivity reported so far, but suffered from 

insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-

selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed 

high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 

was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α 

targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation 

phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML 

therapy. 

 

Introduction 

Glycogen Synthase Kinase-3 (GSK-3) is a constitutively active, ubiquitous serine/threonine kinase, 

which takes part in a number of physiological processes ranging from glycogen metabolism to 

apoptosis.1-3 GSK-3 is a key mediator of various signalling pathways, such as the Wnt and the 

Insulin/AKT signalling pathways.1 Therefore, dysregulation of GSK-3 has been linked to various 

human diseases, such as cancer, diabetes and neurodegenerative diseases.1-2, 4-7 Two related isoforms 
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of GSK-3 exist in mammals, GSK-3α and β, which share a sequence identity within their catalytic 

domains of 98%.2-3, 8 Beyond the catalytic domains they show significant differences.2, 8 Although 

these isoforms are structurally related, they are not functionally equivalent, and one cannot 

compensate for loss of the other.6 The debate on the respective contributions of the isoforms GSK-3α 

and GSK-3β on the pathogenesis of different diseases is ongoing.9 Various studies indicate that the 

therapies of certain diseases benefit from specific targeting of GSK-3α and GSK-3β.6, 10-14 GSK-3α 

was recently identified as a differentiation target in acute myeloid leukemia (AML).10 AML is a 

haematopoietic malignancy defined by uncontrolled proliferation and disrupted myeloid 

differentiation.15-16 AML is the second most common form of leukaemia in adults.16 The current 

treatment of AML with conventional chemotherapy is very aggressive yet ineffective for the majority 

of patients with the disease.15 Thus, alternative targeted treatment approaches for AML are highly 

desirable.10, 15 GSK-3α recently emerged as a potential target in this disease.10 

Many molecular approaches for the inhibition of GSK-3 have been reported. However, most of these 

inhibitors lack selectivity for GSK-3 over other related kinases. This selectivity problem can challenge 

the clinical utility of these inhibitors leading to dose-limiting toxicities. Moreover, due to the structural 

similarity between the two ATP binding pockets of GSK-3α and GSK-3β most published inhibitors do 

not differ effectively between the GSK-3 isoforms. Therefore, our research focuses on the 

development of isoform-selective, ATP-competitive inhibitors using a scorpion shaped lead 

(Figure 1A).9 Compound 1 (Figure 1) shows high kinase inhibitory activity and an impressive 

selectivity for GSK-3α.9 However, compound 1 could not be tested in vivo due to insufficient 

solubility. Therefore, it was chosen as lead structure for the design of improved GSK-3 inhibitors. 

Here we report the synthesis and optimization of scorpion shaped GSK-3 inhibitors with improved 

solubility. The most promising compounds were evaluated in a wild-type zebrafish embryo assay and 

in AML cell lines. 

 

Optimization Strategy 

Optimization of compound 1 was performed to improve its pharmacokinetics and cell penetration. In 

addition, our intention was to increase the selectivity towards GSK-3α. Unfortunately, the structure of 

GSK-3α has not been solved. Therefore, target-oriented synthesis of isoform-specific inhibitors can 

inform the mechanism behind α-selectivity of our scorpion shaped GSK-3 inhibitors. All structures 

share the oxadiazole moiety, as it provides a high inhibitory activity and isoform-selectivity.9 Different 

substitution patterns at the biphenylic scaffold were explored in order to enhance GSK-3α selectivity 

and to concurrently improve solubility. 

We next designed 140 lead-like compounds by the systematic modification of scaffold elements: the 

heteroaromatic head group (Figure 1A: blue), the spacer between the oxadiazole and the biphenylic 
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scaffold (Figure 1A: yellow), the first aromatic ring of the biphenylic scaffold (Figure 1A: green) and 

the terminal aromatic ring (Figure 1A: red). To find promising compounds all lead-like structures were 

evaluated by molecular docking. Initially, the essential ligand-receptor interactions of compound 1 

with GSK-3β had to be determined to make it possible to compare the candidates with the lead 

structure and the respective docking hypothesis. Docking of compound 1 into the GSK-3β active site 

(PDB: 3F88) was done by the software MOE 2014.09.17 Afterwards the docking poses were rescored 

by the DSX rescoring function18 with the aim to identify the best binding mode of compound 1 

(Figure 1C). The resulting conformations agree with already published findings from our group.9 The 

head group (dihydrobenzodioxine and oxadiazole) of compound 1 is oriented to the hinge region 

where it forms hydrophobic interactions with Tyr134. The oxadiazole ring is located between Val70 

and Cys199. The biphenylic tail group establishes π-π-stacking interaction with Phe67 and 

H-π-interactions with Gln185. In addition, the cyano moiety builds an H-bond to Thr138. From this 

model a phamacophore was generated. It consists of three aromatic features fulfilled by the oxadiazole 

ring and two phenyl rings (Figure 1B: orange), one hydrophobic centroid covered by one phenyl ring 

(Figure 1B: yellow) and one H-bond acceptor pharmacophore feature fulfilled by one nitrogen atom of 

the oxadiazole ring (Figure 1B: blue). With the intention to identify the best candidates of 140 

lead-like compounds, docking was performed with phamacophore placement. Then the resulted 

docking poses were again rescored by the DSX rescoring function.18 Thereby the best rated docking 

poses reproduce the overall orientation of the lead structure compound 1 (Figure 1D). 
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Figure 1: A) Compound 1 was used as lead structure for systematic modification. B) Docking study of compound 

1 using MOE 2014.09 and the known GSK-3β crystal structure (PDB: 3F88). C) From the docking study (B) 

Resulted pharmacophore hypothesis is used for screening. The pharmacophore is represented by an H-bond 

acceptor (blue), aromatic rings (orange) and hydrophobic centroids (yellow). D) Selection of compounds that 

match the docking model of 1.
17 

 

Based on the results of the docking simulations the best candidates were evaluated further. The next 

filtering was set by limitation of the ClogP value to be less than or equal to 4.5. This ensured that the 

number of hits were limited to more polar compounds than 1. This filtering step reduced the number of 

hits to 94. The analysis of possible ways for derivatization and chemical accessibility led to 15 

promising candidates, which were synthesized in the next steps as outlined below. 

 

Chemistry 

The reference Compound 1 and some of the screening hits were synthesized according to the 

published procedure.9 The building blocks of the head group and the tail group were prepared in a 

converging synthesis route.9  

The synthesis of the head group building blocks 4a-b was accomplished starting from the carboxylic 

acids 2a-b. The carboxylic acids 2a-b were esterified to the methyl esters 3a-b. The oxadiazole 
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derivates 4a-b resulted from 3a-b after reaction with hydrazine monohydrate followed by cyclization 

of the resulting hydrazides with carbondisulfide under basic conditions (Scheme 1).9 

 

Scheme 1: Reagents and conditions: (a) MeOH, SOCl2, 0 – 50 °C, 96 – 99%; (b) NH2NH2
.
H2O, EtOH, reflux, then 

CS2, Et3N, EtOH, reflux, 11 - 45%. 

 

The synthesis of the biphenylic scaffold starts either with a Suzuki coupling of the commercially 

available boronic acid 6 with various bromides 5a-d,g or (hydroxyl)boronic acid 11 with 

bromines 10e,f,h (Scheme 2). For the cases of intermediates 7a-d,g a radical bromination with NBS 

and AIBN was performed to obtain bromides 8a-d,g. The resulting benzylic alcohols 9e,f,h, however, 

were treated with phosphorous tribromide, to convert them into the benzylic bromides 8e,f,h 

(Scheme 2). Coupling of the biphenylic bromides 8a-h to the mercaptanes 4a-b gave the final 

compounds 12a, 13b-h. 

 

Scheme 2: Reagents and conditions: (a) Pd(PPh3)4, 2N aq. Na2CO3, toluene/EtOH 1:1, 80 °C, 27 – 99%; 

(b) NBS, AIBN, CCl4, reflux, 52 – 64%; (c) PBr3, toluene, reflux, (d) 4a-b, 4N aq. NaOH, DMF, rt, 12 – 66%. 

Suzuki coupling of the fluoroboronic acids 15a-c with bromines 14a-c followed by radical 

bromination gave the benzylic bromides 17a-c, which were coupled under basic conditions to the 

mercaptane 4b to yield the final compounds 18a-c (Scheme 3). 
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Scheme 3: Reagents and conditions: (a) Pd(PPh3)4, 2N aq. Na2CO3, toluene/EtOH 1:1, 80 °C, 87 – 99%; 

(b) NBS, AIBN, CCl4, reflux, 22 – 45%; (c) 4b, 4N aq. NaOH, DMF, rt, 31 – 37%. 

 

The ortho-substituted product 21 was obtained by a nucleophilic aromatic substitution of 

2,5-difluorobenzonitrile (20) and methylpiperidine-4-carboxylate (19) with cesium carbonate 

(Scheme 4). The reduction of the methoxy ester 21 by lithium borohydride provided the primary 

alcohol 22. Appel reaction of 22 gave the bromide 23, which was coupled under basic conditions to 

the mercaptane 4b to yield the final compound 24. 

 

Scheme 4: Reagents and conditions: (a) Cs2CO3, DMSO, 100 °C, 42%; (b) LiBH4, THF, reflux, 98%; (c) CBr4, 

PPh3, acetonitrile, rt, 35%; (d) 4b, K2CO3, DMF, 80 °C, 71%. 

