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Abstract:

Two-dimensional aryl center-crossed cruciforms galheexhibit the strongly twisted
conformation and the spatial separation of frontieslecular orbitals, which can
render the emitters destructible packing structames high solid-state fluorescence
efficiency. In the current work, we design and bgsize a benzene-centered
cruciform emitter (DOT) with two adjacent phenyloka@zoles and two adjacent
triphenylamines starting from commercially avai®bthemicals. Single crystal
analysis indicates that DOT molecules loosely pdogether in a twisted
conformation and weak inter-molecular interactiodpon mechanical grinding, the
crystalline DOT is changed into an amorphous statepmpanying with a remarkable
(56 nm) mechanofluorochromism (MFC). In view of &r@ssed donor and acceptor
structure and the strong solid-state fluorescetiee non-doped electroluminescence

(EL) devices with the structures ITO/HATCN/NPB oAHC/DOT/TPBI/LIF/AI are



fabricated. The devices efficiently emit 500 nmegr&L with the low turn on voltage
of 2.7 V and the low efficiency roll-off. Thus, weve provided a feasible synthetic
strategy for various isomers and analogues of fattymatic benzene-centered-®

cruciforms and demonstrated a new class of careidat MFC and EL materials.

Keywords: benzene-center cruciform; two-dimensionatonjugated dye;

electroluminescence; mechanofluorochromism; efficyeoff

1. Introduction

Organic light-emitting materials are attracting muwdtention owing to their
promising applications in light-emitting diodes, tiopl recording and
anti-counterfeiting, etc.[111] Many conjugated organic molecules with diverse
conformations and configurations have been desigaed synthesized for
obtaining multifunctional materials and improvingtoelectronic properties.
Among them, linear or one-dimensional conjugateghonic molecules are ever
the mainstay of advanced materials for optical epibelectronic applications.
In contrast, high dimensional organic moleculeduding conjugated organic
framework and arylene-centered branched oligomerge hstarted to draw
research interest in recent years, which has etqukbtlie appearance of some
benzene-, anthracene-, benzobisoxazole-, pyrazntied cruciforms.[3, 12
15] These new configuration molecules have grewailgened the scope of

material candidates in chemosensors, molecularclsest nonlinear optics,



field effect transistors, and photovoltaic and &ominescence devices.
While we have synthesized and investigated the amtnical n-center
2,6,9,10-tetra(arylvinyl)anthracene derivatives vgimg unique aggregation-
enhanced one- and two-photon absorption and emigsibaviors, we are now
interested in symmetrical-center benzene-cored cruciforms with fully
aromatic donor and acceptor branches. It shouleshdied that the benzene-
centered cruciforms with unsaturated double amuletrbonds as conjugation
bridge to link electron donors and acceptors haeenbsynthesized and
investigated widely,[1:620] including those with pyridine and dibutylamiaes
the end groups and sensing some positive ion2[Z1

However, the fully aromatic benzene-centered caatgn cruciforms are
rarely synthesized and investigated, to the besuoknowledge. Recently, Xu
et al. synthesized a series of benzene-centeredatiees with two carbazoles
and two diphenylphosphine oxide as the branchesiee as the blue thermally
activated delayed fluorescence-emitting host to alestrate the superiority of
blue TADF-emitting host for high-efficient whiteglht-emitting diodes.[2832]
Intrinsically, these molecules are not the real Zeee-centered conjugated
cruciforms due to the ybrid P atom. Samuel and Zysman-Colman et al.
reported that the benzene-centered cruciforms ex#dizole and carbazole as
branches are the thermally activated delayed fhamece emitters.[33, 34] The
doped organic light-emitting diodes can show theficieht blue

electroluminescence but the high turn-on voltages&6-4.60 V and the sharp



efficiency roll-off. We consider that conjugationenigth, molecular

configuration, and donor and acceptor nature capnwsy influence molecular

conformation, intramolecular charge transfer, aggregation state structure to
tune the optoelectronic properties. Thus, a benzengred cruciform emitter
with two adjacent phenyloxadiazoles and two adjatephenylamines as the
branches, namely DOT (Scheme 1), is designed aailyesynthesized. The
results show that crystalline DOT can be grouna iah amorphous state,
accompanying with a remarkable (56 nm) mechanoficikmmomism, and the
non-doped light-emitting diodes with DOT as emititayer efficiently emit

green electroluminescence with the low turn onagst of 2.7 V and the low

efficiency roll-off.
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Scheme 1 The structure and synthetic route for the fullyoraatic

benzene-centered cruciform DOT.

