Accepted Manuscript

Organic sensitizers bearing a trialkylsilylether group for liquid dye sensitized solar cells

Raquel Pérez-Tejada, Natalia Martínez de Baroja, Santiago Franco, Laia Pellejà, Jesús Orduna, Raquel Andreu, Javier Garín

PII: S0143-7208(15)00294-6

DOI: 10.1016/j.dyepig.2015.07.026

Reference: DYPI 4866

To appear in: Dyes and Pigments

Received Date: 8 June 2015

Revised Date: 16 July 2015

Accepted Date: 22 July 2015

Please cite this article as: Pérez-Tejada R, Martínez de Baroja N, Franco S, Pellejà L, Orduna J, Andreu R, Garín J, Organic sensitizers bearing a trialkylsilylether group for liquid dye sensitized solar cells, *Dyes and Pigments* (2015), doi: 10.1016/j.dyepig.2015.07.026.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

contraction of the second

Organic sensitizers bearing a trialkylsilylether group for liquid dye sensitized solar cells

Raquel Pérez-Tejada^a, Natalia Martínez de Baroja^a, Santiago Franco^{a*}, Laia Pellejà^{b*}, Jesús Orduna^a, Raquel Andreu^a, Javier Garín^a

^aDepartamento de Química Orgánica - Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza - CSIC, E-50009 Zaragoza, Spain

^bInstitute of Chemical Research of Catalonia (ICIQ), Avda Països Catalans 16, Tarragona E-43007 Spain

* Corresponding author. Tel.: +34 976762283; E-mail address: sfranco@unizar.es (S. Franco)

Abstract

In this work we present the synthesis, optical characterization and performance of five metal-free sensitizers for dye-sensitized solar cells (DSSC). All dyes include, for the first time, a trialkylsilyl ether group in the π -conjugated bridge (a thiophene ring). The influence of different donor unities, like triarylamine (TPA), 4*H*-pyranylidene and dithiafulvene have been evaluated in DSSC with a liquid I₃/I electrolyte, obtaining the best results with the 4*H*-pyranylidene moiety. The size and the position of the bulky group have a great importance in the efficiency of the final devices.

In order to explain the recombination processes and electron life-time, charge extraction (CE) and transient photovoltaic (TPV) experiments have been carried out.

1. Introduction

Solar energy offers a clean, well-spread and inexhaustible energy source. Although the market is dominated by silicon-based photovoltaic devices, in recent years the interest on alternatives more environment-friendly has increased, specially focused on reducing mass during cell manufacture processes and the thickness of the final device.

Organic Photovoltaic Cells (OPVs)^{1, 2} and particularly Dye Sensitized Solar Cells (DSSCs)^{3, 4} constitute an interesting alternative due to their low manufacturing cost, flexibility of molecular design, light-weight and great aesthetic features, like color and transparency. The key element in a DSSC device is probably the sensitizer dye and over the last years, thousands of new dyes have been investigated. The most efficient organic sensitizers are based on Donor- π spacer-acceptor (D- π -A) structures,⁵ a type of push-pull systems which lead to effective photoinduced intramolecular charge-transfer (ICT). In these systems small variations in the different parts of the molecule (mostly in the donor and the π -bridge) may result in significant changes in the photovoltaic properties. Triphenylamine (TPA)-based metal free organic dyes are one of the most common donor groups in DSSCs,^{6, 7} as it presents several advantages, like a non-planar structure, which suppresses the formation of aggregates. Furthermore, the physical properties can be easily modulated by introduction of bulky or donor groups.⁸⁻¹³ Recently, proaromatic systems like 4*H*-pyranylidene¹⁴⁻¹⁷ and dithiafulvene¹⁸⁻²⁰ have been introduced as alternative and efficient donor unities in DSSCs, but no studies comparing their properties have been reported.

When designing a new sensitizer, one important factor to take into account is related to the minimization of aggregates by π - π stacking. This may be performed by using additives, such as deoxycholic acid (DCA)²¹, ²² or by the introduction of bulky groups both, in the donor or in the π -bridge.^{12, 23-26} However, it is relatively difficult to synthesize dyes with bulky chains in the conjugated spacer, requiring tedious and multiple reaction steps.

Silicon-based dyes have been very promising for DSSCs due to its photo and thermal stability.^{27, 28} Examples of organic sensitizers bearing a dithienosilole (DTS) as a π -linker have been reported with high efficiencies.²⁹⁻³⁴ However, to the best of our knowledge, organic dyes featuring a trialkylsilyl ether (R₁R₂R₃SiO–) were never used to preclude the π -aggregation on the TiO₂ in DSSCs. This popular protecting group can be easily introduced from alcohols³⁵ and the overall size and the stability depends on the nature of the R₁, R₂ or R₃. Moreover, the silylether group greatly enhances the solubility of the sensitizer that facilitates its adsorption on the TiO₂ surface.

In the present work, a series of five new metal-free organic sensitizers for DSSCs with a trialkylsilyloxy group have been designed, synthesized and characterized. In order to evaluate the donor influence on the photovoltaic properties a TPA and two proaromatic donor unities (4*H*-pyranylidene and dithiafulvene) have been used (Figure 1).

