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During the past few years, considerable effort has been devoted
to expanding the scope of palladium- and nickel-catalyzed cross-
coupling reactions1 so as to include unactivated,â-hydrogen-
containing alkyl electrophiles as partners.2 For such processes,
wheareas the composition of nickel-based catalysts has been
diverse,3,4 with the exception of an early report by Suzuki describing
the use of Pd(PPh3)4 for couplings of alkyl iodides with organo-
boranes,5 all effective palladium-based catalysts have employed very
bulky, electron-rich ligands (i.e., trialkylphosphines,6,7 alkyl-
diaminophosphines,8 and carbenes9).

In this Communication, we provide an impetus for looking
beyond such ligands in future efforts at catalyst development.
Specifically, we establish that simple, “ligandless” palladium
complexes10 can catalyze the first zirconium-Negishi reactions11,12

of alkyl electrophiles (eq 1). Such ligandless processes are attractive
from the standpoints of cost, simplicity, and ease of purification.

As illustrated in Table 1, we have determined that Pd(acac)2 is
effective for the cross-coupling of 1-bromodecane with an alkenyl-
zirconium reagent (entry 1). Other palladium complexes can also
be employed (entries 2 and 3), but nickel complexes are only
modestly efficient under these conditions (entries 4 and 5); without
Pd(acac)2, no cross-coupling is observed (entry 6). A halide source
other than LiBr can be used (e.g., LiI; entry 7), whereas the coupling
proceeds poorly if no activator is present (entry 8). Finally, the
cross-coupling is less effective at lower temperature (entry 9) or
with less catalyst (entry 10).13

Pd(acac)2 is effective for cross-coupling a range of functionalized
alkyl bromides and alkenylzirconium reagents in generally good
yield (Table 2). A variety of groups are compatible with the reaction
conditions, including esters, alkyl and silyl ethers, nitriles, amides,
acetals, and olefins. A somewhat hindered,â-branched alkyl
bromide can be coupled, albeit in more modest yield (entry 13).
Furthermore, sterically demanding alkenylzirconium reagents that
are derived from the hydrozirconation of internal alkynes can be
cross-coupled (entries 14 and 15).14 When the coupling illustrated

Table 1. Effect of Reaction Parameters on the Cross-Coupling of
an Alkyl Bromide with an Organozirconium Reagent

entry
change from the

“standard conditions” yield (%)a

1 none 99
2 PdBr2 100
3 Pd2(dba)3 100
4 NiBr2 57
5 Ni(cod)2 62
6 no Pd(acac)2 0
7 LiI 100
8 no LiBr 20
9 room temp 14

10 1.0% Pd(acac)2 80

a Yield according to GC, versus a calibrated internal standard (average
of two runs).

Table 2. Zirconium-Negishi Cross-Couplings of Alkyl Bromides
under Ligandless Conditionsa

a All yields are isolated yields (average of two runs).b 5% Pd(acac)2
was used.c 5% Pd(acac)2 was used. Reaction time: 48 h.
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in entry 1 is conducted under microwave conditions (100°C, 15
min; 30 W), an excellent isolated yield of the product is obtained
(94%).

The activity of this simple, ligandless catalyst for zirconium-
Negishi couplings is not limited to reactions of alkyl bromides.
Under the same set of conditions, functionalized alkyl iodides and
alkyl tosylates undergo clean cross-coupling with alkenylzirconium
reagents (Table 3, entries 1 and 2).15 Finally, reactions of alkyl
chlorides can also be achieved, although less efficiently (entry 3).

At this stage, we have not determined the nature of the active
catalyst. Interestingly, we have found that the addition of mercury
to a cross-coupling shuts down the process, an observation
consistent with the presence of a heterogeneous species in the
reaction mixture.16,17

In conclusion, we have described the first ligandless palladium-
based method for cross-coupling alkyl electrophiles: Pd(acac)2-
catalyzed reactions of functionalized alkyl halides/tosylates with
organozirconium reagents. In view of the attractiveness of ligandless
catalysts (cost, simplicity, and ease of purification), these observa-
tions add a significant and intriguing new dimension to the
development of effective processes for coupling alkyl electrophiles.
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Table 3. Zirconium-Negishi Cross-Couplings of Other Alkyl
Electrophiles under Ligandless Conditionsa

a All yields are isolated yields (average of two runs).
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