2. Experimental section



2.1 Materials

All solvents and reagents were of analytical grashel commercially
available and used as received without furtherfigation, unless otherwise
claimed. 1,2-Dibromo-4,5-dimethylbenzene, 5-pheliyHetrazole, and (4-(di-
phenylamino)phenyl)boronic acid were from Energye@hCo. Ltd., China.

2.2 Measurements

'H and'*C NMR spectra were recorded on a Bruker-AC500 (S0k)
spectrometer with CDgls the solvent. Elemental analysis was perfornmea o
Perkin-ElImer 2400. Photoluminescence spectra warerded with a Hitachi
F-4600 spectrophotometer, and the peak wavelengttheo lowest energy
absorption band was used as the excitation wavéleRgwder wide angle
X-ray diffraction (PXRD) was performed on a Powdéray Diffractometer
(INCA Energy, Oxford Instruments), operating at W®.kDifferential scanning
calorimetry (DSC) experiments were carried out ddetzsch DSC 204F1 at a
heating rate of 10°C min™. Thermal gravimetric analysis (TGA) was
undertaken on a Perkin-Elmer thermal analysis systea heating rate of G
min " and a nitrogen flow rate of 80 mL minUV-vis absorption spectra were
recorded on a Hitachi U-4100 spectrophotometerutto and solid-state
fluorescence efficiency was determined with FLSS@@ctrometer equipping a
integrating sphere. Mechanochromic luminescenceetmlvering experiments:
a quantity of DOT solid was placed on a glass p#atd simply ground by a

metal spade. After the fluorescence color and spectwas recorded, the



ground sample was put into an 18D oven and annealed for 5 min, and then
kept for 1 min at room temperature before the mesmsants. The fuming
experiment is to place the ground sample abovealittdoromethane level and
kept for 10 min at room temperature.
2.3 Device fabrication

Indium-tin oxide (ITO) coated glass with a sheaistance of 15-20Q per
square was used as the substrate. The substratprematterned by photo-
lithography to give an effective device size of®dht. It was then cleaned in
an ultrasonic bath with acetone, detergent, desmhizater, and isopropanol in
a sequence, and dried in an oven. On the top of thaanic layers,
dipyrazino[2,3-f.2’,3’-h]quinoxaline-2,3,6,7,10,Xexacarbonitrile (HATCN, 5
nm), N,N’-dinaphthyl-N,N’-diphenylbenzidine (NPB, 40 nm) or 1,1-bis[4-
[N.N’-di(p-tolyl)amino]phenyl]cyclohexane (TAPC, 4@Gm), emitting layer
(DOT, 20 nm), and 1,3,5-tri(phenyl-2-benzimidaziitgnzene (TPBi, 40 nm)
were vacuum deposited in a sequence. Finally, anth@hick LiF film and a
100 nm thick Al film were evaporated with a shadowask to form the top
electrode, at a base pressure of 3 ¥ P@. The thickness of the evaporated
cathodes was monitored using a quartz crystal mleis&/ratio monitor (Model:
STM-100/MF, Sycon). The effective luminous areats# device is 0.09 cm
Electroluminescence (EL) spectra were measured BBR&50 spectra scan
spectrometer, and luminance—current density—voltagaracteristics were

recorded simultaneously with the measurement oEthepectra by combining



the spectrometer with a Keithley model 2400 progreaole voltage—current
source. Measurements were carried out at room teye ambient
conditions.

2.4 Synthesis

4,5-Dibromophthalic acid.

In a 500 mL of two-neck flask, 1,2-dibromo-4,5-dimgbenzene (10.2 g)
and water (250 mL) were added. The mixture wasduaetd 100°C and then
KMnO,4 powder (24 g) was successively added in 10 patisithin 2 h
under stirring. After stirring for 8 h at 10C, the mixture was cooled to room
temperature and sodium hydrogen sulfite (24 g) adided and stirred for 2 h.
Further, KOH (16 g) was added and stirred for Z'he insoluble solid was
filtrated and the filtrate was dropwise added gudfiacid to precipitate the
product. The white solid was collected and washetth water. The dried
product (2.9 g, yield 24%) was used for next steghout further
characterization and purification.
5,5'-(4,5-Dibromo-1,2-phenylene)bis(2-phenyl-1,3,dxadi-azole).