Fig 1. Molecular structures of TBDMS organic sensitizers

The influence of the size and the relative position on the heterocyclic linker of two bulky groups, *tert*-butyldimethyl (TBDMS) or *tert*-butyldiphenyl silylether (TBDPS) are also studied (Figure 2). Finally, the photophysical properties, molecular orbital calculations and the performance of DSSCs based on these organic dyes are reported.

2. Experimental section

2.1. General information

Infrared measurements were carried out in KBr or neat using a Perkin-Elmer Fourier Transform Infrared 1600 spectrometer. Melting points were obtained on a Gallenkamp apparatus in open capillaries and are uncorrected. ¹H- and ¹³C-NMR spectra were recorded on a Bruker ARX300 or a Bruker AV400 at 300 or

400 MHz and 75 or 100 MHz respectively; δ values are given in ppm (relative to TMS) and *J* values in Hz. The apparent resonance multiplicity is described as s (singlet), d (doublet), and m (multiplet). ¹H-¹H COSY and ¹H-¹³C-HSQC experiments were recorded on a Bruker ARX300 or a Bruker AV400 at 300 or 400 MHz in order to establish peaks assignment and spatial relationships. Electrospray mass spectra were recorded on a Bruker Microtof-Q spectrometer; accurate mass measurements were achieved using sodium formate as external reference. UV-Visible spectra were recorded with an UV-Vis UNICAM UV4 spectrophotometer. Pulse differential voltammetry measurements were performed with a μ -Autolab type III potentiostat using a glassy carbon working electrode, Pt counter electrode, and Ag/AgCl reference electrode. The experiments were carried out under argon in CH₂Cl₂, with Bu₄NPF₆ as supporting electrolyte (0.1 mol L⁻¹). Scan rate was 0.01V s⁻¹, modulation amplitude 0.025V and modulation time 0.05 s⁻¹.

2.2. Synthesis

4-((tert-butyldimethylsilyloxy)methyl)-5-((2,6-diphenyl-4H-pyran-4-ylidene)methyl)thiophene-2-carbaldehyde (7)

A solution of 2,6-diphenyl-(4H-pyran-4ylidene)-diphenylphosphine oxide 5 (680 mg, 1.56 mmol) in anhydrous THF (12 ml) was prepared, purged with argon and cooled to -78°C. To this solution, n-BuLi (1.6 M in hexanes) (1.2 mL, 2.08 mmol) was added dropwise and the resulting mixture was stirred for 15 min. Then 3-((tert-butyldimethylsilyloxy)methyl)thiophene-2-carbaldehyde 4 (472 mg; 1.84 mmol) in anhydrous THF (5 mL) was added dropwise and the mixture was warmed to 0 °C for 3 hours (TLC monitoring using 10% EtOAc in hexanes). Saturated NH₄Cl solution was added to quench the reaction and the solvent was evaporated under reduced pressure. The organic layer was extracted with EtOAc (2×25 mL) and dried over anhydrous MgSO₄. After the removal of the solvent, the residue was dissolved in EtOAc/hexanes (3/97) and filtered over silica gel to give the crude tert-butyl((2-((2,6-diphenyl-4H-pyran-4-ylidene)methyl)thiophen-3yl)methoxy)dimethylsilane **6** as an intermediate. Then, a solution of 2,2,6,6-tetramethylpiperidine (0.27 mg, 1.58 mmol) in THF (8.4 mL) was prepared, purged with argon and cooled to -78 °C. To this solution, 'BuLi (1.7 M in pentane) (1.01 mL, 1.71 mmol) was added dropwise and the resulting mixture was stirred for 1h and then a solution of 6 (676.0 mg, 1.41 mmol) in THF (33.6 mL) was added. The resulting mixture was stirred for an additional hour, DMF (0.28 mL, 3.70 mmol) was added dropwise and the mixture was warmed to -30 °C. The reaction was quenched by the addition of saturated NH₄Cl solution and the solvent was evaporated under reduced pressure. The organic layer was extracted with EtOAc (2×20 mL) and dried over anhydrous MgSO₄. After the removal of the solvent, the aldehyde 7 was purified by silica gel column chromatography (6% EtOAc in hexanes). Yield: red oil (583.0 mg, 1.16 mmol; 82%).

IR (neat): cm⁻¹ 1648 (C=O), 1573 (C=C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.81 (s, 1H), 7.90–7.76 (m, 4H), 7.69 (s, 1H), 7.55–7.43 (m, 6H), 7.29 (d, *J* = 2.0 Hz, 1H), 6.55 (d, *J* = 2.0 Hz, 1H), 6.07 (s, 1H), 4.75 (s, 2H), 0.96 (s, 9H), 0.14 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 182.1, 155.3, 152.6, 146.6, 139.0, 137.9, 137.0, 132.8, 132.5, 132.5, 130.2, 129.7, 128.9, 128.8, 125.3, 124.7, 109.0, 104.7, 102.9, 59.7, 26.0, 18.4, –5.2. HRMS (ESI⁺): *m/z* calcd for [C₃₀H₃₃O₃SSi]⁺: 501.1914, found: 501.1914 [M+H]⁺; calcd for [C₃₀H₃₂NaO₃SSi]⁺: 523.1734, found: 523.1721 [M+Na]⁺.