 

The sulfur atom of the previously synthesized Compound 1 was oxidized by mCPBA to the final 

compounds (rac)-25 and 26 (Scheme 5). The final compound 27 was obtained by the partial 

hydrolysis of the cyano group of 1 under acidic conditions (Scheme 5). 
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Scheme 5: Reagents and conditions: (a) mCPBA, DCM, 0° C – RT, 79%; (b) mCPBA, DCM, 0 – 30 °C, 68%; 

(c) H2SO4, TFA, reflux, 78%. 

 

In vitro Phamacology and Structure-Activity Relationship 

The obtained compounds were tested for their inhibitory activity against GSK-3α and GSK-3β in a 

commercial in vitro assay.19-20 The assay was performed at an inhibitor concentration of 1 µM 

(100 nM for 26), using isolated GSK-3α and GSK-3β from porcine brain and staurosporine as 

control.19-20 The results are expressed as percentage of control specific activity.19-20 The structure-

activity relationship was analyzed by systematic modification of scaffold moieties. 

Initially, the hinge binding dihydrobenzodioxine moiety of the lead structure 1 was replaced by a 

benzimidazole group as potential hinge binder. This lead to a massive decreased inhibitory activity 

against both isoforms as compared to the lead structure 1 (Table 1). Consequently, the benzimidazole 

scaffold was abandoned. For all further modification steps the dihydrobenzodioxine scaffold was 

unmodified. 

In the next step, the impact of the spacer between the oxadiazole and the biphenylic scaffold was 

investigated. The oxidation of the thioether 1 to the racemic sulfoxide (rac)-25 resulted in a decrease 

of inhibitory activity, especially against GSK-3α (Table 1). Due to the heavy loss of isoform 

selectivity the racemic product was not separated into the pure enantiomers, as neither of the 

enantiomeric sulfoxides is as active as the sulfide. The further oxidation of 1 to the sulfone 26 led to 

an even stronger decrease of inhibitory activity (Table 1). The introduction of oxygen atoms on the 

linking sulfur apparently results in repulsive interactions, presumably as the biphenylic scaffold is 

displaced and the important π-stacking interaction with Phe67 or with Gln185 cannot be formed. 
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Table 1: Inhibitory activity against GSK-3α and GSK-3β. 

 

Compound Het Y ClogP
a 

tPSA
a 

GSK-3α 
Inhibition 

[%]
b 

GSK-3β 
Inhibition 

[%]
b 

1 µM of compound 

1 
 

S 4.60 76.2 80 45 

12a 

 

S 3.98 82.1 36 0 

(rac)-25 
 

SO 3.40 93.3 48 42 

26 
 

SO2 3.11
 

110.3
 

0 

(100 nM) 

0 

(100 nM) 

a Calculated by ChemBioDraw Ultra (version 13.0.2).21 
b The results are expressed as a percent of control specific activity = 100 – ((measured specific 

activity/control specific activity)*100), at a concentration of 1 µM (100 nM for 26) of the test 

compound. The measurements were performed in duplicates. 

 

The influence of the biphenylic scaffold was investigated next keeping the hinge binding moiety and 

the spacer constant. The introduction of a non-aromatic piperidine in 24 resulted in an immense drop 

of inhibitory potency (Table 2), because the π-stacking interaction with Phe67 or with Gln185 can no 

longer be formed.  

The impact of the cyano substituent on the activity and α-selectivity of 1 was addressed next (Table 2). 

The complete removal of the cyano substituent in 13b (Table 2) resulted in a substantial loss of 

inhibitory activity. 

However, the exchange of the cyano substituent for the amide substituent in Compound 27 resulted in 

the most potent compound (Table 2). Compound 27 inhibits GSK-3α and GSK-3β at a concentration 

of 1 µM at 100 percent. The substitution by 3-fluoropyridine in 13c and 2-fluoropyridine in 13f led to 

an improved inhibitory potency against GSK-3β (Table 2). The inhibitory potency against GSK-3α 

increased slightly. However, the increase of the inhibitory potency against the α-isoform is stronger for 

13f than for 13c. Consequently, the pyridine in 13f was changed back to a phenyl with a cyano 
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substituent in ortho position to the fluorine. Due to the chemical accessibility the first phenyl ring of 

the biphenylic scaffold had to be changed simultaneously to a 2-pyridine in 18b and a 3-pyridine in 

18a. In both cases the modifications led to an immense drop of inhibitory potency (Table 2). 

Moreover, a total loss of activity against GSK-3β was observed for 18a. We assumed that the 

ortho-cyano substituent in 18b and 18a was responsible for the sharp drop of activity. This hypothesis 

was confirmed by the introduction of a second 2-pyridine (18c) into 13f, where 18c shows the same 

activity like 13f (Table 2). In the last step the impact of the fluoro substituent within the pyridines of 

13f and 13c on the activity and α-selectivity was explored. The introduction of electron-donating 

methyl substituents in 13e and 13h leads to a slight improvement of inhibitory potency against 

GSK-3β (Table 2). However, the inhibitory potency against GSK-3α was not affected. Consequently, 

the differentiation between the isoforms was reduced. The introduction of an electron-withdrawing 

cyano-substituent in 13d and 13g led to a decrease of inhibitory potency against GSK-3α (Table 2). 

However, both compounds showed the best discrimination between the isoforms with α-selectivity 

towards GSK-3α. In the case of the inhibition of the β-isoform both compounds behave differently. 

13d showed the same inhibitory activity against GSK-3β as 1. However, in the case of 13g a striking 

decrease of inhibitory activity was observed against the GSK-3β. The docking of 13d and 13g into the 

GSK-3β active site suggested that both cyano substituents contribute to the inhibitor activity by 

establishing a H-bond to the amino acid Arg144. The different activities between both compounds can 

be explained by the rotation of the biphenylic residue. The biphenylic residue of 13g is rotated by 

about 60 degree compared to 13d. Consequently, 13g can not form a π-stacking interaction with 

Gln185. Due to the π-stacking interaction with Gln185, 13d interacts better with the active site. 

Accordingly, 13d shows a higher activity against GSK-3β than 13g. 

Table 2: Inhibitory activity against GSK-3α and GSK-3β. 

 

Compound R ClogP
a 

tPSA
a 

GSK-3α 
Inhibition 

[%]
b 

GSK-3β 
Inhibition 

[%]
b 

1 µM of compound 

1 

 

4.60 76.2 80 45 
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13b 

 

5.17 52.4 13 6 

13c 

 

3.97 64.8 86 84 

13d 

 

3.37 88.6 86 44 

13e 

 

4.24 64.8 86 88 

13f 

 

3.76 64.8 95 78 

13g 

 

3.36 88.6 58 21 

13h 

 

4.03 64.8 99 89 

18a 

 

3.15 88.6 21 0 

18b 

 

3.36 88.6 49 28 

18c 

 

2.55 77.1 93 75 

24 

 

3.88 79.4 20 10 

27 

 

3.39 95.5 100 97 

a Calculated by ChemBioDraw Ultra (version 13.0.2).21 
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b The results are expressed as a percent of control specific activity = 100 – ((measured specific 

activity/control specific activity)*100), at a concentration of 1 µM of the test compound. The 

measurements were performed in duplicates. 

 

The IC50 values of the lead compound 1 and the most potent compound 27 were determined for 

detailed analysis (Table 3). With our novel inhibitor 27 the activity and selectivity against GSK-3α/β 

could be increased further. With an IC50 value of 42 nM for GSK-3α and 140 nM for GSK-3β, 

compound 27 inhibits GSK-3α/β stronger than the lead compound 1.  

Table 3: Inhibitory activity against GSK-3α and GSK-3β IC50 [µM]. 

Compound IC50 GSK-3α [nM]
a 

IC50 GSK-3β [nM]
a 

1 230 >1000 

27 42 140 

a The evaluation of the activity in GSK-3α (h)19 and GSK-3β (h)20 was performed by the company 

Cerep using a published procedure by Greengard et al. (Supporting Info).22 The IC50 values were 

determined by measurement of eight concentrations (0.03 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 

100 nM, 1 µM).  

 

With the intention to elucidate the difference between both isoforms of GSK-3 a sequence alignment 

of GSK-3α (UniProtKB: P49840) on the 3D-structure of GSK-3β (PDB: 3F88) was performed. The 

sequence identity between GSK-3β and GSK-3α was calculated to be 86% by MOE 2014.09.17 

However, all differences between the two isoforms are located away from the ATP-binding site. This 

results in a similarity of 98% within the active site. The SAR study of 13d is best suited to illustrate 

the reasons for isoform-selectivity (Figure 2A). It shows that the cyano substituent contributes to the 

inhibitor selectivity by establishing an H-bond to the amino acid Arg144 (GSK-3β) and within the 

α-isoform to Arg207 (GSK-3α). Arg144 and Arg207 are located in the Arg-rich loop. However, the 

neighboring amino acids within the Arg-rich loop differ between the isoforms. Within GSK-3β there is 

Arg148 (green) while within GSK-3α there is Lys211 (pink). Within GSK-3β Arg144 interacts with 

the next located amino acid Arg148 over a coordinated water molecule (Figure 2A). However, within 

GSK-3α the adjacent amino acids, Arg207 and Lys211, do not interact with each other (Figure 2A). 

We suggest that the water-mediated H-bond between Arg144 and Arg148 is responsible for the 

isoform selectivity of 13d. The amino acids within the Arg-rich loop are likely solvent exposed and 

quite flexible. But the water-mediated H-bond between Arg144 and Arg148 may restrict the motion of 

the side chains, which would cause a conformational entropic penalty.23 This could cancel out any gain 

in binding energy from the interaction between ligand and protein.23 Consequently, 13d inhibits 
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GSK-3β less potent than GSK-3α (Table 2). We therefore propose that the isoform selectivity of our 

scorpion shaped GSK-3 inhibitors is caused by the two different amino acids, GSK-3β: Arg148 

(green), GSK-3α: Lys211 (pink), within the Arg-rich loop. Consequently, the para-substituent of the 

biphenylic moiety of our scorpion shaped GSK-3 inhibitors plays a key role in the selectivity of the 

inhibitor (Figure 2B). Obviously, this is a speculative hypothesis, which has to be confirmed by more 

advanced theoretical and experimental work as well as X-ray studies of GSK-3α. 

