Combination of Lithium Chloride and Hexafluoroisopropanol for **Friedel–Crafts Reactions**

Matthieu Willot, JinChun Chen, Jieping Zhu*

Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette Cedex, France Fax +33(1)69077247; E-mail: zhu@icsn.cnrs-gif.fr Received 13 October 2008

Abstract: A combination of weak Lewis acid (LiCl) and weak Brønsted acid (hexafluoroisopropanol, HFIP) promotes efficiently the Friedel-Crafts reaction of electron-rich aromatic compounds with ethyl glyoxylate.

Key words: Friedel-Crafts reaction, glyoxylate, lithium chloride, hexafluoroisopropanol, Lewis acid, Brønsted acid

The Friedel-Crafts (F-C) reaction is one of the most important C-C bond-forming transformations.¹ It encompasses a wide set of reactions including acylation,² alkylation,³ and hydroxyalkylation of aromatic compounds. Among them, the latter reactions involving electron-rich aromatics and glyoxylate or pyruvate derivatives have attracted recent attention due to the importance of the resulting adducts as building blocks in the synthesis of complex molecules and as ligands in asymmetric synthesis. Consequently, reaction conditions⁴ including some that are catalyst- and solvent-free⁵ have been developed allowing the synthesis of numerous functionalized aromatics. Enantioselective versions have also been reported using either chiral Lewis acids⁶ or small organomolecules as catalysts.⁷ In connection with our research program centering on the synthesis of tetrahydroisoquinoline-containing polycyclic alkaloids,8 we found that the combination of lithium chloride (LiCl) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) in toluene is highly efficient for promoting the Pictet-Spengler reaction of acid-sensitive substrates.⁹ We report herein that these conditions are also very effective for performing the Friedel-Crafts reactions between electron-rich aromatics and ethyl glyoxylate.

Table 1	Survey of Reaction	Conditions between	n Phenol 1 and	Ethyl Glyoxylate (2))
---------	--------------------	--------------------	----------------	----------------------	---

OR HO O O Ia R = Bn Ib R = MOM	2	$ \xrightarrow{OR} \qquad \qquad$,oet `oh	
Entry	Acid	Solvent	Temp (°C)	Yield (%) of 3 , 4
1 ^a	AcOH	CH ₂ Cl ₂	r.t.	0, 0 ^b
2ª	TFA	CH ₂ Cl ₂	r.t.	47, 47
3°	Sc(OTf) ₃	CH ₂ Cl ₂	r.t.	0, 0 ^d
4 ^c	Yb(OTf) ₃	CH ₂ Cl ₂	r.t.	$0, 0^{d}$
5°	LiCl	toluene	r.t.	0, 0 ^b
6 ^c	LiCl	toluene–HFIP (16:1) ^e	70	55, 0
7 ^c	LiCl	toluene–HFIP (6:1) ^e	40	95, 0
8 ^c	LiCl	toluene–HFIP (4:1) ^e	r.t.	97, 0

R = Bn.

^b Phenol **1** was recovered.

 c R = MOM.

^d Ln(OTf)₃ (0.1 equiv), phenol 1 decomposed.

^e LiCl (2.0 equiv), in the presence of 3 Å MS.

SYNLETT 2009, No. 4, pp 0577-0580 Advanced online publication: 16.02.2009 DOI: 10.1055/s-0028-1087566; Art ID: G33008ST © Georg Thieme Verlag Stuttgart · New York

The Friedel–Crafts reaction between phenol 1 and ethyl glyoxylate (2) leading to adduct 3 was needed in our synthesis of ecteinascidin 743 (Yondelis®),¹⁰ an anticancer drug. As shown in Table 1, neither Brønsted acids (AcOH, TFA), nor Lewis acids [(Sc(OTf)₃, Yb(OTf)₃] were effective for promoting this transformation. As expected, only starting materials were recovered when a weak Lewis acid (LiCl) was used as a promoter (entry 5). Interestingly, by adding hexafluoroisopropanol (HFIP)¹¹ as co-solvent (toluene–HFIP = 16:1 by volume), the desired alkylation took place at 70 °C, although conversion remained incomplete, to afford 3 in 55% yield (entry 6). Increasing the amount of HFIP allowed the reaction to take place at lower temperature and under optimized conditions: LiCl (2 equiv), toluene–HFIP = 4:1, 3 Å MS, r.t.), the reaction between phenol 1b and 2 proceeded smoothly to afford single regioisomer **3** in 97% yield.¹² It is interesting to note that the same reaction performed in the presence of trifluoroacetic acid provided two regioisomers 3 and 4 in a 1:1 ratio (entry 2).