4-((tert-butyldimethylsilyloxy)methyl)-5-((4,5-dimethyl-1,3-dithiol-2ylidene)methyl)thiophene-2-carbaldehyde (10)

A solution of tributyl(4,5-dimethyl-1,3-dithiol-2-yl)phosphonium hexafluorophosphate **8** (317.7 mg, 0.66 mmol) and 3-((*tert*-butyldimethylsilyloxy)methyl)thiophene-2-carbaldehyde **4** (131.0 mg, 0.51 mmol) in anhydrous THF (16 mL) was prepared, purged with argon and cooled to -78° C. To this solution, Et₃N (352.4 μ L, 2.51 mmol) was added dropwise and the resulting mixture was stirred for 15 min. After the removal of the solvent, the residue was dissolved in EtOAc/hexanes (1:9) and filtered over neutral aluminum oxide to give compound **9** as an intermediate. Then, a solution of **9** in THF (10 mL) was prepared, purged with argon

and cooled to -45 °C. To this solution, *n*-BuLi (1.6 M in hexanes) (0.53 mL, 0.85 mmol) was added dropwise and the resulting mixture was stirred for 1h. DMF (0.09 mL, 1.2 mmol) was added dropwise and then, the mixture was warmed to room temperature over 24h. Saturated NH₄Cl solution was added to quench the reaction and the solvent was evaporated under reduced pressure. The organic layer was extracted with CH₂Cl₂ and dried over anhydrous MgSO₄. After the removal of the solvent, the aldehyde **10** was purified by silica gel column chromatography (20% ethyl acetate in hexanes). Yield: red oil (136.2 mg, 0.34 mmol; 67%).

IR (neat): cm⁻¹ 1649 (C=O), 1492 (C=C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.80 (s, 1H), 7.65 (s, 1H), 6.82 (s, 1H), 4.69 (s, 2H), 2.09 (s, 3H), 2.03 (s, 3H), 0.92 (s, 9H), 0.09 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 181.9, 146.6, 142.5, 137.9, 137.3, 135.8, 124.4, 123.4, 102.9, 59.6, 25.9, 18.3, 13.8, 13.1, -5.2. HRMS (ESI⁺): *m*/*z* calcd for [C₁₈H₂₇O₂S₃Si]⁺: 399.0937, found: 399.0961 [M+H]⁺; calcd for [C₁₈H₂₆NaO₂S₃Si]⁺: 421.0756, found: 421.0784 [M+Na]⁺.

4-(3-((tert-butyldimethylsilyloxy)methyl)thiophen-2-yl)-N,N-diphenylaniline (13)

A solution of the stannyl derivative **12** (990.0 mg, 1.87 mmol) and compound **11** (668.2 mg, 1.87 mmol) in anhydrous toluene (24 mL) was prepared, purged with argon for 15 min before addition of Pd(PPh₃)₄ (112.3 mg, 0.10 mmol). The reaction mixture was refluxed for 15 h under an argon atmosphere. After addition of water (30 mL), the mixture was extracted with toluene (2 × 30 mL). The organic phase was washed with a saturated aqueous solution of NH₄Cl (30 mL) and water (3 × 10 mL) and dried over anhydrous MgSO₄. After the removal of the solvent, the compound was purified by silica gel column chromatography (2% diethyl ether in hexanes). Yield: light yellow oil (392.4 mg, 0.83 mmol; 44%).

IR (neat): cm⁻¹ 1592 (C=C). ¹H NMR (300 MHz, CD₂Cl₂): δ (ppm) 7.39–7.33 (m, 2H), 7.32–7.24 (m, 4H), 7.21 (d, J = 5.2 Hz, 1H), 7.15–7.02 (m, 9H), 4.68 (s, 2H), 0.89 (s, 9H), 0.05 (s, 6H). ¹³C NMR (100 MHz, CD₂Cl₂): δ (ppm) 148.1, 148.0, 140.6, 137.6, 130.4, 130.3, 129.9, 128.4, 125.2, 123.7, 59.9, 26.3, 18.8, -5.02. HRMS (ESI⁺): m/z calcd for [C₂₉H₃₄NOSSi]⁺: 472.2125, found: 472.2109 [M+H]⁺; calcd for [C₂₉H₃₃NNaOSSi]⁺: 494.1944, found: 494.1930 [M+Na]⁺.

4-((tert-butyldimethylsilyloxy)methyl)-5-(4-(diphenylamino)phenyl)thiophene-2-carbaldehyde (14)

A solution of **13** (352.4 mg, 0.75 mmol) in anhydrous THF (17 mL) was prepared, purged with argon and cooled to -30 °C. To this solution, *n*-BuLi (1.6 M in hexanes) (0.78 mL, 1.25 mmol) was added dropwise and the resulting mixture was stirred for 1 hour. Then, DMF (173 µL, 2 mmol) was added dropwise and the mixture was warmed to room temperature (TLC monitoring using 2% diethyl ether in hexanes). Saturated NH₄Cl solution was added to quench the reaction and the solvent was evaporated under reduced pressure. The organic layer was extracted with diethyl ether (15 × 3 mL) and dried over anhydrous MgSO₄. After removal of the solvent, the aldehyde **14** was purified by column chromatography on silica gel (2% ethylic ether in hexanes). Yield: yellow oil (298.6 mg, 0.50 mmol; 80%).