A 

 

B 

 

Figure 2: A) Docking study of compound 13d using MOE 2014.09 and the aligned structure of GSK-3α 

(UniProtKB: P49840) and GSK-3β (PDB: 3F88).
17

 Differing amino acids are highlighted, GSK-3β (green) and 

(GSK-3α) pink. B) Schematic overview of the selectivity hypothesis of our scorpion shaped GSK-3 inhibitors. 

 

Aqueous solubility of selected compounds  

The aqueous solubility of chemical agents affects the uptake of the substances into cells and their oral 

bioavailability. Consequently, a good water-solubility is essential for sufficient bioavailability, which 

must be considered for the performance of the compound within the organism. Solubility-driven 

optimization of 1 was the main intention of this work. The solubility values of the most active 

compounds 1, 13c-h, 18c and 27 are shown in Table 4. Some of the compounds (1, 13e, 13h, 18c) 

showed a poor water solubility of below 1 µg/mL, which makes them unsuitable for further 

development. 13d and 27 are not only the most potent compounds, but also the most soluble. The 

highest water solubility of 78 µg/mL (181 µM) was observed for 13d. The most potent compound 27 

also has good aqueous solubility of 34 µg/mL (73 µM).  
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Table 4: Aqueous solubility of selected compounds. 

Compound Solubility [µg/mL]
a Solubility [µM]

a
 

1 < 1 1 

13c dec dec 

13d 78 181 

13e < 1 1 

13f 7 17 

13g 21 50 

13h < 1 < 1 

18c < 1 1 

27 34 73 

a Related to the in vivo assay conditions all diluted samples contain water and 2% DMSO. The 

determination was done by the “Shake-Flask” method24 and HPLC measurements. 

 

In vivo evaluation 

The most soluble and most active candidates 13d and 27 were further profiled for in vivo activity in 

wild-type zebrafish (Danio rerio) embryos. The zebrafish embryo is a useful model to assess dose-

dependent bioavailability and toxicity of compounds. The embryos were collected and maintained in 

E3 medium at ~26°C. The compounds were added 24 hours post fertilization (hpf) and the phenotypes 

compared at 96 and 120 hpf. Both compounds showed no lethality in our concentration range 

(< 60µM). Compound 13d showed no effects on the wild-type zebrafish embryos. At lower 

concentrations of compound 27 from 1 to 15 µM no abnormalities were observed (Figure 3). At 

concentrations of 27 higher than 30 µM all zebrafish embryos showed a stunted and crooked tailed 

phenotype (Figure 3). These observations support the absorption and cell penetration of compound 27. 

Furthermore, this zebrafish embryo assay demonstrates that compound 27 disturbs the zebrafish 

development. For embryonic development of the zebrafish the Wnt/β-catenin-signalling pathway plays 

an important role.25 The Wnt-signalling pathway involves the complex interplay of multiple proteins, 

including GSK-3β in this signalling network.26 The observed phenotype is consistent with activation 

of β-catenin, which is associated with inhibition of GSK-3β.25, 27 Compound 27 exhibits IC50 values of 

42 nM for GSK-3α and 14 nM for GSK-3β inhibition. The concentrations in this experiment are too 

high to achieve isoform-selectivity. Consequently, compound 27 is no longer selective to GSK-3α at 

concentrations higher than 30 µM. It is likely that with this gross experiment isoform-selectivity 
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cannot be detected. Therefore, we tested compound 27 in a cell assay at lower concentrations to 

investigate the effects on GSK-3α versus GSK-3β. 

 

Control 1µM 15 µM 30 µM 45 µM 60 µM 

A B C D E F 

Figure 3: In vivo effects on wt zebrafish embryos by compound 27 (A-F). 

Compound 27 was added 24 hours post-fertilization (hpf) to five embryos in 

duplicates, and the phenotypes were compared after 96 hpf. (A) Control embryo in 

2% DMSO. Zebrafish embryos treated with compound 27 at increasing 

concentrations of (B) 1 µM, (C) 15 µM, (D) 30 µM, (E) 45 µM, (F) 60 µM.  

 

In vitro effects in AML cell lines 

To further investigate the activity of compound 27 in a disease-based model in vitro, we treated two 

AML cell lines (HL-60 and NB4) with increasing concentrations of compound 27. Compound 27 

shows a specific on-target effect with a concentration-dependent decrease in Tyr279 GSK-3α 

phosphorylation without any relevant effect on Tyr216 GSK-3β phosphorylation up to 20 µM 

(Figure 4A). GSK-3α inhibition with compound 27 induces morphological (Figure 4B) and surface 

marker changes (Figure 4C) consistent with AML differentiation. Selective GSK-3α inhibition results 

in methylcellulose colony formation impairment (Figure 4D) in NB4 and HL-60 cell lines. 
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Figure 4: In vitro effects of compound 27 in AML cell lines (HL-60 and NB4). Selective GSK-3α inhibition after 24h 

treatment with increasing concentrations of compound 27 in NB4. Histograms show a quantification of p-GSK-3α 

tyr279 and p-GSK-3β tyr216 relative to total GSK-3α and β respectively (A). Morphological changes (B: 

decreased nuclear to cytoplasmic ratio and increased vacuolization) and surface markers expression (CD11b, 

CD11c and CD14) consistent with differentiation after 6 days of treatment, histograms and means of fluorescence 

of 10 000 independent events are represented (C). Concentration-dependent colony formation impairment. 

*p<0,05 relative to corresponding DMSO. Error bars represent means +/- SEM (D).  

 

Conclusion 

Starting from the poorly soluble lead compound 1 a series of improved GSK-3 inhibitors was obtained 

by rational design. Optimization, primarily of the biphenylic scaffold of 1 led to the potent and α-

selective GSK-3 inhibitor 27 with improved solubility. Compound 27 exhibits IC50 values of 42 nM 

for GSK-3α and 140 nM for GSK-3β. The homology model of GSK-3α/β and the in vitro activities of 

the isoform-selective compounds lead us to the hypothesis, that interactions to Arg148 (GSK-3β) and 

Lys211 (GSK-3α) within the Arg-rich loop are significant contributors for isoform-selectivity.  

Our best compounds 13d and 27 were further profiled for efficacy and toxicity in the wt zebrafish 

embryo assay. Compound 27 showed reported phenotypes without lethality in vivo and proof of 

efficacy in vitro in two AML cell lines. A strong dose dependent differentiation phenotype and colony 
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formation impairment through selective GSK-3α inhibition was observed in AML cell lines. The 

properties of 27 make it an excellent tool compound to study the different pathogenesis contributions 

of the isoforms GSK-3α and GSK-3β and a promising therapeutic candidate in AML.  
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Experimental Section 

General Information 

All chemicals were purchased as reagent grade from commercial suppliers and used without further 

purification. All reactions under anhydrous conditions were carried out under argon atmosphere with 

dry solvents.  

The 1H-NMR spectra were recorded on a Bruker DRX 300 spectrometer at 300 MHz and on a Bruker 

DRX 500 spectrometer at 500 MHz. The 13C-spectra were recorded on a Bruker DRX 300 spectrometer 

at 75 MHz and on a Bruker DRX 500 spectrometer at 125 MHz. Chemical shifts are expressed in parts 

per million (ppm) and calibrated from the used solvent: CHCl3 (δCDCl3
 = 7.26 ppm, 

δCDCl3
 = 77.16 ppm), DMSO-d6 (δ(CHD2)SO(CD3) = 2.50 ppm, δ(CD3)SO(CD3) = 39.52 ppm). The respective 

measuring frequency, the used solvent and the measuring temperature are added in brackets to the 

spectroscopic data. Fine structures of proton signals are labeled with the following abbreviations: s for 

singlet, d for doublet, t for triplet, q for quartet and m for multiplet. Coupling constants (J values) are 

given in hertz (Hz). 

Mass spectrometry was performed on a MAT 95 double focusing sector field EI-MS. Detected ion 

masses (m/z) are expressed in u.  

Analytical high performance liquid chromatographies (HPLC) were carried out on an Agilent 1100 

(column: reversed phase, Synergi 4u Polar-RP 80A, 4.6x150 mm, Variable Wavelength Detector 

λ = 254 nm). As a standard method a solvent gradient of acetonitrile (B) and 0.1% trifluoroacetic acid 

in water (A) (70% A; 30% B (0 to 1 min) up to 90% B) with a flow rate of 1 mL/min and an elapsed 

time of 12 min was used.  

Flash column chromatography was carried out using silica gel 60 (15 – 40 µm, Merck). The automated 

flash chromatography was carried out on a Combi Flash Rf from Teledyne Isco using a reversed phase 

C18 high performance column (RediSep) and a mixture of MeCN/H2O. Thin-layer chromatography 

was carried out using aluminium sheets precoated with silica gel 60 F254 (0.2 mm, Merck). UV light 

with a wavelength of 254 nm and 360 nm was used for detection. 

All compounds that were evaluated in biological assays had >95% purity using HPLC method 

described above.  