The generality of these conditions were next examined varying the nature of aromatic compounds and the results are summarized in Table 2. The reaction took place exclusively at the position *ortho* to the phenol group (entries 1– 4) or at the *para* position if the *ortho* position is occupied (compound **3b**, Table 1). However, the presence of a free hydroxy group is not an obligation since 1,3-dimethoxybenzene (1g) was converted to adduct 3g in 69% yield (entry 5). In accordance with the literature precedents, the hydroxyalkylation of N,N-dimethylaniline (1h) occurred at the *para* position to furnish **3h** in 73% yield (entry 6). As expected, indole (1i) participated in the reaction to afford 3i in 74% yield (entry 7). However, double F-C reaction occurred in these two cases to furnish bisadducts 5 and 6 in 26% and 27% yields, respectively.¹³ Finally, unactivated pyrrole 1j was also transformed to the corresponding F-C adduct 3j in 38% yield (entry 8), together with a 2,5-bisalkylated product 7 (37%, Figure 1).

Figure 1 Bis-Friedel–Crafts adducts

Although the exact role of HFIP was unclear, the synergetic effect of LiCl and HFIP in promoting the present Friedel–Crafts reaction is evident. The weak Brønsted acidity ($pK_a = 9.3$), strong ionizing power,¹⁴ and hydrogenbond donor ability¹⁵ may be relevant to its unique role in this transformation. The polarity effect might not be important in this case since no reaction occurred when HFIP

 Table 2
 Generality of LiCl-HFIP-Promoted Friedel-Crafts Reactions^a

^a General conditions: **1** (1.0 equiv), **2** (1.5 equiv), LiCl (2.0 equiv), toluene–HFIP = 4:1, c 0.9 M, r.t.

^b Yield of chromatographically pure compound.

was replaced by EtOH or 2,2,2-trifluroethanol (TFE),¹⁶ although the dielectric constant of these two polar protic solvents [ϵ (EtOH) = 24.3; ϵ (TFE) = 26.7] is higher than HFIP (ϵ = 16.7).^{15a} In summary, we demonstrated that a combination of a weak Lewis acid (LiCl) and a weak Brønsted acid (HFIP) is effective for promoting the Friedel–Crafts reactions between electron-rich aromatics and glyoxylate. The utility of these conditions is readily seen as one of the adduct **1b** has been employed as a key building block in our total synthesis of ecteinascidin 743.¹⁰

General Procedure

To a round-bottom flask containing dried LiCl (84.8 mg, 2.0 mmol, 2.0 equiv) and 3 Å MS (100.1 mg), a solution of compound **1b–j** (1.0 mmol) in dry toluene (1.8 mL), freshly distilled ethyl glyoxy-late (**2**, 50% solution in toluene, 268 μ L, 1.5 mmol, 1.5 equiv), and hexafluoroisopropanol (0.45 mL) were added successively. The reaction mixture was stirred at r.t. under argon atmosphere until the complete consumption of the starting phenol (7–36 h). The solution was then filtered, washed with CH₂Cl₂, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (SiO₂, EtOAc in heptane) to afford compounds **3b–j**.

Acknowledgment

Financial supports from CNRS and this institute are gratefully acknowledged.