IR (neat): cm⁻¹ 1670 (C=O), 1445 (C=C). ¹H NMR (400 MHz, CD₂Cl₂): δ (ppm) 9.84 (s, 1H), 7.80 (s, 1H), 7.41–7.38 (m, 2H), 7.33–7.29 (m, 4H), 7.16–7.05 (m, 8H), 4.72 (s, 2H), 0.91 (s, 9H), 0.08 (s, 6H). ¹³C NMR (100 MHz, CD₂Cl₂): δ (ppm) 183.2, 150.3, 149.4, 147.7, 141.0, 139.5, 139.2, 130.4, 130.0, 126.5, 125.7, 124.4, 122.7, 60.0, 26.3, 18.8, -4.5. HRMS (ESI⁺): *m*/*z* calcd for [C₃₀H₃₄NO₂SSi]⁺: 500.2074, found: 500.2045 [M+H]⁺.

3-(4-((tert-butyldimethylsilyloxy)methyl)-5-((2,6-diphenyl-4H-pyran-4-ylidene)methyl) thiophen-2-yl)-2-cyanoacrylic acid (1)

To a solution of aldehyde 7 (122 mg, 0.24 mmol) and 2-cyanoacetic acid (33 mg, 0.38 mmol) in chloroform (5 mL) was added piperidine (160 μ L; 1.62 mmol). The mixture was refluxed for 24 hours under an argon atmosphere and then cooled down to room temperature. HCl (1N) was added until pH=3, the organic phase was dried over MgSO₄ and concentrated under reduced pressure. Then, hexane was added and

a solid appeared. This compound was filtered under reduced pressure and washed with a mixture hexane/ CH_2Cl_2 (9/1) to afford **1** Yield: dark purple solid (134 mg, 0.24 mmol; 96%).

Mp 215–218 °C. IR (KBr): cm⁻¹ 3100–2600 (COO–H), 2210 (C=N), 1672 (C=O), 1652 (C=C). ¹H NMR (400 MHz, dmso-d₆): δ (ppm) 8.33 (s, 1H), 8.02–7.89 (m, 4H), 7.86 (s, 1H), 7.63–7.45 (m, 6H), 7.37 (d, *J* = 1.5 Hz, 1H), 7.11 (d, *J* = 1.5 Hz, 1H), 6.37 (s, 1H), 4.76 (s, 2H), 0.90 (s, 9H), 0.11 (s, 6H). ¹³C NMR (75 MHz, dmso-d₆): δ (ppm) 164.1, 154.8, 151.9, 145.7, 144.9, 139.3, 132.2, 131.6, 131.5, 130.5, 130.0, 129.9, 129.1, 128.9, 124.8, 124.5, 117.7, 109.1, 105.3, 102.4, 58.7, 25.7, 17.9, –5.4. HRMS (ESI⁺): *m/z* calcd for [C₃₃H₃₄NO₄SSi]⁺: 568.1972, found: 568.1945 [M+H]⁺.

3-(4-((tert-butyldimethylsilyloxy)methyl)-5-((4,5-dimethyl-1,3-dithiol-2-ylidene)methyl)thiophen-2yl)-2-cyanoacrylic acid (2)

To a solution of aldehyde **10** (136.4 mg, 0.34 mmol) and 2-cyanoacetic acid (45.4 mg, 0.53 mmol) in chloroform (32 mL) was added piperidine (226.4 μ L, 2.25 mmol). The mixture was refluxed for 85h under an argon atmosphere and then cooled down to room temperature. The reaction crude was chromatographied on reverse C18 silica gel (50 % AcONH₄ (20 mM) in acetonitrile). After the addition of acetic acid a solid appeared. This compound was filtered under reduced pressure to afford **2**. Yield: dark purple solid (68.7 mg, 0.15 mmol; 43%).

Mp 170–174 °C. IR (KBr): cm⁻¹ 2211 (C=N), 1673 (C=O), 1531 (C=C).¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.21 (s, 1H), 7.68 (s, 1H), 6.84 (s, 1H), 4.69 (s, 2H), 2.14 (s, 3H), 2.07 (s, 3H), 0.92 (s, 9H), 0.09 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 169.1, 149.1, 146.5, 145.5, 139.8, 136.6, 130.9, 125.6, 124.5, 116.9, 103.1, 91.5, 59.5, 25.9, 18.3, 14.0, 13.1, -5.3. HRMS (ESI⁺): *m*/*z* calcd for [C₂₁H₂₈NO₃S₃Si]⁺: 466.0995, found: 466.1040 [M+H]⁺. HRMS (ESI⁺): *m*/*z* calcd for [C₂₁H₂₇NNaO₃S₃Si]⁺: 488.0815, found: 488.0793 [M+Na]⁺.

3-(4-((tert-butyldimethylsilyloxy)methyl)-5-(4-(diphenylamino)phenyl)thiophen-2-yl)-2cyanoacrylic acid (3)

To a solution of aldehyde **14** (139.2 mg; 0.29 mmol) and 2-cyanoacetic acid (45.4 mg; 0.53 mmol) in chloroform (26 mL) was added piperidine (200.6 μ L; 1.90 mmol). The mixture was refluxed for 5 days under an argon atmosphere and then cooled down to room temperature. The reaction crude was chromatographied on reverse C18 silica gel (50 % AcONH₄ (20 mM) in acetonitrile). After the addition of acetic acid a solid appeared. This compound was filtered under reduced pressure to afford **3**. Yield: pinkish solid (113.1 mg, 0.20 mmol; 70%).

