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Interplay between nitronates and nitriles accomplished in a PtIV-mediated reaction
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Reaction between the coordinated propanenitriles in trans-[PtCl4(EtCN)2] and the cyclic nitronate

ON=CHCH(C6H4OMe)CH2CMe2O (1) gives the N-acylated iminocomplex

[PtCl4{N(CEtO)=CHNOCH(C6H4OMe)CH2CMe2}2] (2) which is unstable in wet solvents and undergoes

hydrolysis to furnish [PtCl4{NH=CHNOCH(C6H4OMe)CH2CMe2}2] (3). The formulation of 2 and 3 was

supported by satisfactory C, H, and N elemental analyses, agreeable HRESI+-MS, IR, 1H NMR spectrosco-
pies, and single-crystal X-ray diffraction (for trans-3).

� 2008 Elsevier B.V. All rights reserved.
In view of our general interest in conversions of metal-activated
substrates, in the past decade we had focused our attention on
reactions of ligands bearing the CN triple bond, i.e. RCN and RNC
species, toward coupling [1] or cycloaddition (CA) [2] and this topic
has been surveyed by some of us [1a–d,2a–d,f–h] and others [1e–
m,2e]. Our experimental [2b–d,2f–h] and theoretical [3] results
demonstrate that the coordination of RCN to platinum centers dra-
matically enhances the reactivity of the nitriles toward dipoles of
both allyl- (e.g., open chain A and cyclic nitrones B [2b–d,2h];
Fig. 1) and propargyl/allenyl (e.g. nitrile oxides C [2f,2g]) anion
types in comparison with 1,3-dipolar cycloaddition to free RCN
molecules. In particular, nitriles coordinated to a PtIV center under-
go CA with aromatic and aliphatic nitrones [2a–c] under mild con-
ditions that are not accessible in metal-free organic syntheses.

Being interested in extension of the Pt-mediated CA reactions of
nitriles to other dipoles, we launched a project aimed to verify, by
theoretical methods, various factors affecting CA and found [3a,3b]
that the reactivity of nitronates (D; Fig. 1) toward RCN is expected
to be lower than that for the previously investigated acyclic (A)
[2b–d] and cyclic nitrones (B) [2e–h]. Supporting in a collateral
way our data [3a,b], up to now Chemical Abstracts give no even a
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single reference relevant to reaction between either complexed
or uncomplexed nitrile species and nitronates.

Bearing in mind the theoretical results outlined in the previous
paragraph, we attempted to react nitronate 1 (Fig. 2; IUPAC [4]
name: 4-(4-methoxy-phenyl)-6,6-dimethyl-5,6-dihidro-4H-[1,2]
oxazin-2-oxide) with EtCN in trans-[PtCl4(EtCN)2] insofar as it
was previously demonstrated that the ligation of nitriles to a PtIV

center ought to provide even a higher activation effect upon cyclo-
addition in comparison with the introduction of such powerful
electron-acceptor group R as CF3 to RCN [3]. To our knowledge, this
report covers the first example of any reaction between a nitronate
and a nitrile and it makes known that the interaction becomes pos-
sible in a metal-mediated reaction.

The starting material, trans-[PtCl4(EtCN)2], was obtained by the
known procedure [5], and nitronate 1 (Scheme 1) was synthesized
from b-nitro-4-methoxystyrene and isobutylene by the literature
method [6]. Reaction between trans-[PtCl4(EtCN)2] and 1 proceeds
at room temperature for 12 h and gives N-acylimine complex 2 as
the major product, when the synthesis was carried out in freshly
distilled CH2Cl2 [7]. Compound 2 is found to be unstable in air
and in wet solvents and it is hydrolyzed to form imine complex
3. The latter can be alternatively synthesized from trans-
[PtCl4(EtCN)2] and 1 in moderate yield if the reaction was per-
formed in nondried solvents [8].

Compounds 2 and 3 give satisfactory C, H, N elemental analyses
and were also characterized by HRESI+-MS, IR, and 1H NMR spec-
troscopies; the structure of 3 was determined by X-ray
crystallography.
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Fig. 2. Thermal ellipsoid view of 3 with atomic numbering scheme. Thermal
ellipsoids are drawn with 50% probability. One of the two forms having different
stereochemical configuration at the C6 atom is given. Selected bond lengths [Å] and
angles [�]: Pt(1)–N(1) 2.014(5), Pt(1)–Cl(1) 2.332(5), Pt(1)–Cl(2) 2.301(4), N(1)–C(1)
1.259(11), N(2)–C(1) 1.335(12), O(1)–N(2) 1.357(7); N(1)–Pt(1)–Cl(2) 91.6(6),
N(1A)1–Pt(1)–Cl(2) 88.6(5), N(1)–C(1)–N(2) 125.4(13).
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Fig. 1. Schematic representation of open chain (A) and cyclic (B) nitrones, nitrile
oxides (C), and nitronates (D).