4 mL of anhydrous DMF was added dropwise into a m0of one-neck
flask containing 4,5-dibromophthalic acid (2.6 g}daSOC} (20 mL). After
stirring for 8 h at 80C, the volatile liquids were removed by distillatiorhe
residue (4,5-dibromophthaloyldichlorid&) the flask was added pyridine (10
mL) and 5-phenyl-1H-tetrazole (2.6 g) and therretirat 90°C for 24 h. After

removing the pyridine by rotating evaporation, etilavas added to precipitate



the crude product. After separation by a columrogtatography on silica gel
using ethyl acetate/dichloromethane (1/10) as then¢ the pure product was
obtained (071 g, 24%}H NMR (500 MHz): 8.40 (s, 2H), 7.93.89 (m, 4H),
7.51-7.46 (m, 2H), 7.40 ppm (dd,= 8.5, 7.1 Hz, 4H). 13C NMR (125 MHz):
165.54, 161.48, 135.26, 132.13, 129.05, 126.92,7/8B26.23.27, 122.98 ppm.
Anal. Calcd for GoH1:BraN4O2: C, 50.41; H, 2.31; Br, 30.49; N, 10.69; O, 6.10.
Found: C, 50.45; H, 2.33; N, 10.65%.
N* N* N* N*-Tetraphenyl-4',5'-bis(5-phenyl-1,3,4-oxadiazol-24-[1,1":2",1
"-terphenyl]-4,4"-diamine (DOT) .
5,5'-(4,5-Dibromo-1,2-phenylene)-bis(2-phenyl-1;8yadiazole (0.41 g,
0.78 mmol), (4-(diphenylamino)phenyl)boronic acid.54 g, 1.88 mmol),
Pd(PPBh)s; (63 mg, 54 umol), KCO; (0.16 g, 1.16 mmol), THF(20 mL), and
H>O (4 mL) were added into an 100 mL of flask andgedrwith nitrogen. The
mixture was stirred for 48 h at 8{C. The extracted organic phase with
dichloromethane was dried over anhydrous magnesiulphate and separated
by a column chromatography on silica gel using le#tvgtate/dichloromethane
(3/50) as the eluent. The separated product washeiurpurified by
re-crystallization from chloroform and vacuum suaidtion. The yield is 85%
(0.57 g).*H NMR (500 MHz):8 8.20 (s, 2H), 7.94 (d] = 7.7 Hz, 4H), 7.48 () =
7.5 Hz, 2H), 7.40 (t) = 7.7 Hz, 4H), 7.28 (d] = 7.8 Hz, 8H), 7.13 (dd] = 10.9, 8.6
Hz, 12H), 7.09-6.98 ppm (m, 8HFC NMR (125 MHz):5 165.15, 163.34, 147.45,

147.35, 143.75, 132.67, 132.57, 131.81, 130.45,3P29128.98, 126.85, 124.68,



123.38, 123.24, 122.51, 121.68 ppAnal. Calcd for GgH4oNeO2: C, 81.67; H,
4.73; N, 9.85; O, 3.75. Found: C, 81.75; H, 4.709189%.
3. Results and discussion
3.1 Synthesis and solution photo-physical propertge

The synthetic route and structure of DOT are dedigh the Scheme 1.
Commercially available 1,2-dibromo-4,5-dimethylbene was oxidized to
4,5-dibromophthalic acid in an acceptable yiel@4%. This dried product was
treated with dichlorosulfoxide, followed by reagfimvith 5-phenyltetrazole to
afford 5,5'-(4,5-dibromo-1,2-phenylene)-bis(2-phlehys,4-oxadiazole). This is
an useful intermediate because it can undergo tie c@upling, the Heck
coupling, and the Suzuki coupling to produce digerenjugated cruciforms.
When (4-(diphenylamino)phenyl)boronic acid was ugegerform the Suzuki
coupling, the target compound DOT was obtained imga yield of 85%. The
chemical composition and structure were confirmgd NMR spectra and
elemental analysis. DOT is soluble in common orgaswlvents, and the
solutions with the concentration of 10 uM in hexatex), triethylamine
(TEA), butyl ether (BE), isopropyl ether (IPE), wthacetate (EA),
tetrahydrofuran (THF), dichloromethane (DCM), acdéiie (MeCN), and
dimethyl formamide (DMF) are prepareldOT solutions emit blue to orange
fluorescence with peak emission wavelengths ran@iom 453 to 575 nm
upon increasing the solvent polarity (Figure 1),spthying a strong

solvatochromic effect with a large spectral shifid3 nm from hexane to DMF.