Mp 196–200 °C. IR (KBr): cm⁻¹ 2223 (C=N), 1679 (C=O), 1566 (C=C).¹H NMR (400 MHz, acetone-d₆): δ (ppm) 8.42 (s, 1H), 8.05 (s, 1H), 7.58–7.53 (m, 2H), 7.39–7.33 (m, 4H), 7.18–7.11 (m, 6H) 7.11–7.06 (m, 2H), 4.83 (s, 2H), 0.91 (s, 9H), 0.11 (s, 6H). ¹³C NMR (100 MHz, acetone-d₆): δ (ppm) 167.8, 151.5, 150.9, 148.9, 148.3, 143.4, 140.7, 134.9, 131.8, 131.5, 127.4, 127.2, 126.0, 123.6, 117.8, 100.1, 60.9, 27.3, 19.8, -4.1. HRMS (ESI): m/z calcd for [C₃₃H₃₃N₂O₃SSi]⁻: 565.1987, found: 565.2014 [M–H]⁻.

3-((tert-butyldiphenylsilyloxy)methyl)thiophene-2-carbaldehyde (18)

A solution of *tert*-butyldiphenyl(thiophen-3-ylmethoxy)silane **17** (2.2 g, 6.2 mmol) in anhydrous diethyl ether (10 mL) was prepared, purged with argon and cooled to -10 °C. To this solution, *t*-BuLi (1.7 M in pentane) (4 mL, 6.2 mmol) was added dropwise for a period of 20 min and the resulting mixture was stirred at -10 °C for 1h. Then, DMF (0.75 mL, 9.6 mmol) was added dropwise and the mixture was warmed to 0 °C and stirred at this temperature overnight (TLC monitoring using 20% hexanes in dichloromethane). Saturated NH₄Cl solution was added to quench the reaction and the solvent was evaporated under reduced pressure. The organic layer was extracted with diethyl ether (10×3 mL) and dried over anhydrous MgSO₄. After removal of the solvent, the aldehyde **18** was purified by silica gel column chromatography (20% hexanes in dichloromethane). Yield: yellow oil (454.9 mg, 1.20 mmol; 20%).

IR (neat): cm⁻¹ 1664 (C=O), 1588 (C=C). ¹H NMR (400 MHz, CD₂Cl₂): δ (ppm) 9.95 (d, J = 0.9 Hz, 1H), 7.68–7.66 (m, 5H), 7.48–7.37 (m, 6H), 7.25 (d, J = 5.0 Hz, 1H), 5.06 (s, 2H), 1.08 (s, 9H). ¹³C NMR (100 MHz, CD₂Cl₂): δ (ppm) 182.9, 150.9, 138.1, 136.1, 134.5, 133.5, 130.5, 130.0, 128.5, 61.4, 27.2, 19.7. HRMS (ESI⁺): m/z calcd for [C₂₂H₂₅O₂SSi]⁺: 381.1339, found: 381.1313 [M+H]⁺; calcd for [C₂₂H₂₄NaO₂SSi]⁺: 403.1158, found: 403.1139 [M+Na]⁺.

4-((tert-butyldiphenylsilyloxy)methyl)thiophene-2-carbaldehyde (19)

A solution of *tert*-butyldiphenyl(thiophen-3-ylmethoxy)silane **17** (1.6 g, 4.5 mmol) in anhydrous THF (39 mL) was prepared, purged with argon and cooled to -10 °C. To this solution, *n*-BuLi (1.6 M in hexanes) (2.8 mL, 4.5 mmol) was added dropwise and the resulting mixture was stirred at -10 °C for 1h and 30 min. Then, DMF (0.54 mL, 6.9 mmol) was added dropwise and the mixture was warmed to 0 °C and stirred at this temperature overnight (TLC monitoring using 20% ethyl acetate in hexanes). Saturated NH₄Cl solution was added to quench the reaction and the solvent was evaporated under reduced pressure. The organic layer was extracted with diethyl ether (15 × 2 mL) and dried over anhydrous MgSO₄. After removal of the solvent, the aldehyde **19** was purified by silica gel column chromatography (20% ethyl acetate in hexanes). Yield: white solid (465.3 mg, 1.22 mmol; 21%).

Mp 76–78 °C. IR (KBr): cm⁻¹ 1666 (C=O), 1466 (C=C). ¹H NMR (400 MHz, CD₂Cl₂): δ (ppm) 9.86 (d, J = 1.3 Hz, 1H), 7.69–7.65 (m, 5H), 7.59–7.58 (m, 1H), 7.47–7.37 (m, 6H), 4.77 (d, J = 0.6 Hz, 2H), 1.08 (s, 9H). ¹³C NMR (100 MHz, CD₂Cl₂): δ (ppm) 183.5, 144.7, 144.5, 136.1, 135.8, 133.7, 130.8, 130.4, 128.4, 62.2, 27.1, 19.7. HRMS (ESI⁺): m/z calcd for [C₂₂H₂₅O₂SSi]⁺: 381.1339, found: 381.1320 [M+H]⁺; calcd for [C₂₂H₂₄NaO₂SSi]⁺: 403.1158, found: 403.1144 [M+Na]⁺.