References and Notes

- Olah, G. A.; Krishnamurti, R.; Surya Prakash, G. K. Comprehensive Organic Synthesis, Vol. 3; Trost, B. M.; Fleming, I., Eds.; Pergamon: New York, **1991**, 293–339.
- (2) Selected examples: (a) Kawada, A.; Mitamura, S.; Kobayashi, S. *Synlett* 1994, 545. (b) Répichet, S.; Le Roux, C.; Dubac, J.; Desmurs, J.-R. *Eur. J. Org. Chem.* 1998, 2743. (c) Kobayashi, S.; Komoto, I. *Tetrahedron* 2000, 56, 6463.
- (3) (a) Mine, N.; Fujiwara, Y.; Taniguchi, H. *Chem. Lett.* 1986, 357. (b) Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S. *J. Org. Chem.* 1997, 62, 6997. (c) Shiina, I.; Suzuki, M. *Tetrahedron Lett.* 2002, 43, 6391. (d) Noji, M.; Ohno, T.; Fuji, K.; Futaba, N.; Tajima, H.; Ishii, K. *J. Org. Chem.* 2003, 68, 9340. (e) Mantri, K.; Komura, K.; Kubota, Y.; Sugi, Y. *J. Mol. Catal. A: Chem.* 2005, 236, 168. (f) Jiang, B.; Huang, Z. G. *Synthesis* 2005, 2198.
- (4) (a) Hao, J.; Taktak, S.; Aikawa, K.; Yusa, Y.; Hatano, M.; Mikami, K. *Synlett* 2001, 1443. (b) Prakash, G. K. S.; Yan, P.; Török, B.; Olah, G. A. *Synlett* 2003, 527. (c) Ding, H.; Zhang, H. B.; Chen, Y. J.; Lu, L.; Wang, D.; Li, C. J. *Synlett* 2004, 555. (d) Soueidan, M.; Collin, J.; Gil, R. *Tetrahedron Lett.* 2006, 47, 5467.
- (5) (a) Jiang, B.; Yang, C.-G.; Gu, X.-H. *Tetrahedron Lett.*2001, 42, 2545. (b) Zhao, J.-L.; Liu, L.; Zhang, H. B.; Wu, Y.-C.; Wang, D.; Chen, Y.-J. *Tetrahedron Lett.* 2006, 47, 2511. (c) Zhao, J.-L.; Liu, L.; Zhang, H. B.; Wu, Y.-C.; Wang, D.; Chen, Y.-J. *Synlett* 2006, 96.
- (6) Lewis acid catalysis: (a) Bigi, F.; Casiraghi, G.; Casnati, G.; Sartori, G.; Fava, G. G.; Belicchi, M. F. J. Org. Chem. 1985, 50, 5018. (b) Erker, G.; Van de Zeijden, A. A. H. Angew Chem., Int. Ed. Engl. 1990, 29, 512. (c) Isshi, A.; Soloshonok, V. A.; Mikami, K. J. Org. Chem. 2000, 65, 1597. (d) Gathergood, N.; Zhuang, W.; Jørgensen, K. A. J. Am. Chem. Soc. 2000, 122, 12517. (e) Zhuang, W.; Gathergood, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2001, 66, 1009. (f) Yuan, Y.; Wang, X.; Li, X.; Ding,

K. J. Org. Chem. 2004, 69, 146. (g) Zhao, J.-L.; Sui, Y.; Liu, Y.-L.; Wang, D.; Chen, Y.-J. Org. Lett. 2006, 8, 6127. (h) Dong, H.-M.; Lu, H.-H.; Lu, L.-Q.; Chen, C.-B.; Xiao, W.-J. Adv. Synth. Catal. 2007, 349, 1597. (i) Major, J.; Kwiatkowski Jurczak, J. Org. Lett. 2008, 10, 2955. (j) For a review, see: Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem. Int. Ed. 2004, 43, 550.

- (7) Organocatalysis: (a) Török, B.; Abid, M.; London, G.; Esquibel, J.; Török, M.; Mhadgut, S. C.; Yan, P.; Prakash, G. K. S. Angew. Chem. Int. Ed. 2005, 44, 3086. (b) Li, H.; Wang, Y.-Q.; Deng, L. Org. Lett. 2006, 8, 4063. (c) Zhao, J.-L.; Liu, L.; Gu, C.-L.; Wang, D.; Chen, Y.-J. Tetrahedron Lett. 2008, 49, 1476.
- (8) (a) Chen, J.; Chen, X.; Willot, M.; Zhu, J. Angew. Chem. Int. Ed. 2006, 45, 8028. (b) Chen, X.; Zhu, J. Angew. Chem. Int. Ed. 2007, 46, 3962. (c) Wu, Y.-C.; Liron, M.; Zhu, J. J. Am. Chem. Soc. 2008, 130, 7148. (d) For an excellent review, see: Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669.
- (9) (a) De Paolis, M.; Chiaroni, A.; Zhu, J. *Chem. Commun.* **2003**, 2896. (b) Chen, X.; Chen, J.; De Paolis, M.; Zhu, J. *J. Org. Chem.* **2005**, *70*, 4397.
- (10) Chen, J.; Chen, X.; Bois-Choussy, M.; Zhu, J. J. Am. Chem. Soc. 2006, 128, 87.
- (11) Selected recent references on HFIP-assisted transformations: (a) Cativirla, C.; García, J. I.; Majoral, J. A.; Salvatella, L. Can. J. Chem. 1994, 72, 308. (b) Ichikawa, J.; Miyazaki, S.; Fujiwara, M.; Minami, T. J. Org. Chem. 1995, 60, 2320. (c) Das, U.; Crousse, B.; Kesavan, V.; Bonnet-Delpon, D.; Bégué, J.-P. J. Org. Chem. 2000, 65, 6749. (d) Takita, R.; Oshima, T.; Shibasaki, M. Tetrahedron Lett. 2002, 43, 4661. (e) Neimann, K.; Neumann, R. Org. Lett. 2000, 2, 2861. (f) Snider, B. B.; O'Hare, S. M. Tetrahedron Lett. 2001, 42, 2455. (g) Johnston, B. D.; Ghavami, A.; Jensen, M. T.; Svensson, B.; Pinto, B. M. J. Am. Chem. Soc. 2002, 124, 8245. (h) Yagi, H.; Ramesha, A. R.; Kalena, G.; Sayer, J. M.; Kumar, S.; Jerina, D. M. J. Org. Chem. 2002, 67, 6678. (i) Canesi, S.; Bouchu, D.; Ciufolini, M. A. Org. Lett. 2005, 7, 175. (j) For a review, see: Bégué, J.-P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 18.
- (12) Analytical Data