Methyl 1H-benzo[d]imidazole-5-carboxylate (3a). 3a was synthesized in a similar manner to 

that described for 4b in the literature procedure by Schmidt et al.9 HPLC: 83%, tR = 0.83 min.1H-

NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 3.87 (s, 3H), 7.68 (d, J = 8.3 Hz, 1H), 7.84 (dd, 
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J = 1.4 Hz, J = 8.3 Hz, 1H), 8.23 (s, 1H), 8.40 (s, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): 

δ (ppm) = 51.9, 112.1, 123.0, 123.3, 125.7, 137.9, 142.1, 144.6, 166.8. 

Methyl 2,3-dihydrobenzo[b][1,4]dioxine-6-carboxylate (3b). 3b was synthesized according to 

the literature procedure by Schmidt et al.9  

5-(1H-Benzo[d]imidazol-5-yl)-1,3,4-oxadiazole-2-thiol (4a). 4a was synthesized in a similar 

manner to that described for 4b in the literature procedure by Schmidt et al.9 HPLC: 90%, 

tR = 0.92 min.1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 7.75 (dd, J = 1.6 Hz, J = 8.4 Hz, 1H), 

7.79 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 0.8 Hz, 1H), 8.50 (s, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): 

δ (ppm) = 113.9, 116.2, 120.1, 123.2, 137.9, 140.0, 144.5, 163.3, 177.3. 

5-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1,3,4-oxadiazole-2-thiol (4b). 4b was synthesized 

according to the literature procedure by Schmidt et al.9  

General Procedure A: Suzuki coupling reaction (7a-d,g; 9e,f,h; 16a-c).9 

Under an argon atmosphere the aryl bromide  (2.50 mmol, 1.00 eq) was dissolved in 7 mL of 

toluene/EtOH (1/1). To the solution Pd(PPh3)4 (0.07 mmol, 0.03 eq) and 3.75 mL of 2 N aqueous 

Na2CO3 were added and the two-phase system was stirred for 15 min. Then the boronic acid 

(3.00 mmol, 1.20 eq) was added and the reaction mixture was refluxed at 80 °C for 2 d. After 

confirming the completion of the reaction by HPLC the mixture was diluted with water and extracted 

with EtOAc. The organic layers were dried over MgSO4. The solvent was evaporated under reduced 

pressure and the crude product was purified by column chromatography using a mixture of 

cyclohexane/EtOAc. 

4-Fluoro-4'-methyl-[1,1'-biphenyl]-2-carbonitrile (7a). 7a was synthesized according to the 

literature procedure by Schmidt et al.9  

4-Fluoro-4'-methyl-1,1'-biphenyl (7b). Yield 99%, colorless solid. HPLC: 97%, 

tR = 8.12 min.1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 2.34 (s, 3H), 7.26 (m, 4H), 7.53 (d, 

J = 8.07 Hz, 2H), 7.66 (m, 2H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 20.6, 115.6 (d, 

JC-F = 19 Hz, 2C), 126.4 (2C), 128.3 (d, JC-F = 8 Hz, 2C), 129.5 (2C), 136.2, 136.5 (d, JC-F = 3 Hz), 

136.6, 161.6, (d, JC-F = 242 Hz). 

5-Fluoro-2-(p-tolyl)pyridine (7c). Yield 67%, beige solid. HPLC: 98%, tR = 6.17 min.1H-NMR 

(DMSO, 500 MHz, 300 K): δ (ppm) = 2.35 (s, 3H), 7.29 (d, J = 7.9 Hz, 2H), 7.78 (td, J = 8.8 Hz, 

J = 3.0 Hz, 1H), 7.94 (d, J = 8.2 Hz, 2H), 7.99 (dd, J = 8.9 Hz, J = 4.4 Hz, 1H), 8.62 (d, J = 3.0 Hz, 

1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 20.7, 121.2 (d, JC-F = 4 Hz), 124.0 (d, 

JC-F = 18 Hz), 126.3 (2C), 129.3 (2C), 135.0, 137.2 (d, JC-F = 24 Hz), 138.4, 152.7 (d, JC-F = 3 Hz), 

158.4 (d, JC-F = 254 Hz). 
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6-(p-Tolyl)nicotinonitrile (7d). Yield 85%, beige solid. HPLC: 96%, tR = 6.77 min.1H-NMR 

(DMSO, 500 MHz, 300 K): δ (ppm) = 2.38 (s, 3H), 7.35 (d, J = 7.9 Hz, 2H), 8.08 (m, 2H), 8.16 (dd, 

J = 8.4 Hz, J = 0.8 Hz, 1H), 8.34 (dd, J = 8.4 Hz, J = 2.2 Hz, 1H), 9.06 (dd, J = 2.2 Hz, J = 0.8 Hz, 

1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 20.9, 107.0, 117.3, 119.7, 127.1 (2C), 129.6 

(2C), 134.2, 140.5, 140.8, 152.4, 159.1. 

5-(p-Tolyl)picolinonitrile (7g). Yield 75%, colorless solid. HPLC: 96%, tR = 6.71 min. 1H-NMR 

(DMSO, 500 MHz, 300 K): δ (ppm) = 2.37 (s, 3H), 7.35 (d, J = 7.9 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 

8.08 (d, J = 8.2 Hz, 1H), 8.31 (dd, J = 8.2 Hz, J = 2.3 Hz, 1H), 9.07 (d, J = 2.3 Hz, 1H). 13C-NMR 

(DMSO, 125 MHz, 300 K): δ (ppm) = 20.8, 117.7, 127.2 (2C), 129.1, 129.9 (2C), 130.8, 132.3, 

134.9, 138.9, 139.2, 149.0. 

(4-(5-Methylpyridin-2-yl)phenyl)methanol (9e). Yield 62%, colorless solid. HPLC: 99%, 

tR = 0.83 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 2.33 (s, 3H), 4.55 (d, J = 5.7 Hz, 2H), 

5.21 (t, J = 5.7 Hz, OH), 7.41 (d, J = 8.0 Hz, 2H), 7.67 (m, 1H), 7.83 (d, J = 8.1 Hz, 1H), 8.01 (d, 

J = 8.1 Hz, 2H), 8.48 (s, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 17.6, 62.6, 119.4, 

125.9 (2C), 126.7 (2C), 131.5, 137.1, 137.4, 1143.1, 149.7, 153.3. 

(4-(6-Fluoropyridin-3-yl)phenyl)methanol (9f). Yield 27%, colorless solid. HPLC: 99%, 

tR = 3.55 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 4.61 (s, 2H), 6.96 (dd, J = 8.5 Hz, 

J = 3.0Hz, 1H), 7.40 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 7.93 (ddd, J = 8.5 Hz, J = 2.6 Hz, 

J = 1.3 Hz, 1H), 8.31 (d, J = 2.3 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 63.0, 

108.9 (d, JC-F = 36 Hz), 126.2 (2C), 126.9 (2C), 134.1 (d, JC-F = 4 Hz), 134.4, 139.1 (d, JC-F = 7 Hz), 

141.7, 144.8 (d, JC-F = 15 Hz), 162.4 (d, JC-F = 239 Hz). 

(4-(6-Methylpyridin-3-yl)phenyl)methanol (9h). Yield 52%, colorless solid. HPLC: 93%, 

tR = 0.81 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 2.50 (s, 3H), 4.54 (d, J = 5.7 Hz, 2H), 

5.23 (t, J = 5.7 Hz, OH), 7.32 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H), 

7.94 (dd, J = 8.1 Hz, J = 2.3 Hz, 1H), 8.73 (d, J = 2.3 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): 

δ (ppm) = 23.6, 62.6, 123.1, 126.3 (2C), 127.1 (2C), 132.6, 134.2, 135.5, 142.2, 146.7, 156.7. 

2-Fluoro-5-(6-methylpyridin-3-yl)benzonitrile (16a). Yield 87%, colorless solid. HPLC: 99%, 

tR = 1.75 min. 1H-NMR (CDCl3, 500 MHz, 300 K): δ (ppm) = 2.75 (2, 3H), 7.36 (t, J = 8.4 Hz, 1H), 

7.41 (d, J = 7.9 Hz, 1H), 7.81 (dd, J = 11.9 Hz, J = 5.6 Hz, 2H), 7.91 (d, J = 7.9 Hz, 1H), 8.73 (s, 1H). 

13
C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 23.0, 102.9 (d, JC-F = 17 Hz), 113.5, 117.7 (d, 

JC-F = 23 Hz), 124.9, 132.0, 132.1, 133.7 (d, JC-F = 8 Hz), 134.2, 137.0, 145.0, 157.4, 163.3 (d, 

JC-F = 263 Hz). 

Page 19 of 29

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20 

 

2-Fluoro-5-(5-methylpyridin-2-yl)benzonitrile (16b). Yield 91%, colorless solid. HPLC: 91%, 

tR = 2.61 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 2.34 (s, 3H), 7.61 (t, J = 9.0 Hz, 1H), 

7.74 (dd, J = 8.6 Hz, 2.1 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 8.46 (ddd, J = 8.8 Hz, 5.3 Hz, 2.4 Hz, 1H), 

8.52 (d, J = 2.1 Hz, 1H), 8.54 (dd, J = 6.3 Hz, 2.4 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): 

δ (ppm) = 17.6, 100.6 (d, JC-F = 16 Hz), 113.9, 116.9 (d, JC-F = 21 Hz), 119.9, 131.3, 132.9, 133.6 (d, 

JC-F = 8 Hz), 136.1 (d, JC-F = 4Hz), 137.8, 149.9, 150.3, 162.6 (d, JC-F = 257 Hz). 