4-((tert-butyldiphenylsilyloxy)methyl)-5-((2,6-diphenyl-4H-pyran-4-ylidene)methyl)thiophene-2-carbaldehyde (21)

A solution of **5** (22.6 mg, 0.51 mmol) in anhydrous THF (5 mL) was prepared, purged with argon and cooled to -78° C. To this solution, *n*-BuLi (1.6 M in hexanes) (0.32 mL, 0.51 mmol) was added dropwise and the resulting mixture was stirred for 20 min. Then 3-((*tert*-butyldiphenylsilyloxy)methyl)thiophene-2-carbaldehyde **18** (151.1 mg; 0.40 mmol) in anhydrous THF (5 mL) was added dropwise and the mixture was warmed to room temperature for 21 hours (TLC monitoring using 10% dichloromethane in hexanes). Saturated NH₄Cl solution was added to quench the reaction and the solvent was evaporated under reduced pressure. The organic layer was extracted with hexanes ($25 \times 2 \text{ mL}$) and dried over anhydrous MgSO₄. After the removal of the solvent, the residue was dissolved in hexanes) (0.36 mL, 0.58 mmol) was added dropwise and the resulting mixture was stirred for 1h and 30 min. DMF (0.08 mL, 1.03 mmol) was added dropwise and the mixture stirred for 2h. Saturated NH₄Cl solution was evaporated under reduced pressure and the mixture stirred for 2h. Saturated NH₄Cl solution was added to quench the resulting mixture was stirred for 1h and 30 min. DMF (0.08 mL, 1.03 mmol) was added dropwise and the mixture stirred for 2h. Saturated NH₄Cl solution was added to quench the reaction and the solvent was evaporated under reduced pressure. The organic layer was extracted pressure. The organic layer was extracted by the solvent was evaporated under reduced pressure for 1h and 30 min. DMF (0.08 mL, 1.03 mmol) was added dropwise and the mixture stirred for 2h. Saturated NH₄Cl solution was added to quench the reaction and the solvent was evaporated under reduced pressure. The organic layer was extracted with hexanes ($15 \times 2 \text{ mL}$) and dried over anhydrous MgSO₄. After the removal of the solvent, the aldehyde **21** was purified by silica gel column chromatography (20% ethyl acetate in hexanes). Yield: red oil (136.4 mg, 0.22 mmol; 55%).

IR (neat): cm⁻¹ 1643 (C=O), 1518 (C=C). ¹H NMR (400 MHz, CD₂Cl₂): δ (ppm) 9.77 (s, 1H), 7.92–7.89 (m, 2H), 7.80–7.78 (m, 2H), 7.75–7.67 (m, 4H), 7.64 (s, 1H), 7.55–7.38 (m, 12H), 7.27 (d, *J* = 2.0 Hz, 1H), 6.47 (d, *J* = 2.0 Hz, 1H), 6.00 (s, 1H), 4.81 (s, 2H), 1.09 (s, 9H). ¹³C NMR (100 MHz, CD₂Cl₂): δ (ppm) 182.4, 155.8, 153.0, 147.1, 139.1, 138.5, 137.8, 136.2, 133.8, 133.2, 133.1, 133.0, 130.7, 130.4, 130.2, 129.4, 129.3, 128.4, 125.9, 125.2, 109.5, 105.4, 103.3, 60.9, 27.2, 19.7. HRMS (ESI⁺): *m/z* calcd for [C₄₀H₃₇O₃SSi]⁺: 625.2227, found: 625.2235 [M+H]⁺.

3-((tert-butyldiphenylsilyloxy)methyl)-5-((2,6-diphenyl-4H-pyran-4-ylidene)methyl)thiophene-2-carbaldehyde (23)

A solution of 2,6-diphenyl(4H-pyran-4ylidene)diphenylphosphine oxide 5 (222.6 mg, 0.51 mmol) in anhydrous THF (5 ml) was prepared, purged with argon and cooled to -78°C. To the solution, n-BuLi (1.6 M in hexanes) (0.32 mL, 0.51 mmol) was added dropwise and the resulting mixture was stirred for 20 min. Then 4-((tert-butyldiphenylsilyloxy)methyl)thiophene-2-carbaldehyde 19 (150.0 mg; 0.39 mmol) in anhydrous THF (5 mL) was added dropwise and the mixture was warmed to room temperature for 21 h (TLC monitoring using 20% ethyl acetate in hexanes). Saturated NH₄Cl solution was added to quench the reaction and the solvent was evaporated under reduced pressure. The organic layer was extracted with EtOAc and dried over anhydrous MgSO₄. After the removal of the solvent, the residue was dissolved in EtOAc/hexanes (2:8) and filtered over silica gel to give the crude tert-butyl((5-((2,6-diphenyl-4H-pyran-4ylidene)methyl)thiophen-3-yl)methoxy)diphenylsilane 22 as an intermediate. A solution of 22 in THF (10 mL) was prepared, purged with argon and cooled to -78 °C. To this solution, n-BuLi (1.6 M in hexanes) (0.42 mL, 0.68 mmol) was added dropwise and the resulting mixture was stirred for 2h. DMF (0.09 mL, 1.2 mmol) was added dropwise and the mixture stirred for 2h. Saturated NH₄Cl solution was added to quench the reaction and the solvent was evaporated under reduced pressure. The organic layer was extracted with EtOAc (15×3 mL) and dried over anhydrous MgSO₄. After the removal of the solvent, the aldehyde 23 was purified by silica gel column chromatography (20% ethyl acetate in hexanes). Yield: dark red oil (138.9 mg, 0.22 mmol; 56%).

