Two-Component Approach Toward a
Fully Substituted N-Fused Pyrrole Ring
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An efficient two-component palladium-catalyzed arylation/cyclization cascade approach toward a variety of N-fused pyrroloheterocycles has
been developed. This transformation proceeds via the palladium-catalyzed coupling of aryl halides with propargylic esters or ethers followed
by the 5-endo-dig cyclization leading to highly functionalized pyrroloheterocycles in good to excellent yield.

Nitrogen-containing heteroaromatic molecules and their
analogues are pharmaceutically important scaffolds, broadly
present in naturally occurring and synthetic biologically
active molecules.! For example, molecules containing in-
dolizine and other closely related cores exhibit a wide array
of biological activities, including cytotoxicity,” multidrug
resistance (MDR) reversal in some cancer cell lines,> and
immunomodulation.*

In this regard, transformations that utilize readily available
substrates to provide access to densely substituted pyrrolo-
heterocycles are in high demand.® Previously, our group
reported silver-catalyzed cycloisomerization of propargyl
heterocycles as a route to 1,3-disubstituted N-fused hetero-
cycles (Scheme 1, eq 1).° An alternative protocol is based
on the gold-catalyzed migratory cycloisomerization of pro-
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Scheme 1. Approaches Toward Indolizines with Different
Substitution Patterns
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pargyl ethers into various types of 1,2-disubstituted N-fused
heterocycles (eq 2).” Although these methods are general
with respect to the heterocyclic core, these approaches are
limited to the synthesis of 1,3- or 1,2-disubstituted indoliz-
ines, while either the C-2 or C-3 position remains unfunc-
tionalized. This problem was recently mitigated by employ-
ing stoichiometric amounts of iodine,’ " followed by cross-



Table 1. Optimization of Cascade Approach

OAc OAc
Ph—X (1.5 equiv) =
AR —— ~ )—Ph
<N n-By  conditions N
1 2a n-Bu
entry X Pd base solvent additive yield, %°
1 1 PdCly(PPhs),  NEt; DMF - 49
2 1 PdCly(PPhs),  NEt; DMA - 46
3 1 PdCly(PPhg);  NEts NMP - 47
4 I PdCly(PPhg);  NEts MeCN - 34°
5 I PdCly(PPhy), NEt; DMF LiCl 54
6 I PdCly(PPhy), NEt; DMF TBAC 57
7 I PdCly(PPh3)s  NEts DMF TBAB 60
8 I PdCly(PPhs),  NEt; DMF TBAI 62
9 I PdCly(PPh;); K.CO; DMF TBAI 69
10 I PdCl;(PPhs),; K.;CO3; DMF TBAI? 72
11 Br PdCly(PPhy); K,;CO; DMF TBAI? 26

“ Reactions were run in the precence of 5 mol % of catalyst in appropriate

solvent (0.33 M) at 120 °C for 4 h. ® GC/MS yields. ¢ Reaction was
performed at 90 °C. ¢ Reaction was run with additional 40 mol % of PPh;.

coupling steps. Herein, we report a Pd-catalyzed two-
component arylation/cyclization cascade approach toward
1,2,3-trisubstituted N-fused heterocycles in good to excellent
yields (eq 3).3

We hypothesized that Ar—Pd—X species would undergo
carbopalladation of the propargylic moiety of 1 with
subsequent 5-endo-dig cyclization to produce 2 (eq 3).

To test this idea, the easily accessible propargyl-containing
pyridine 1° was first subjected to the palladium-catalyzed
arylation/cyclization reaction. Employing iodobenzene as the
electrophilic component led to formation of the desired
indolizine 2a in 49% yield (Table 1, entry 1). Attempts to
substitute DMF with other solvents were not particularly
successful (entries 2—4). Utilizing different lithium and
ammonium salts led to a significant improvement in the
reaction yields (entries 5—8). Switching the base from NEt;
to K,CO;5 was also beneficial (entry 9).

Table 2. Arylation/Cyclization Cascade Reactions of Propargylic Esters 1¢

Arl (1.5 equiv)
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RO | T2
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1 ) 2w 7S @?—Ph mooe s CQ—@@ 2% 93
n-Bu E Ph E n-Bu
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e ; AN . T
2  N_/ CO,Me 2b 76 E 9 CQ*Ph 2i 68 E 16 < N_/ CO;Me  2p 88
n-Bu E p-Tol E n-Bu
! OPiv !
OPiv E Y o E OPiv
3 Q{%—Ph 2¢ 94 10 SN 2j 96 17 :N// Ph 2q 71
n-Bu E E n-Bu
OPiv OPiv O OPV  CFs
4 iN// Ph 2 77 1 iN// Me 2k 87 | 18 7Y O 74
' ! N
n-Hex E n-Bu i Ph
OPiv ; OPiv ; OPiv
ZN= 1 Z N= 1 7N Ph
5 N/ Ph 2e 94 E 12 < N/ OMe 21 53 i 19 N/ 2s 78
n-Oct E n-Bu i n-Bu
OPiv OPiv
6 S0 a5 b (1) No; 2m 70 | OPiv
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“ All reactions were performed on 0.5 mmol scale in DMF (0.33 M) at 120 °C. ? Yield of the isolated product after flash chromatography on silica gel.

Org. Lett, Vol. 12, No. 14, 2010

3243



Scheme 2. Arylation/Cyclization Cascade Reactions of Propargylic Ethers 3
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“ Reaction was performed under optimized conditions reported in Table 2.
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Furthermore, using triphenylphosphine as an additive led
to the formation of 2a in 78% yield (entry 10). Employment
of bromo-benzene under these conditions proved to be less
efficient producing indolizine 2a in 29% yield only (entry
11).

Next, under the optimized conditions, the scope of this
cascade cyclization was examined (Table 2). Thus, acetyloxy
and pivalyloxy-propargylic esters possessing alkyl (entries
1—7), aryl (entries 8 and 9), or alkenyl (entry 10) substituents
at the triple bond underwent smooth conversion to give the
corresponding heterocycles 2a—j in good to excellent yields.
To provide a handle for further functonalization, pivalates
were chosen over acetates due to their greater potential to
participate in Suzuki—Miyaura'® and Kumada® coupling
reactions.

The generality of this process was expanded by utiliza-
tion of a variety of functionalized iodobenzenes which
uneventfully cyclized into the corresponding indolizines
2k—p (entries 11—16). Notably, this reaction proceeded
equally efficiently with other heterocyclic cores; quinoline
and isoquinoline propargylic esters were successfully
utilized in this transformation providing access to tricyclic
cores 2q—t in a highly efficient manner (entries 17—20).

It was also found that propargylic phenylethers 3 could
be employed in this transformation (Scheme 2). Interestingly,
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bromobenzenes performed equally well in this process
(4a—c). Similarly, the cascade cyclization of propargylic
silylether 3 gave the corresponding indolizine 4e in 73%
yield.

Presumably, this palladium-catalyzed arylation/cycliza-
tion reaction proceeds through a coordination of the triple
bond of an alkyne 1 with ArPdX, triggering the 5-endo-
dig cyclization by the nucleophilic attack of the pyridyl
nitrogen, leading to the formation of zwitterionic adduct
5 (Scheme 3). The latter, upon deprotonation/tautomer-

Scheme 3. Proposed Mechanism
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In summary, we have developed a practical and efficient
two-component coupling method toward fully substituted
fused pyrroloheterocycles, including indolizines, pyrrolo-
quinolines, and pyrroloisoquinolines. This method is comple-
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mentary to the previously developed approaches®’*'* toward

mono- and disubstituted N-fused pyrroloheterocycles.
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