6'-Fluoro-5-methyl-2,3'-bipyridine (16c). Yield 99%, orange solid. HPLC: 92%, tR = 1.31 min. 
1
H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 2.35 (s, 3H), 7.28 (dd, J = 8.8 Hz, 2.7 Hz, 1H), 7.74 

(ddd, J = 8.1 Hz, 2.2 Hz, 0.7 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 8.53 (dd, J = 1.5 Hz, 0.7 Hz, 1H), 8.59 

(m, 1H), 8.88 (d, J = 2.5 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 17.5, 109.5 (d, 

JC-F = 36 Hz), 119.5, 128.7 (d, JC-F = 10 Hz), 131.4 (d, JC-F = 16 Hz), 132.7, 132.8 (d, JC-F = 4 H), 

137.7, 139.8 (d, JC-F = 8 Hz), 145.5 (d, JC-F = 16 Hz), 150.0, 163.2 (d, JC-F = 237 Hz). 

General Procedure B: Radical bromination (8a-d,g; 17a-c).9 

The substituted toluene (1.00 eq) was diluted in 20 mL of CCl4 and NBS (0.95 eq) and AIBN (5 mg 

per mmol) was added in portions over a period of 1 h. The reaction mixture was heated to reflux for 

16 h. After cooling to rt the mixture was diluted with water and CCl4 was evaporated. The residue was 

extracted with EtOAc and washed with brine. The organic layers were dried over MgSO4 and 

concentrated under reduced pressure. The crude product was purified by column chromatography 

using a mixture of cyclohexane/EtOAc.  

4'-(Bromomethyl)-4-fluoro-[1,1'-biphenyl]-2-carbonitrile (8a). 8a was synthesized according 

to the literature procedure by Schmidt et al.9 

4-(Bromomethyl)-4'-fluoro-1,1'-biphenyl (8b). Yield 52%, colorless solid. HPLC: 87%, 

tR = 8.39 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 4.76 (s, 2H), 7.29 (m, 2H), 7.53 (m, 

2H), 7.64 (m, 2H), 7.72 (m, 2H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 34.2, 115.6, 115.8, 

126.9 (2C), 128.6, 128.7, 129.9 (2C), 136.0 (d, JC-F = 2 Hz), 137.1, 139.0, 162.0 (d, JC-F = 245 Hz). 

2-(4-(Bromomethyl)phenyl)-5-fluoropyridine (8c). Yield 65%, colorless solid. HPLC: 61%, 

tR = 7.15 min.1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 4.67 (s, 2H), 7.55 (d, J = 8.7 Hz, 2H), 

7.82 (dd, J = 8.0 Hz, J = 3.0 Hz, 1H), 8.03 (d, J = 8.7 Hz, 2H), 8.03 (d, J = 8.0 Hz, 1H), 8.66 (d, 

J = 3.0 Hz, 1H). 13
C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 34.5, 122.2, 124.6 (d, 

JC-F = 24 Hz), 127.2, 127.8, 130.2, 132.7, 138.0 (d, JC-F = 24 Hz), 139.2, 152.6, 159.1 (d, 

JC-F = 245 Hz). 

6-(4-(Bromomethyl)phenyl)nicotinonitrile (8d). Yield 89%, pale yellow solid. HPLC: 73%, 

tR = 7.26 min.1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 4.78 (s, 2H), 7.61 (d, J = 8.4 Hz, 2H), 
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7.78 (d, J = 8.4 Hz, 2H), 8.20 (m, 1H), 9.11 (m, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): 

δ (ppm) = 34.2, 108.0, 117.6, 121.0, 128.2, 130.4, 132.9, 141.5, 144.5, 153.2, 158.4. 

5-(4-(Bromomethyl)phenyl)picolinonitrile (8g). Yield 64%, colorless solid. HPLC: 96%, 

tR = 7.17 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 4.78 (s, 2H), 7.62 (d, J = 8.3 Hz, 2H), 

7.84 (m, 2H), 8.12 (d, J = 8.1 Hz, 1H), 8.36 (dd, J = 8.2 Hz, 2.3 Hz, 1H), 9.11 (d, J = 2.3 Hz, 1H). 13C-

NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 33.7, 117.6, 127.7 (2C), 129.8, 130.2 (2C), 131.3, 135.1, 

135.4, 138.4, 139.3, 149.3. 

5-(6-(Bromomethyl)pyridin-3-yl)-2-fluorobenzonitrile (17a). Yield 22%, pale yellow solid. 

HPLC: 85%, tR = 6.77 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 4.70 (d, J = 63.6 Hz, 

2H), 7.36 (t, J = 8.4 Hz, 1H), 7.61 (dd, J = 20.0 Hz, J = 8.4 Hz, 1H), 7.85 (m, 3H), 8.75 (s, 1H). 13C-

NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 29.9, 113.5, 117.7 (d, JC-F = 21 Hz), 124.1, 132.2, 133.3, 

133.8 (d, JC-F = 8 Hz),134.6 (d, JC-F = 4 Hz), 136.0, 147.4, 156.8, 163.3 (d, JC-F = 251 Hz). 

5-(5-(Bromomethyl)pyridin-2-yl)-2-fluorobenzonitrile (17b). Yield 39%, beige solid. HPLC: 

85%, tR = 6.77 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 4.80 (s, 2H), 7.65 (t, J = 9.0 Hz, 

1H), 8.00 (dd, J = 8.2 Hz, 2.3 Hz, 1H), 8.08 (d, J = 8.2 Hz, 1H), 8.50 (ddd, J = 8.7 Hz, 5.3 Hz, 2.4 Hz, 

1H), 8.59 (dd, J = 6.3 Hz, 2.4 Hz, 1H), 8.76 (d, J = 2.1 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 

300 K): δ (ppm) = 30.6, 100.8 (d, JC-F = 25 Hz), 113.9, 117.1 (d, JC-F = 15 Hz), 120.5, 131.9, 133.8, 

134.1 (d, JC-F = 15 Hz), 135.5, 138.3, 150.1, 152.7, 162.9 (d, JC-F = 256 Hz). 

5-(Bromomethyl)-6'-fluoro-2,3'-bipyridine (17c). Yield 45%, orange solid. HPLC: 76%, 

tR = 4.92 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 4.80 (s, 2H), 7.31 (dd, J = 8.2 Hz, 

J = 2.9 Hz, 1H), 8.00 (dd, J = 8.2 Hz, J = 2.3 Hz, 1H), 8.05 (dd, J = 8.2 Hz, J = 0.7 Hz, 1H), 8.63 (m, 

1H), 8.76 (d, J = 1.9 Hz, 1H), 8.92 (d, J = 2.5 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): 

δ (ppm) = 30.6, 109.7, 120.5, 132.8, 133.6, 138.2, 140.3, 146.1, 149.9, 150.1, 163.5 (d, JC-F = 245 Hz). 

General Procedure C: Bromination of the benzylic alcohols (8e,f,g).  

To a solution of the benzylic alcohol 9e,f,g (2.50 eq) in toluene (10 mL per mmol) was added 

phosphorous tribromide (1.00 eq). The reaction mixture was refluxed at 110 °C for 3 h. After cooling 

to rt the solvent was evaporated under a reduced pressure. The crude product was used for the next 

reaction without any purification. 

General Procedure D: Preparation of thioethers by nucleophilic substitution (1; 

12a;13b-h; 18a-c). 

To a solution of the mercaptane (1.00 eq) in DMF (10 mL per mmol) was added 4N NaOH. The 

mixture was stirred at rt for 15 min. Afterwards the benzylic bromide (1.25 eq) was added and the 

reaction mixture was stirred at rt for another 6 h. The formed precipitate is filtered off, washed once 
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with a small amount of DMF and then thoroughly with EtOH. The product was dried under reduced 

pressure.  

Purification of compounds, which did not precipitate in DMF was performed as follows. The mixture 

was diluted with EtOAc. The separated organic layer was washed with brine several times, dried over 

MgSO4 and dried under reduced pressure. The crude product was purified by column chromatography 

using silica gel and a mixture of cyclohexane/EtOAc or by automated flash chromatography using a 

reversed phase C18 high performance column (RediSep) and a mixture of MeCN/H2O.  

4'-(((5-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1,3,4-oxadiazol-2-yl)thio)methyl)-4-fluoro-

[1,1'-biphenyl]-2-carbonitrile (1). 1 was synthesized according to the literature procedure by 

Schmidt et al.9 

4'-(((5-(1H-Benzo[d]imidazol-6-yl)-1,3,4-oxadiazol-2-yl)thio)methyl)-4-fluoro-[1,1'-

biphenyl]-2-carbonitrile (12a). Yield 13%, colorless solid. HPLC: 95%, tR = 5.53 min. 1H-NMR 

(DMSO, 500 MHz, 300 K): δ (ppm) = 4.68 (s, 2H), 7.57 (d, J = 8.2 Hz, 2H), 7.66 (m, 4H), 7.77 (d, 

J = 8.4 Hz, 1H), 7.83 (dd, J = 8.4 Hz, J = 1.4 Hz, 1H), 7.95 (m, 1H), 8.19 (s, 1H), 8.42 (s, 1H). 13C-

NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 35.5, 111.6 (d, JC-F = 10 Hz), 116.6, 117.4 (d, 

JC-F = 27 Hz), 120.3 (d, JC-F = 7 Hz), 120.5, 121.0 (d, JC-F = 21 Hz), 122.6 (d, JC-F = 23 Hz), 125.5, 

129.0 (2C), 129.4 (2C), 132.4 (d, JC-F = 8 Hz), 136.2, 137.5, 139.6, 140.8 (d, JC-F = 3 Hz), 144.3, 

144.5, 160.8 (d, JC-F = 246 Hz), 162.6, 166.2. EI-MS: m/z (%): 427 (20, [M+]), 428 (5, [M+ + H]). 