174 N.A. Bokach et al. / Inorganic Chemistry Communications 12 (2009) 173–176
Complex 2 has the same brutto-formula, i.e. C32H44N4O6Cl4Pt, as
the product derived from the cycloaddition of 1 to trans-
[PtCl4(EtCN)2]. Hence, the elemental analyses and HRESI+-MS sup-
port only the composition of 2 and its structure should be verified
by physicochemical methods. The IR spectrum of 2 shows no
band(s) assignable to m(C„N) vibrations, but the observation of
two strong stretches at 1746 and 1615 cm�1 that were attributed
to m(C@O) and m(C@N), respectively. In the 1H NMR spectrum of
2, the ABX system [2.24 dd (12.5 and 8.1 Hz), 2.61 dd (12.5 and
9.2 Hz), and 5.30 t (8.4 Hz)] is recognized. This NMR pattern gives
one of the evidences favoring the contraction of the six-membered
ring to furnish the isoxazolidine. In 2, the former 2-H proton from
the nitronate cycle does not exhibit indirect spin–spin interactions
with the other protons, but shows the coupling from 195Pt and its
signal appears as a singlet flanked with two satellites (3JPtH

28.9 Hz). The signals from the Et group are manifested as two
broad multiplets; this broadening relates, presumably, to a slow
rotation of the C(@O)Et moiety around the NC bond. All these char-
acteristic features of the 1H NMR spectrum along with the IR data
confirm the formulation of 2 as the N-acylimine complex rather
than the cycloaddition product.

The IR spectrum of 3, in contrast to 2, displays a medium-to-
strong band at 3380 cm�1 that corresponds to m(NH) vibrations;
the C@N stretches are displayed at slightly higher wave numbers
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(1664 cm�1) than in 2. In the 1H NMR spectrum, one can observe
the ABX system characteristic for the 2,3,5,5-substituted isoxazol-
idine ring; the signal of the CH proton from the amidine fragment
appears as a doublet flanked with satellites due to the coupling of
the NH proton from the amidine group with 195Pt.

Complex 3 was crystallized in non-centrosymmetrical space
group C2 and it lies in a special position at the twofold axis that
passed through the metal center perpendicular to N1–N1A line
and through the centroids between the Cl1� � �Cl1A and Cl2� � �Cl2A
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atoms [9]. The complex has a pseudo-center of symmetry (at the Pt
atom), which, in general, disturbed by the chiral C6 atom. Insofar
as position of the heavy atoms in the structure obeys the centro-
symmetrical law, it is not possible to determine unambiguously
an absolute configuration of the complex (Flack parameter is
0.44(2)). However, the crystallography data give evidences that
two centers (C6 and C6A in both heterocyclic ligands) display the
same configuration, i.e. RR or SS.

A plausible mechanism for the observed conversion involves CA
of 1 to platinum(IV)-activated EtCN’s followed by the ring opening
of 2,3-dihydro-1,2,4-oxadiazole ring and concomitant contraction
of the 1,2-oxazinane cycle (Scheme 2).

Some works describe the ring opening of 2,3-dihydro-1,2,4-oxa-
diazoles that proceeds via the N–O bond cleavage accompanied by
decarboxylation [10] or H-migration in free [11] or Pt-coordinated
heterocycle [12] to furnish N-acylimines. Other recently reported
transformation of 2,3-dihydro-1,2,4-oxadiazoles bearing electron-
acceptor substituents R with aryl migration onto amino-N (Scheme
3) looks rather similar to the rearrangement described in Scheme 2
[13].

These literature data favor the CA mechanism of the interaction
between the complexed EtCN and the nitronate suggested in this
work.

We succeeded so far to achieve the interaction between one rel-
atively stable nitronate and one rather well soluble nitrile plati-
num precursor. In other cases, poor solubilities of the
[PtCl4(RCN)2] (R = Me, CH2Ph, Ph) complexes in dry dichlorometh-
ane on one hand and limited stability or low reactivity of other

nitronates (e.g., ON=CMeCH(C6H5)CH2CMe2O, MeCH@N(O)OSiMe3,

EtCH@N(O)OSiMe3,) on the other hand led to unselective processes
and determined generation of broad spectra of products with no
major components. Further works on reactions between nitronates
and complexed nitriles are underway in our group.
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CCDC 705255 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
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