Compound **3b**: IR (neat): 3428, 2904, 1734, 1654, 1499, 1461, 1370, 1215, 1046, 994, 931 cm⁻¹. ¹H NMR (300 MHz, CDCl₃, 293 K): $\delta = 6.54$ (s, 1 H), 6.26 (br s, 1 H), 5.96 (d, J = 1.1 Hz, 1 H), 5.91 (d, J = 1.1 Hz, 1 H), 5.12 (s, 1 H), 5.05 (s, 2 H), 4.23 (dq, J = 10.2, 7.2 Hz, 1 H), 4.18 (dq, J = 10.2, 7.2 Hz, 1 H), 3.49 (s, 3 H), 1.43 (t, J = 7.2 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃, 293 K): $\delta = 173.0$, 142.3, 141.5, 134.4, 132.3, 110.7, 108.3, 102.1, 97.6, 68.3, 62.2, 56.5, 14.0 ppm. HRMS (ESI⁺): m/z [M + Na]⁺ calcd for C₁₃H₁₆O₈: 323.0743; found: 323.0745.

Compound **3c**: IR (neat): 3386, 2930, 2857, 1731, 1482, 1335, 1251, 1126, 1006 cm⁻¹. ¹H NMR (300 MHz, CDCl₃, 293 K): δ (mixture of two diastereomers) = 6.89 (2 s, 1 H), 6.55 (s, 1 H), 5.18 (d, *J* = 3.1 Hz, 1 H), 4.30 (dq, *J* = 10.7, 7.2 Hz, 1 H), 4.20 (dq, *J* = 10.7, 7.2 Hz, 1 H), 3.74 (s, 3 H), 3.45 (d, *J* = 3.1 Hz, 1 H), 2.15 (s, 3 H), 1.26 (t, *J* = 7.2 Hz, 3 H), 1.01 (s, 9 H), 0.96 (2 t, *J* = 7.6 Hz, 3 H), 0.72 (m, 2 H), 0.16 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃, 293 K): δ = 173.2, 150.4, 148.1, 142.1, 120.9, 117.7, 117.1, 72.7, 62.6, 60.1, 26.3 (3 C), 18.8, 14.1, 9.2, 7.5, 4.8, -6.5 ppm. MS (ESI⁺): *m/z* = 791.3 [2 M + Na]⁺, 407.1 [M + Na]⁺, 367.2 [M - H₂O + H]⁺. HRMS (ESI⁺): *m/z* [M + Na]⁺ calcd for C₁₉H₃₂O₆Si: 407.1866; found: 407.1862. Compound **3d**: IR (neat): 3349, 2983, 2903, 1722, 1628,

Compound **3d**: IR (neat): 3349, 2983, 2903, 1722, 1628, 1485, 1442, 1169, 1033, 930 cm⁻¹. ¹H NMR (500 MHz,