2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-5-(((4'-fluoro-[1,1'-biphenyl]-4-yl)methyl)thio)-

1,3,4-oxadiazole (13b). Yield 48%, colorless solid. HPLC: 99%, tR = 8.72 min. 1H-NMR (DMSO, 

500 MHz, 300 K): δ (ppm) = 4.32 (m, 4H), 4.60 (s, 2H), 7.04 (d, J = 8.4, 1H), 7.27 (td, J = 6.7 Hz, 

3.4 Hz, 2H), 7.39 (d, J = 2.1 Hz, 1H), 7.44 (dd, J = 8.4 Hz, 2.1 Hz, 1H), 7.54 (d, J = 8.3 Hz, 2H), 7.62 

(d, J = 8.3 Hz, 2H), 7.69 (m, 2H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 35.6, 64.0, 64.4, 

115.0, 115.6, 115.7, 115.9, 118.1, 119.9, 126.8 (2C), 128.5, 128.6, 129.6 (2C), 135.9, 136.0, 138.5, 

143.8, 146.7, 161.9 (d, JC-F = 245 Hz, 1C), 162.5, 164.9. EI-MS: m/z (%): 420 (16, [M+]), 421 (5, 

[M+ + H]). 

2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-5-(4-(5-fluoropyridin-2-yl)benzylthio)-1,3,4-oxa-

diazole (13c). Yield 66%, colorless solid. HPLC: 96%, tR = 8.09 min. 1H-NMR (DMSO, 500 MHz, 

300 K): δ (ppm) = 4.31 (dd, J = 12.6 Hz, J = 5.0 Hz 4H), 4.61 (s, 2H), 7.04 (d, J = 8.4 Hz, 1H), 7.43 

(m, 2H), 7.57 (d, J = 8.2 Hz, 2H), 7.80 (td, J = 8.7 Hz, J = 2.9 Hz, 1H), 8.05 (m,3H), 8.63 (d, 

J = 2.9 Hz, 1H).13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 35.6, 64.1, 64.4, 115.1, 115.9, 

118.1, 119.9, 121.7 (d, JC-F = 5 Hz), 124.1 (d, JC-F = 18 Hz), 126.6 (2C), 129.5 (2C), 137.1, 137.3, 

137.5 (d, JC-F = 6 Hz), 143.8, 146.7, 152.2 (d, JC-F = 4 Hz), 158.6 (d, JC-F = 254 Hz), 162.5, 165.0. EI-

MS: m/z (%): 421 (20, [M+]), 422 (4, [M+ + H]). 

Page 22 of 29

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23 

 

6-(4-((5-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1,3,4-oxadiazol-2-ylthio)methyl)phenyl)-

nicotinonitrile (13d). Yield 51%, colorless solid. HPLC: 95%, tR = 7.89 min. 1H-NMR (DMSO, 

500 MHz, 300 K): δ (ppm) = 4.31 (dtd, J = 2.1 Hz, J = 3.5 Hz, 4.3 Hz, 4H), 4.63 (s, 2H), 7.04 (d, 

J = 8.5 Hz, 1H), 7.38 (d, J = 2.1 Hz, 1H), 7.43 (dd, J = 2.1 Hz, J = 8.4 Hz, 1H), 7.63 (d, J = 8.4 Hz, 

2H), 8.14 (d, J = 8.4 Hz, 2H), 8.18 (dd, J = 0.6 Hz, J = 8.4 Hz, 1H), 8.37 (dd, J = 2.2 Hz, J = 8.4 Hz, 

1H), 9.07 (dd, J = 0.6 Hz, J = 2.1 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 35.6, 

64.0, 64.4, 107.4, 115.0, 115.9, 117.2, 118.1, 119.9, 120.2, 127.4 (2C), 127.9 (2C), 136.3, 139.4, 

140.9, 143.8, 146.7, 152.5, 158.6, 162.4, 164.6. EI-MS: m/z (%): 428 (38, [M+]). 

2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-5-(4-(5-methylpyridin-2-yl)benzylthio)-1,3,4-

oxadiazole (13e). Yield 27%, colorless solid. HPLC: 98%, tR = 5.26 min. 1H-NMR (DMSO, 

500 MHz, 300 K): δ (ppm) = 2.33 (s, 3H), 4.32 (ddd, J = 5.2 Hz, J = 4.5 Hz, J = 1.6 Hz, 4H), 4.61 (s, 

2H), 7.04 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 2.0 Hz, 1H), 7.44 (dd, J = 8.4 Hz, 2.1 Hz, 1H), 7.56 (d, 

J = 8.3 Hz, 2H), 7.68 (dd, J = 8.2 Hz, 1.7 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 8.02 (d, J = 8.3 Hz, 2H), 

8.49 (d, J = 1.2 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 17.6, 35.8, 64.0, 64.4, 

115.0, 115.9, 118.1, 119.6, 119.9, 126.4 (2C), 129.4 (2C), 131.9, 137.1, 137.5, 138.1, 143.8, 146.7, 

149.7, 152.8, 162.5, 164.9. EI-MS: m/z (%): 417 (32, [M+]). 

2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-5-((4-(6-fluoropyridin-3-yl)benzyl)thio)-1,3,4-

oxadiazole (13f). Yield 58%, colorless solid. HPLC: 98%, tR = 8.10 min. 1H-NMR (DMSO, 

500 MHz, 300 K): δ (ppm) = 4.32 (m, 4H),4.61 (s, 2H), 7.04 (d, J = 8.4 Hz, 1H), 7.27 (dd, J = 8.5 Hz, 

J = 2.8 Hz, 1H), 7.38 (d, J = 2.0 Hz, 1H), 7.44 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 

7.70 (d, J = 8.3 Hz, 2H), 8.27 (td, J = 8.2 Hz, J = 2.6 Hz, 1H), 8.53 (d, J = 2.6 Hz, 1H). 13C-NMR 

(DMSO, 125 MHz, 300 K): δ (ppm) = 35.6, 64.1, 64.4, 109.6 (d, JC-F = 37 Hz), 115.1, 115.9, 118.1, 

119.9, 127.0 (2C), 129.8 (2C), 133.6 (d, JC-F = 4 Hz), 135.2 (d, JC-F = 4 Hz), 136.9, 140.3 (d, 

JC-F = 9 Hz), 143.8, 145.4 (d, JC-F = 16 Hz), 146.7, 162.5,, 162.7 (d, JC-F = 263 Hz), 165.0. EI-MS: m/z 

(%): 421 (100, [M+]), 422 (26, [M+ + H]), 423 (8, [M+ + 2H]). 

5-(4-(((5-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1,3,4-oxadiazol-2-yl)thio)methyl)phenyl) 

picolinonitrile (13g). Yield 58%, colorless solid. HPLC: 99%, tR = 8.02 min. 1H-NMR (DMSO, 

500 MHz, 300 K): δ (ppm) = 4.32 (dtd, J = 7.3 Hz, J = 3.5 Hz, J = 2.1 Hz, 4H), 4.63 (s, 2H), 7.04 (d, 

J = 8.5 Hz, 1H), 7.38 (d, J = 2.1 Hz, 1H), 7.43 (dd, J = 8.4 Hz, J = 2.1 Hz, 1H), 7.64 (d, J = 8.3 Hz, 

2H), 7.82 (d, J = 8.3 Hz, 2H), 8.11 (d, J = 8.2 Hz, 1H), 8.33 (dd, J = 8.2 Hz, J = 2.3 Hz, 1H), 9.09 (d, 

J = 1.7 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 35.5, 64.1, 64.4, 115.1, 155.9, 

117.6, 118.2, 119.9, 127.5 (2C), 129.1, 130.0 (2C), 131.2, 134.6, 135.3, 138.3, 138.4, 143.8, 146.7, 

149.2, 162.5, 165.0. EI-MS: m/z (%): 428 (100, [M+]), 429 (28, [M+ + H]), 430 (8, [M+ + 2H]). 
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2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-5-(4-(6-methylpyridin-3-yl)benzylthio)-1,3,4-

oxadiazole (13h). Yield 12%, colorless solid. HPLC: 97%, tR = 5.17 min. 1H-NMR (DMSO, 

500 MHz, 300 K): δ (ppm) = CH3 fehlt, 4.32 (m, 4H), 4.61 (s, 2H), 7.04 (d, J = 8.4 Hz, 1H), 7.33 (d, 

J = 8.1 Hz, 1H), 7.39 (d, J = 2.1 Hz, 1H), 7.44 (dd, J = 8.4 Hz, J = 2.1 Hz, 1H), 7.57 (d, J = 8.3 Hz, 

2H), 7.66 – 7.69 (m, 2H), 7.95 (dd, J = 8.1 Hz, J = 2.5 Hz, 1H), 8.73 (d, J = 2.2 Hz, 1H). 13C-NMR 

(DMSO, 125 MHz, 300 K): δ (ppm) = 24.1, 36.1, 64.6, 64.9, 114.9, 115.6, 116.4, 118.6, 120.4, 123.6, 

127.2, 130.2, 132.6, 134.8, 136.9, 137.0, 144.3, 147.2, 157.4, 163.1, 165.5. EI-MS: m/z (%): 417 (100, 

[M+]), 418 (26, [M+ + H], 419 (8, [M+ + 2H]). 