IR (neat): cm⁻¹ 1643 (C=O), 1579 (C=C). ¹H NMR (400 MHz, CD₂Cl₂): δ (ppm) 9.86 (s, 1H), 7.90–7.88 (m, 2H), 7.82–7.80 (m, 2H), 7.73–7.70 (m, 4H), 7.50–7.41 (m, 12H), 7.22 (d, *J* = 1.9 Hz, 1H), 7.05 (s, 1H), 6.55 (d, *J* = 1.9 Hz, 1H), 6.14 (s, 1H), 5.02 (s, 2H), 1.11 (s, 9H). ¹³C NMR (100 MHz, CD₂Cl₂): δ (ppm) 181.4, 155.6, 153.1, 151.5, 151.3, 136.1, 133.7, 133.5, 133.3, 133.2, 133.1, 130.7, 130.5, 130.2, 129.4, 129.3, 128.4, 127.8, 125.9, 125.3, 109.1, 107.6, 103.2, 61.2, 27.2, 19.7. HRMS (ESI⁺): *m/z* calcd for [C₄₀H₃₇O₃SSi]⁺: 625.2227, found: 625.2244 [M+H]⁺.

3-(4-((tert-butyldiphenylsilyloxy)methyl)-5-((2,6-diphenyl-4H-pyran-4-ylidene)methyl)thiophen-2yl)-2-cyanoacrylic acid (15)

To a solution of aldehyde **21** (97.9 mg, 0.157 mmol) and 2-cyanoacetic acid (20.8 mg, 0.24 mmol) in chloroform (16 mL) was added piperidine (109.9 μ L, 1.04 mmol). The mixture was refluxed for 72h under an argon atmosphere and then cooled down to room temperature. The reaction crude was chromatographied on reverse C18 silica gel (started 50 % AcONH₄ (20 Mm) in acetonitrile and finished 30%). After the addition of acetic acid a solid appeared. This compound was filtered under reduced pressure to afford **15**. Yield: dark purple solid (83.4 mg, 0.12 mmol; 77%).

Mp 208–211 °C. IR (KBr): cm⁻¹ 2207 (C=N), 1652 (C=O), 1539 (C=C). ¹H NMR (300 MHz, THF-d₈): δ (ppm) 8.29 (s, 1H), 8.01–7.98 (m, 2H), 7.88–7.85 (m, 2H), 7.79 (s, 1H), 7.76–7.70 (m, 4H), 7.59–7.32 (m, 13H), 6.76 (d, *J* = 1.6 Hz, 1H), 6.12 (s, 1H), 4.87 (s, 2H), 1.09 (s, 9H). ¹³C NMR (100 MHz, THF-d₈): δ (ppm) 164.9, 156.6, 153.8, 147.8, 146.1, 139.8, 139.8, 136.6, 134.3, 134.0, 133.7, 133.5, 131.9, 130.9, 130.6, 130.0, 129.7, 128.8, 126.2, 125.7, 117.9, 110.2, 106.2, 104.0, 96.6, 61.3, 27.4, 20.1. HRMS (ESI⁺): *m/z* calcd for [C₄₃H₃₈NO₄SSi]⁺: 692.2285, found: 692.2248 [M+H]⁺; calcd for [C₄₃H₃₇NNaO₄SSi]⁺: 714.2105, found: 714.2066 [M+Na]⁺.

3-(3-((tert-butyldiphenylsilyloxy)methyl)-5-((2,6-diphenyl-4H-pyran-4-ylidene)methyl)thiophen-2yl)-2-cyanoacrylic acid (16)

To a solution of aldehyde **23** (120.4 mg, 0.192 mmol) and 2-cyanoacetic acid (25.6 mg, 0.30 mmol) in chloroform (18 mL) was added piperidine (134.6 μ L, 1.28 mmol). The mixture was refluxed for 20h under an argon atmosphere, then cooled down to room temperature. The reaction crude was chromatographed on reverse C18 silica gel (started 50 % AcONH₄ (20 mM) in acetonitrile and finished 33%). After the addition of acetic acid a solid appeared. This compound was filtered under reduced pressure to afford **16.** Yield: dark purple solid (86.0 mg, 0.12 mmol; 65%).

Mp 219–226 °C. IR (KBr): cm⁻¹ 2209 (C=N), 1651 (C=O), 1541 (C=C).¹H NMR (400 MHz, THF-d₈): δ (ppm) 8.51 (s, 1H), 7.99–7.88 (m, 4H), 7.74–7.72 (m, 4H), 7.49–7.34 (m, 14H), 6.99 (s, 1H), 6.81 (br s, 1H), 4.92 (s, 2H), 1.08 (s, 9H). ¹³C NMR (100 MHz, THF-d₈): δ (ppm) 164.9, 156.4, 154.0, 152.5, 151.7, 143.7, 136.6, 134.3, 134.0, 133.7, 133.5, 131.9, 131.2, 130.9, 130.7, 130.0, 129.8, 128.8, 128.1, 126.2, 125.8, 118.1, 109.8, 108.4, 103.9, 95.8, 61.3, 27.4, 20.0. HRMS (ESI⁺): m/z calcd for [C₄₃H₃₈NO₄SSi]⁺: 692.2285, found: 692.2313