$$\begin{split} &\text{CDCl}_3, 293 \text{ K}): \delta = 6.64 \text{ (s, 1 H), } 6.42 \text{ (s, 1 H), } 5.90 \text{ (s, 1 H), } 5.89 \text{ (s, 1 H), } 5.19 \text{ (s, 1 H), } 4.28 \text{ (dq, } \textit{J} = 10.8, 7.1 \text{ Hz, 1 H), } 4.21 \text{ (dq, } \textit{J} = 10.8, 7.1 \text{ Hz, 1 H), } 1.25 \text{ (t, } \textit{J} = 7.1 \text{ Hz, 3 H)} \\ &\text{ppm.}^{13}\text{C} \text{ NMR} \text{ (75 MHz, CDCl}_3, 293 \text{ K}): \delta = 173.3, 150.4, \\ 148.7, 141.5, 114.6, 107.8, 101.4, 99.8, 72.1, 62.7, 14.2 \text{ ppm.} \\ &\text{MS} \text{ (ESI^+): } \textit{m/z} = 263.0 \text{ [M + Na]^+, } 245.0 \text{ [M - H_2O + Na]^+, } \\ 223.1 \text{ [M - H_2O + H]^+. } \text{HRMS} \text{ (ESI^+): } \textit{m/z} \text{ [M + Na]^+ calcd} \\ &\text{for } C_{11}\text{H}_{12}\text{O_6}: 263.0532; \text{ found: } 263.0497. \end{split}$$

Compound **3e**: IR (neat): 3414, 2937, 2837, 1729, 1616, 1515, 1451, 1417, 1197, 1109, 997 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 293 K): δ = 7.21 (br s, 1 H), 6.67 (s, 1 H), 6.42 (s, 1 H), 5.22 (s, 1 H), 4.22 (dq, *J* = 10.8, 7.1 Hz, 1 H), 4.17 (dq, *J* = 10.8, 7.1 Hz, 1 H), 4.00 (s, 1 H), 3.79 (s, 3 H), 3.77 (s, 3 H), 1.21 (t, *J* = 7.1 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃, 293 K): δ = 173.3, 150.2, 149.3, 142.7, 113.6, 111.9, 101.9, 71.8, 62.4, 56.6, 55.9, 14.1 ppm. MS (ESI⁺): *m/z* = 279.1 [M + Na]⁺. HRMS (ESI⁺): *m/z* [M + Na]⁺ calcd for C₁₂H₁₆O₆: 279.0845; found: 279.0840.

Compound **3f**: IR (neat): 3418, 2961, 2871, 1724, 1625, 1460, 1368, 1222, 1059, 1024, 935 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 293 K): δ = 7.63 (br s, 1 H), 6.77 (d, *J* = 8.2 Hz, 1 H), 6.71 (d, *J* = 8.2 Hz, 1 H), 5.72 (br s, 1 H), 5.30 (s, 1 H), 4.33 (dq, *J* = 10.7, 7.1 Hz, 1 H), 4.24 (dq, *J* = 10.7, 7.1 Hz, 1 H), 3.39 (br s, 1 H), 3.27 (hept, *J* = 7.0 Hz, 1 H), 1.29 (t, *J* = 7.1 Hz, 3 H), 1.24 (t, *J* = 7.0 Hz, 3 H), 1.23 (t, *J* = 7.0 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃, 293 K): δ = 173.4, 143.0, 141.8, 135.5, 119.9, 118.8, 118.0, 72.7, 62.9, 27.3, 22.5, 22.4, 14.1 ppm. MS (ESI⁺): *m/z* = 277.1 [M + Na]⁺. HRMS (ESI⁺): *m/z* [M + Na]⁺ calcd for C₁₃H₁₈O₅:

277.1052; found: 277.1034. Compound **3g**: IR (neat): 3482, 2939, 2839, 1731, 1612, 1589, 1507, 1207, 1157, 1065, 1030 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 293 K): δ = 7.15 (d, *J* = 8.5 Hz, 1 H), 6.45 (m, 2 H), 5.19 (d, *J* = 5.8 Hz, 1 H), 4.19 (dq, *J* = 10.8, 7.1 Hz, 1 H), 4.18 (dq, *J* = 10.8, 7.1 Hz, 1 H), 3.78 (s, 3 H), 3.77 (s, 3 H), 3.53 (d, *J* = 5.8 Hz, 1 H), 1.19 (t, *J* = 7.1 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃, 293 K): δ = 174.0, 161.2, 158.3, 130.2, 119.9, 104.4, 99.0, 69.8, 61.7, 55.5, 55.4, 14.1 ppm. MS (ESI⁺): *m/z* = 263.1 [M + Na]⁺. HRMS (ESI⁺): *m/z* [M + Na]⁺ calcd for C₁₂H₁₆O₅: 263.0895; found: 263.0893. Compound **3h**: IR (neat): 3442, 2891, 1727, 1614, 1523, 1354, 1180, 1074, 1012, 800 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 293 K): δ = 7.25 (d, *J* = 8.7 Hz, 2 H), 6.70 (d, *J* = 8.7 Hz, 2 H), 5.06 (s, 1 H), 4.26 (dq, J = 10.9, 7.0 Hz, 1 H), 4.16 (dq, J = 10.9, 7.0 Hz, 1 H), 3.27 (br s, 1 H), 2.95 (s, 6 H), 1.23 (t, J = 7.0 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃, 293 K): δ = 174.3, 150.8, 127.7 (2 C), 126.3, 112.5 (2 C), 72.9, 62.0, 40.6 (2 C), 14.2 ppm. MS (ESI⁺): m/z = 246.1 [M + Na]⁺, 224.1 [M + H]⁺, 206.1 [M - H₂O + H]⁺. HRMS (ESI⁺): m/z [M + H]⁺ calcd for C₁₂H₁₇NO₃: 224.1287; found: 224.1270.