2-(6-((5-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1,3,4-oxadiazol-2-ylthio)methyl)pyridin-3-

yl)-5-fluorobenzonitrile (18a). Yield 33%, colorless solid. HPLC: 98%, tR = 7.32 min. 1H-NMR 

(CDCl3, 500 MHz, 300 K): δ (ppm) = 4.31 (dddd, J = 6.8 Hz, J = 5.0 Hz, 3.4 Hz, 1.6 Hz, 4H), 5.03 (s, 

2H), 6.95 (m, 1H), 7.46 (dd, J = 2.0 Hz,  J = 6.9 Hz, 3H), 7.85 (ddd, J = 12.3 Hz, J = 4.7 Hz, 

J = 2.1 Hz, 2H), 8.32 (m, 2H), 8.87 (s, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 29.9, 

64.4, 64.8, 102.5 (d, JC-F = 6 Hz), 114.4, 116.1, 116.1, 117.7 (d, JC-F = 29 Hz), 118.3, 120.6, 122.9, 

128.4, 131.2, 132.4 (d, JC-F = 7 Hz), 133.8 (d, JC-F = 8 Hz), 134.0, 138.4, 144.1, 144.4, 149.8, 151.8, 

155.4, 157.8 (d, JC-F = 254 Hz), 165.0. EI-MS: m/z = 463 (100, [M+]), 464 (26, [M+ + H]), 465 (7, 

[M+ + 2H]. 

5-(5-(((5-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1,3,4-oxadiazol-2-yl)thio)methyl)pyridin-

2-yl)-2-fluorobenzonitrile (18b). Yield 37%, colorless solid. HPLC: 99%, tR = 7.58 min. 1H-

NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 4.32 (m, 4H), 4.64 (s, 2H), 7.04 (d, J = 8.5 Hz, 1H), 

7.37 (d, J = 2.1 Hz, 1H), 7.43 (dd, J = 8.5 Hz, 2.1 Hz, 1H), 7.65 (t, J = 9.1 Hz, 1H), 8.03 (dd, 

J = 8.3 Hz, 2.2 Hz, 1H), 8.07 (dd, J = 8.2 Hz, 0.5 Hz, 1H), 8.48 (ddd, J = 8.9 Hz, 5.3 Hz, 2.4 Hz, 1H), 

8.58 (dd, J = 6.2 Hz, 2.3 Hz, 1H), 8.77 (d, J = 1.7 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): 

δ (ppm) = 32.8, 64.1, 64.4, 95.2, 113.9, 115.1, 115.8, 117.0, 117.1, 118.1, 119.9, 120.3, 131.8, 132.8, 

134.0 (d, JC-F = 8 Hz), 136.1, 138.0, 143.8, 146.7, 150.0, 152.2, 156.7, 163.6 (d, JC-F = 356 Hz). EI-

MS: m/z (%): 446 (100, [M+]), 447 (27, [M+ + H]), 448 (8, [M+ + 2H]).2-(2,3-

Dihydrobenzo[b][1,4]dioxin-6-yl)-5-(((6'-fluoro-[2,3'-bipyridin]-5-yl)methyl)thio)-1,3,4-

oxadiazole (18c). Yield 31%, pale yellow solid. HPLC: 95%, tR = 6.69 min. 1H-NMR (DMSO, 

500 MHz, 300 K): δ (ppm) = 4.31 (dtd, J = 7.3 Hz, J = 3.6 Hz, 2.1 Hz, 4H), 4.64(s, 2H), 7.04 (d, 

J = 2.1 Hz, 1H), 7.30 (dd, J = 8.6 Hz, J = 2.6 Hz, 1H), 7.37 (d, J = 2.1 Hz, 1H), 7.43 (dd, J = 8.5 Hz, 

J = 2.1 Hz, 1H), 8.01 – 8.05 (m, 2H), 8.61 (td, J = 8.3 Hz, J = 2.6 Hz, 1H), 8.77 (d, J = 1.7 Hz, 1H), 

8.90 (d, J = 2.5 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 32.8, 64.0, 64.4, 109.6 (d, 

JC-F = 39 Hz), 115.1, 115.8, 118.1, 119.9, 120.3, 132.4 (d, JC-F = 7 Hz), 132.5, 137.9, 140.2 (d, 

JC-F = 9 Hz), 143.8, 145.8, 145.9, 146.7, 150.1, 151.9, 162.4, 163.6 (d, JC-F = 356 Hz). EI-MS: m/z 

(%): 422 (100, [M+]), 423 (36, [M+ + H]), 424 (11, [M+ + 2H]). 
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Methyl-1-(2-cyano-4-fluorophenyl)piperidine-4-carboxylate (21). Methyl piperidine-4-

carboxylate (0.62 g, 4.32 mmol, 1.20 eq) and 2,5-difluorobenzonitrile (0.50 g, 3.60 mmol, 1.00 eq) 

were dissolved in 10 mL DMSO. Cesium carbonate (1.41 g, 4.32 mmol, 1.2 eq) was added and the 

reaction mixture was stirred at 100°C for 18 h. After cooling to rt, the reaction mixture was diluted 

with water and extracted with EtOAc. The organic layer was washed with saturated NaHCO3 solution 

and brine, dried over MgSO4 and concentrated under reduced pressure. Purification by column 

chromatography (cyclohexane/EtOAc 4:1) gave (0.39 g, 42%) of compound 20 as a colorless solid.. 

HPLC: 98%, tR = 6.93 min. 1H-NMR (CDCl3, 500 MHz, 300 K): δ (ppm) = 2.03 (m, 4H), 2.48 (m, 

1H), 2.86 (m, 2H), 3.43 (ddd, J = 3.16 Hz, J = 6.95 Hz, J = 8.38 Hz, 2H), 3.71 (s, 3H), 7.00 (dd, J = 

4.61 Hz, J = 9.02 Hz, 1H), 7.20 (ddd, J = 3.05 Hz, J = 7.79 Hz, J = 9.02 Hz, 1H), 7.26 (m, 1H). 13C-

NMR (CDCl3, 125 MHz, 300 K): δ (ppm) = 28.5(2C), 40.5, 51.9(2C), 52.1, 56.7, 107.9 (d, 

JC-F = 9 Hz), 112.7 (d, JC-F = 8 Hz), 117.1, 120.5 (d, JC-F = 25 Hz), 120.8 (d, JC-F = 8 Hz), 121.1 (d, 

JC-F = 23 Hz), 153.1, 157.1 (d, JC-F = 243 Hz), 175.0. 

5-Fluoro-2-(4-(hydroxymethyl)piperidin-1-yl)benzonitrile (22). To a solution of 21 (0.34 g, 

1.30 mmol, 1.00 eq) in anhydrous THF (15 mL) was added lithium borohydride (1.9 mL, 3.38 mmol, 

2.60 eq). The mixture was heated to reflux for 16 h under argon atmosphere. After cooling to rt, the 

reaction mixture was diluted carefully with water and extracted with EtOAc. The combined organic 

layer was washed with brine and dried over MgSO4. After removing the solvent compound 22 (0.30 g, 

98%) was obtained as a pale yellow solid. HPLC: 99%, tR = 4.94 min. 1H-NMR (CDCl3, 500 MHz, 

300 K): δ (ppm) = 1.51 (ddd, J = 3.91 Hz, J = 12.42 Hz, J = 24.3 Hz, 2H), 1.60 – 1.69 (m, 1H), 1.87 

(dd, J = 1.62 Hz, J = 12.42 Hz, 2H), 2.76 (td, J = 1.62 Hz, J = 12.42 Hz, 2H), 3.49 (d, J = 11.95 Hz, 

2H), 3.56 (d, J = 6.47 Hz, 2H), 6.98 (dd, J = 4.43 Hz, J = 9.19 Hz, 1H), 7.18 (ddd, J = 2.95 Hz, 

J = 7.99 Hz, J = 9.19 Hz, 1H), 7.24 (dd, J = 2.95 Hz, J = 7.99 Hz, 1H). 13C-NMR (CDCl3, 125 MHz, 

300 K): δ (ppm) = 29.2 (2C), 38.3, 52.8 (2C), 67.8, 107.6 (d, JC-F = 9 Hz), 117.3 (d, JC-F = 2 Hz), 

120.3 (d, JC-F = 26 Hz), 120.7 (d, JC-F = 8 Hz, 1C), 121.1 (d, JC-F = 23 Hz), 153.5, 156.9 (d, 

JC-F = 243 Hz). 

2-(4-(Bromomethyl)piperidin-1-yl)-5-fluorbenzonitrile (23). Anhydrous conditions and inert 

gas are essential for this reaction! 22 (0.18 g, 0.77 mmol, 1.00 eq), tetrabromomethane (0.38 g, 

1.15 mmol, 1.50 eq) and triphenylphosphine (0.40 g, 1.55 mmol, 2.00 eq) was added in a dried vessel 

and purged for 15 min with argon. Afterwards the educts were dissolved in dry acetonitrile. The 

reaction mixture was stirred at rt. The progression of the reaction was controlled by HPLC. After no 

further conversion was observed, the reaction was stopped by addition of 15% NaOH solution. The 

reaction mixture was extracted with DCM. The combined organic layer was washed with brine and 

dried over MgSO4. The solvent was evaporated under reduced pressure and the crude product was 

purified by column chromatography (cyclohexane/EtOAc 9:1) to give 23 (0.08 g, 35%) as a brown oil. 
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HPLC: 97%, tR = 8.41 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 1.43 (qd, J = 3.80 Hz, 

J = 11.94 Hz, 2H), 1.73 – 1.81 (m, 1H), 1.89 (d, J = 12.25 Hz, 2H), 2.77 (td, J = 2.09 Hz, 

J = 11.94 Hz, 2H), 3.41 (d, J = 12.25 Hz, 2H), 3.54 (d, J = 6.13 Hz, 2H), 7.20 (dd, J = 4.73 Hz, 

J = 8.99 Hz, 1H), 7.47 (ddd, J = 0.66 Hz, J = 3.11 Hz, J = 8.73 Hz, J = 8.99 Hz, 1H), 7.68 (dd, 

J = 3.11 Hz, J = 8.32 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) =30.5 (2C), 37.2, 39.9, 

51.7 (2C), 106.3 (d, JC-F = 11 Hz), 116.9 (d, JC-F = 2 Hz), 120.2 (d, JC-F = 26 Hz), 121.3 (d, 

JC-F = 8 Hz), 121.4 (d, JC-F = 23 Hz), 152.9 (d, JC-F = 3 Hz), 156.2 (d, JC-F = 240 Hz). 