Figure 2 depicts the plot of the Stokes shift(vs) versus the solvent polarity
functionf. The slope fitted according to the Lippert—Matagmation affords a
two-section curve. Although the two slopes areedéht, the continuing upward
trends with the increase of solvent polarity aresesbed. Moreover, the
quantum chemical calculations demonstrate thatHB®&O electrons wholly

localize on triphenylamine moieties and the LUM®co#tons all concentrate on
phenyl-oxadiazole branches (right side in Figurea?ypical spatial separation
of the frontier molecular orbital with few HOMO/LU®I overlap. These results
indicate that DOT obviously shows the polarity-sews charge transfer (CT)

state nature.
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Figure 1. The fluorescence photos and emission spectraQf I different

solvents under the excitation of 365 nm UV light.
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Figure 2. The plot of the Stokes shifts,fvf) versus the solvent polarity functiof) (

for DOT in various solvents and the calculated fiemmolecular orbital nature.

3.2 Solid-state fluorescence and thermal properties

Organic luminophores can aggregate together iremfit stacking modes,
depending on external stimuli (or preparation) d¢bols. Investigations on
MFC materials and phenomenon have attracted muemt@n in the past
decade.[35-37] However, the molecules with two-disienal cruciform
configuration are rarely exploited as MFC candidaW&e investigate the MFC
behavior of DOT solid under simple mechanical gngdon a glass plate using
a metal spade. Powder X-ray diffraction pattermsady indicate the grinding
has induced a phase transformation from crystalimeamorphous states
(Figure 3a). The diffraction pattern of the pristiDbOT solid shows sharp and
intense diffraction peaks, indicating a well-orakmicrocrystalline structure.

In contrast, the diffractogram of the ground DOTiddalisplays broad and



depressed reflections. As shown in Figure 4, thetipe solid emits blue
fluorescence (462 nm) and can be readily changmedairgreen emission (518
nm) upon grinding, affording a remarkable color @ and a large spectral
shift of 56 nm. The grinding-induced amorphizatisriurther evidenced by the
differential scanning calorimetry (DSC) analysisigife 3b). DSC curves
reveal that the pristine solid has no thermal iteoms before isotropic melting
transition (257°C), but the ground sample shows a glass trandiéimperature
at 114°C and a cold crystallization temperature at &0 Notably, both
pristine and ground solids exhibit the high flu@esce efficiency (47% and
56%, respectively). To examine MFC recovery, theugd sample is fumed on
various volatile organic solvents and annealed betwthe glass transition and
the cold crystallization temperatures (3180 °C). It is found that the
fluorescence color is only blue-shifted to blueegreand can not be recovered
to the pristine blue color, signifying the not eatsy crystallization of the
amorphous state. We further anneal the ground sampbve the cold
crystallization temperature, such as at 2@0 and find that the fluorescence
color can be recovered to the pristine blue caRegrinding the fumed and
annealed samples can produce the same MFC effeetisaas the first grinding
(Figure 4). Thus, the large and reversible MFC bittahappens only upon
grinding and high-temperature annealing and isilasdrto the phase transition

between crystalline and amorphous states.
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Figure 4. The fluorescence photos and emission spectra of Ba@idls under

different external stimuli.

Fortunately, we have obtained the analyzable simglestal of DOT

(CCDC number: 1965820), which enable us to gainirsight into the



molecular packing mode to understand the high sahtk fluorescence
efficiency and the destructible crystal structi8mgle crystal analysis indicates
the dihedral angles between the peripheral phemylaxadiazyl units are not
large (8.58 and 18.4, Figure 5) due to the weak intramolecular repusio
However, the dihedral angles between the centnatdyee and oxadiazyl rings
are large (339and 37.%) owing to the strong mutual repulsion of two adjaic
oxadiazole rings. As expected, when two phenylsositeo-linked to the same
benzene ring, the very stronger mutual repulsios fesulted in the larger
dihedral angles between the central benzene andwiheconnected phenyls
(51.0 and 66.8). Triphenylamine moieties are in the inherent pttgy
conformation. The two relatively strong interactadlecules are also shown in
Figure 5, and 12 CHx-and 4 CH---N interactions are observed, whicltois n
much and strong relatively for such a large-sizéeawde. Thus, DOT adopts a
highly twisted conformation to loosely pack togethdth weak intermolecular
interactions and without-n interactions (Figure 5b), which should be favoeabl
for the fluorescence emission and the disorderimgtrdction of crystal

structure under mechanical stimuli.