Compound 3i: IR (neat): 3399, 2981, 1724, 1548, 1457, 1423, 1198, 1077, 1037, 743 cm⁻¹. ¹H NMR (500 MHz, $CDCl_3$, 293 K): δ = 8.40 (br s, 1 H), 7.71 (d, J = 7.9 Hz, 1 H), 7.29 (d, J = 8.2 Hz, 1 H), 7.20 (ddd, J = 8.2, 7.0, 1.0 Hz, 1 H), 7.14 (ddd, J = 8.2, 7.0, 0.9 Hz, 1 H), 7.08 (d, J = 2.3 Hz, 1 H), 5.46 (d, *J* = 5.5 Hz, 1 H), 4.28 (dq, *J* = 10.8, 7.0 Hz, 1 H), 4.16 (dq, J = 10.8, 7.0 Hz, 1 H), 3.51 (m, 1 H), 1.20 (t, *J* = 7.0 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃, 293 K): $\delta = 174.1,\, 136.5,\, 125.4,\, 123.5,\, 122.5,\, 120.1,\, 119.4,\, 113.6,$ 111.6, 67.4, 62.1, 14.1 ppm. MS (ESI⁺): *m/z* = 242.1 [M + Na]⁺, 202.1 [M – H₂O + H]⁺. HRMS (ESI⁺): *m/z* [M + Na]⁺ calcd for C₁₂H₁₃NO₃: 242.0793; found: 242.0805. Compound 3j: IR (neat): 3369, 2981, 1730, 1492, 1368, 1299, 1203, 1052, 1018, 714 cm⁻¹. ¹H NMR (500 MHz, CDCl_3 , 293 K): $\delta = 6.61$ (t, J = 2.1 Hz, 1 H), 6.05 (d, J = 2.1Hz, 2 H), 5.20 (d, J = 7.0 Hz, 1 H), 4.31 (dq, J = 10.9, 7.0Hz, 1 H), 4.27 (dq, J = 10.9, 7.0 Hz, 1 H), 3.66 (s, 3 H), 3.15 (d, J = 7.0 Hz, 1 H), 1.29 (t, J = 7.0 Hz, 3 H) ppm.¹³C NMR (75 MHz, CDCl₃, 293 K): δ = 172.9, 129.2, 124.1, 108.5, 107.0, 66.4, 62.1, 34.1, 14.2 ppm. MS (ESI⁺): *m/z* = 206.1 $[M + Na]^+$, 166.1 $[M - H_2O + H]^+$. HRMS (ESI⁺): m/z [M +Na]⁺ calcd for C₉H₁₃NO₃: 206.0793; found: 206.0791.

- (13) Formation of bisindolylalkanes, see for examples:
 (a) Gibbs, T. J. K.; Tomkinson, N. C. O. *Org. Biomol. Chem.* **2005**, *3*, 4043. (b) Nair, V.; Abhilash, K. G.; Vidya, N. *Org. Lett.* **2005**, *7*, 5857.
- (14) Schadt, F. L.; Bentley, T. W.; Schleyer, P.v.R. J. Am. Chem. Soc. 1976, 98, 7667.
- (15) (a) Eberson, L.; Hartshorn, M. P.; Persson, O.; Radner, F. *Chem. Commun.* **1996**, 2105. (b) Berkessel, A.; Adrio, A. A.; Hüttenhain, D.; Neudörfl, J. M. *J. Am. Chem. Soc.* **2006**, *128*, 8421.
- (16) We thank one of the referees for bringing up this important point.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.