2-(4-((5-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1,3,4-oxadiazol-2-yl-thio)methyl)piperidin-

1-yl)-5-fluorbenzonitrile (24). A mixture of 4b (0.03 g, 0.14 mmol, 1.00 eq) and potassium 

carbonate (0.02 g, 0.17 mmol, 1.20 eq) was stirred in dry DMF (3.6 mL) at rt for 15 min. 23 (0.02 g, 

0.17 mmol, 1.50 eq) was added to the orange solution. Afterwards the reaction mixture was stirred for 

3 h at 80°C under an argon atmosphere. The resolution mixture was diluted with water and EtOAc. 

The aqueous layer was extracted with EtOAc. The organic layer was washed with bine, successively 

dried over MgSO4 and concentrated under reduced pressure. The obtained residue was purified by 

column chromatography (cyclohexane/EtOAc 2:1) to give (0.05 g, 71%) of compound 24 as a 

colorless solid. HPLC: 99%, tR = 8.86 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) =1.66 

(ddd, J = 3.86 Hz, J = 12.18 Hz, J = 15.67 Hz, 2H), 2.01 (m, 1H), 2.07 (d, J = 13.17 Hz, 2H), 2.84 (td, 

J = 1.75 Hz, J = 11.82 Hz, 2H), 3.28 (d, J = 6.82 Hz, 2H), 3.51 (d, J = 12.05 Hz, 2H), 4.29 - 4.34 (m, 

4H), 6.96 (d, J = 8.32 Hz, 1H), 7.09 (dd, J = 4.60 Hz, J = 8.97 Hz, 1H), 7.21 (ddd, J = 2.99 Hz, 

J = 7.84 Hz, J = 8.97 Hz, 1H), 7.26 - 7.28 (m, 1H), 7.49 - 7.52 (m, 2H). 13C-NMR (DMSO, 125 MHz, 

300 K): δ (ppm) =31.7 (2C), 35.4, 38.6, 52.8 (2C), 64.4, 64.8, 107.9 (d, JC-F = 9 Hz), 116.1, 117.1, 

118.2, 120.5, 120.6 (d, JC-F = 25 Hz), 121.1, 121.2 (d, JC-F = 12 Hz), 121.3, 144.0, 146.9, 151.8, 158.3, 

164.8 (d, JC-F = 232 Hz), 167.9. EI-MS: m/z (%): 452 (100, [M+]), 453 (28, [M+ + H]). 

4'-((5-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1,3,4-oxadiazol-2-yl-sulfinyl)methyl)-4-

fluorbiphenyl-2-carbonitrile ((rac)-25). Under an argon atmosphere 1 (0.05 g, 0.11 mmol, 

1.00 eq) was dissolved in 8 mL of DCM. The solution was cooled to 0°C and mCPBA (0.03 g, 

0.11 mmol, 1.00 eq) was added. The reaction mixture was allowed to warm to rt and was stirred for 

2 d. After confirming the completion of the reaction with HPLC, saturated sodium sulphite solution 

was added to the mixture. The organic layer was washed with saturated NaHCO3 solution and dried 

over MgSO4. Purification was performed by column chromatography (cyclohexane/EtOAc 1:1) to 

give (0.04 g, 79%) of compound (rac)-25 as a colorless solid. HPLC: 99%, tR = 7.71 min. 1H-NMR 

(DMSO, 500 MHz, 300 K): δ (ppm) = 4.31 – 4.33 (m, 2H), 4.35 – 4.36 (m, 2H), 4.92 (q, 

J = 12.57 Hz, 2H), 7.09 (d, J = 8.56 Hz, 1H), 7.48 – 7.50 (m, 3H), 7.53 (dd, J = 2.11 Hz, J = 8.41 Hz, 

1H), 7.56 – 7.57 (m, 1H), 7.57 – 7.58 (m, 1H), 7.62 (dd, J = 5.40 Hz, J = 8.56 Hz, 1H), 7.68 (td, 

J = 2.67 Hz, J = 8.56 Hz, 1H), 7.96 (dd, J = 2.67 Hz, J = 8.56 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 
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300 K): δ (ppm) = 58.2, 64.2, 64.7, 111.8, 115.3, 115.9, 117.4, 118.5, 120.6 (d, JC-F = 24 Hz), 120.9, 

121.2 (d, JC-F = 23 Hz), 129.2 (2C), 130.1, 131.0 (2C), 132.6 (d, JC-F = 8 Hz), 137.2, 140.6, 144.1, 

147.6, 165.0 (d, JC-F = 243 Hz), 165.5. EI-MS: m/z (%): 461 (100, [M+]), 445 (43, [M+ - O], 462 (25, 

[M+ + H], 463 (6, [M+ + 2H]). 

4'-((5-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1,3,4-oxadiazol-2-yl-sulfonyl)methyl)-4-

fluorbiphenyl-2-carbonitrile (26). Under argon atmosphere 2 (0.03 g, 0.07 mmol, 1.00 eq) was 

dissolved in 6 mL of DCM. The solution was cooled to 0°C and mCPBA (0.04 g, 0.20 mmol, 3.00 eq) 

was added. The reaction mixture warmed to 30°C and was stirred for 3 d. In the case of full 

implementation the reaction was stopped by adding saturated NaSO3 solution. The organic layer was 

washed with saturated NaHCO3 solution and dried over MgSO4. Purification was performed by 

column chromatography (cyclohexane/EtOAc 1:1) to give (0.02 g, 68%) of compound 26 as a 

colorless solid. HPLC: 97%, tR = 8.07 min. 1H-NMR (DMSO, 500 MHz, 300 K): δ (ppm) = 4.34 

(ddd, J = 2.7 Hz, 5.9 Hz, 7:8 Hz, 4H), 5.33 (s, 2H), 7.09 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 2.1 Hz, 1H), 

7.50 (dd, J = 2.1 Hz, J = 8.5 Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H), 7.63 (m, 3H), 7.69 (td, J = 2.7 Hz, 

J = 8.5 Hz, 1H), 7.98 (dd, J = 2.7 Hz, J = 8.7 Hz, 1H). 13C-NMR (DMSO, 125 MHz, 300 K): δ (ppm) 

= 60.2, 64.1, 64.6, 111.7 (d, JC-F = 10 Hz), 114.6, 116.0, 117.2, 118.4, 120.5 (d, JC-F = 25 Hz), 121.1, 

121.1 (d, JC-F = 23 Hz), 126.8, 129.1 (2C), 131.7 (2C), 132.4 (d, JC-F = 8 Hz), 137.7, 140.4, 143.9, 

147.9, 160.7, 160.9 (d, JC-F = 227 Hz), 165.9. EI-MS: m/z (%): 477 (100, [M+]), 478 (28, [M+ + H]), 

479 (8, [M+ + 2H]). 

4'-((5-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1,3,4-oxadiazol-2-yl-thio)-methyl)-4-

fluorbiphenyl-2-carboxamide (27). Under an argon atmosphere 2 (0.05 g, 0.11 mmol, 1.00 Äq.) 

was added to a dried vessel. Trifluoroacetic acid (0.8 mL) and concentrated sulphoric acid (0.2 mL) 

were added and the red mixture was stirred 6h at 70°C. Subsequently the reaction is poured into a 

water/ice-mixture (50 mL), extracted with CH2Cl2, washed with saturated NaHCO3 solution and dried 

over MgSO4. Purification by column chromatography (cyclohexane/EtOAc 1:2) gave (0.04 g, 78%) of 

compound 27 as a colorless solid. HPLC: 96%, tR = 6.93 min. 1H-NMR (DMSO-d6, 500 MHz, 

300 K): δ (ppm) = 4.32 (td, J = 5.2 Hz, J = 3.7 Hz, 4H), 4.60 (s, 2H), 7.05 (d, J = 8.4 Hz, 1H), 7.25 

(dd, J = 9.1 Hz, J = 2.7 Hz, 1H), 7.31 (td, J = 8.6 Hz, J = 2.8 Hz, 1H), 7.38 (m, 3H), 7.41 (d, 

J = 2.0 Hz, 1H), 7.45 (dd, J = 8.4 Hz, J = 2.1 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.73 (s, 1H). 13C-

NMR (DMSO, 125 MHz, 300 K): δ (ppm) = 35.6, 64.1, 64.4, 114.3 (d, JC-F = 21 Hz), 115.0, 115.9 

(d, JC-F = 21 Hz), 115.9, 118.1, 120.0, 128.6 (2C), 128.8 (2C), 132.0 (d, JC-F = 8 Hz), 134.8, 135.5, 

138.9, 139.0 (d, JC-F = 7 Hz), 143.8, 146.7, 160.9 (d, JC-F = 247 Hz), 162.7, 164.9, 169.5. EI-MS: m/z 

= 463 (100, [M+]), 464 (26, [M+ + H]), 465 (7, [M+ + 2H]. 
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Supporting Information 

Molecular docking, determination of aqueous solubility, in vitro activity in GSK-3α (h) and GSK-3β 
(h), in vitro activity in AML cell lines, in vivo on golden zebrafish embryo. This material is available 
free of charge via the Internet at http://pubs.acs.org. 
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