1:8.58° 2:18.4° 3:33.9° 4:39.7° 5:51.0° 6:66.8°

CH.-t: [3.368, 3.011, 3.555, 2.894, 3.275, 3.403A] X 2
CH--N: [3.484, 3.452A] X 2

Figure 5. The cell structure, molecular dihedral angle, ams intermolecular

interactions between two closely adjacent moleculdise single crystal.

3.3 Electroluminescence properties
Except for the admirable MFC and unique recoverphaber, DOT

exhibits high fluorescence efficiency not only wlwion and crystalline states
but also in amorphous ground and film states. Theréscence efficiency for
the vacuum-evaporated film is up to 64.7%, whicheven higher than the
ground state (56%). In view of the high fluoresaemdficiency and and the
donor- and acceptor-containing structure as welthasrelatively high glass
transition temperature (Figure 3b), DOT is expectedbe a promising

candidate as an efficient emitter for organic kghtitting diodes (OLED).



Devices with the structure ITO/HATCN (5 nm)/TAPC NPB (40 nm)/DOT
(20 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm) are fadated, where HATCN,
TAPC (device 1) or NPB (device 2), and TPBI areduas the hole-injection,
hole-transport, and electron-transport/ hole blogkayers, respectively. Both
device 1 and 2 exhibit same green-emitting elegtnihescence (EL), and their
EL spectra are also similar to the fluorescencectspa of the vacuum-

evaporated film (Figure 6).

1.0 Film
—o— Abs.

0.8 —+— PL (£ 64.7%)
—_ —4—FEL1
3
E’;O.B- 4 > FL2
=
£ 0.4
=

0.2

0.0 f

300 400 500 600 700 800
Wavelength (nm)

Figure 6. The absorption and photo-luminescence spectra auuwa

evaporated film and the electroluminescence spefdrathe devices of

ITO/HATCN/HTM/DOT/TPBI/LiF/Al, where the hole trap®rt materials

(HTM) are TAPC (device 1) and NPB (device 2), retpely.

The turn-on voltages of both devices are low a9 26 and 2.65 V,
respectively. However, in spite of the same EL 8peand turn-on voltages,
both devices exhibit very different EL performar(€gure 7). The maximum

brightness is 14350 and 24500 c8for devices 1 and device 2, respectively,



and the maximum current and power efficiency ag&8 &d/A and 5.92 Im/W
for device 1 and 9.27 cd/A and 7.05 Im/W for deviteThe low efficiency
roll-off is also observed. For example, the currefficiency is 9.15, 9.21, 8.12
cd/A for the device 2 at the luminance of 100, 1086d 10000 cd/fm

respectively. These results indicate that DOT is dficient emitter for

fluorescence-based EL devices. It is noted tharmogluminophors with strong
twisted conjugation skeleton and loose intermol@cstacking are commonly
unfavorable for carrier transporting. For that matthe thinner emitter layer
and the doped devices could boost the DOT potetatialgnificantly improve

EL performance. The device can exhibit better Etfggenance by employing
NPB as the hole transport layer. Therefore, we iptethat the device
performance can be further improved by optimizireyide compositions and

structures, which is underway in our laboratory.
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density—voltage—brightness characteristics.

4. Conclusions

We have designed and synthesized a fully aromaticzéne-centered
cruciform emitter (DOT) with two adjacent donorgdamwo adjacent acceptors
as the branches. The crowded substitution of four lranches on the same
benzene ring has resulted in a strongly twistedfaromation and loosely
stacking structure, which render luminorphors tketdictible crystal structure
and the high solid-state fluorescence efficienchisTkind of luminescent
cruciforms could serve as promising mechanofluomcism and
light-emitting diode materials. We have demonsttatieat DOT crystal can
readily produce amorphization with a large spectshift under simple

mechanical grinding, and the non-doped devicesbéxthe high luminance,



current efficiency, power efficiency, and the lawrt-on voltage and efficiency
roll-off. This work has also provided an effectiggnthetic strategy for a new
class of fully aromatic benzene-centered cruciforarsd many isomers and
analogues can be prepared by employing differel@nes and donors, which

and the device optimization are underway in ouotatory.
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Figure5. The cell structure, molecular dihedral angle, and the intermolecular
interactions between two closely adjacent moleculesin the single crystal.



Highlight:

1. A new two-dimensional conjugated molecule is designed and synthesized

2. Crossed donor-acceptor molecules show high ligh-emitting efficiency

3. Cruciforms with strong twisted structure are easy to mechanofluorochromismi\

4. A non-doped EL device with low efficiency off is achieved
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