2.3. Device preparation and characterization

The working and counter electrodes consisted of TiO₂ and thermalized platinum films, respectively, and were deposited onto F-doped tin oxide (FTO, Pilkington Glass Inc., with 15 Ω sq⁻¹ sheet resistance) conducting glass substrates. Efficient DSC devices were made using 9 µm thick films consisting of 20 nm TiO₂ nanoparticles (Dyesol© paste) and a scattering layer of 4 µm of 400 nm TiO₂ particles (Dyesol© paste). Prior to the deposition of the TiO_2 paste, the conducting glass substrates were immersed in a solution of $TiCl_4$ (40 mM) for 30 minutes and then dried. The TiO_2 nanoparticle paste was deposited onto a conducting glass substrate using the screen printing technique. The TiO_2 electrodes were gradually heated under an air flow at 325 °C for 5 min, 375 °C for 5 min, 450 °C for 15 min and 500 °C for 15 min. The heated TiO₂ electrodes were immersed again in a solution of TiCl₄ (40 mM) at 70 °C for 30 min and then washed with ethanol. The electrodes were heated again at 500 °C for 30 min and cooled before dye adsorption. The active area for devices was 0.16 cm². The counter electrode was made by spreading a 5 mM solution of H₂PtCl₆ in isopropyl alcohol onto a conducting glass substrate containing a small hole to allow the introduction of the liquid electrolyte using vacuum, followed by heating at 390 °C for 15 minutes. All films were sensitized in 0.3 mM dye solutions in dichloromethane for 2 hours at room temperature (optimized dye loading conditions). The sensitized electrodes were washed with dichloromethane and dried under air. Finally, the working and counter electrodes were sandwiched together using a thin thermoplastic (Surlyn) frame that melts at 100 °C. Electrolyte LP1 was used: consisted of 0.5 M 1-butyl-3-methylimidazolium iodide (BMII), 0.1 M lithium iodide, 0.05 M iodine and 0.5 M tert-butylpyridine in acetonitrile.

The J/V curves of the cells were measured using a Sun 2000 solar simulator equipped with a 150W xenon lamp. The illumination intensity was measured to be 100 mW cm⁻² with a calibrated silicon photodiode. The appropriate filters were utilized to faithfully simulate the AM 1.5G spectrum. The applied potential and cell current were measured using a Keithley 2400 digital source meter. The IPCE (incident photon to current conversion efficiency) was measured using a home-made set up consisting of a 150 W Oriel xenon lamp, a motorized monochromator and a Keithley 2400 digital source meter.

Transient photovoltage (TPV) and charge extraction (CE) measurements were carried out alike reported before.³⁶ In CE measurements, white light from a series of LEDs was used as the light source. When the LEDs are turned off, the cell is immediately short-circuited and the charge is extracted allowing the electron density in the cells to be calculated. By changing the intensity of the LEDs, the electron density can be estimated as a function of cell voltage. In TPV measurements, in addition to the white light applied by the LEDS, a diode pulse (660 nm, 10 mW) is applied to the sample inducing a change of 2–3 mV within the cell. The resulting photovoltage decay transients are collected and the τ values are determined by fitting the data to the equation $\exp(-t/\tau)$.

2.4. Computational details

Density Functional Theory (DFT) calculations were performed using Gaussian 09³⁷ with the ultrafine integration grid. Solvent effects were estimated using a Conductor-like Polarizable Continuum Model (CPCM).^{38, 39} Equilibrium geometries were optimized using the M06-2x hybrid meta-GGA exchange

correlation functional ⁴⁰ and the medium size 6-31G* base.⁴¹ Ground state geometries were characterized as minima by frequency calculations. Excitation energies were calculated by time-dependent single point calculations using the M06-2x/6-311+G (2d,p) model chemistry. Absorption spectra were estimated through the calculation of vertical excitations at the ground state geometry and emission spectra, through the calculation of vertical excitations at the excited state geometry. Due to the large computational cost required to calculate excited state vibrational energies, $E_{0.0}$ were approached to adiabatic excitation energies (E_{Adia}). Ground state oxidation potentials (E_{OX}) were calculated using the M06-2x/6-311+G (2d,p) energies and calculating the thermal corrections to Gibbs free energy at the M06-2x/6-31G* level. Excited state oxidation potentials (E^*_{OX}) were estimated substracting $E_{0.0}$ from Eox.

Molecular Orbital contour plots were obtained using the Avogadro software ⁴² at 0.04 isosurface value.

3. Results and discussion

3.1. Synthesis

The target compounds 1, 2, and 3 were prepared via condensation of the corresponding aldehyde derivative (7, 10, 14) and cyanoacetic acid in the presence of piperidine (Scheme 1).

Scheme 2. Synthesis of aldehydes 7, 10

Aldehydes 7 and 10 were synthesized by a Wittig-Horner or Wittig reaction of the diphenylphosphine oxide 5^{43} or the phosphonium salt 8^{44} with aldehyde 4,⁴⁵ followed by lithiation of the resulting intermediates 6 and 9 and reaction with anhydrous DMF (Scheme 2). A different approach was adopted for the aldehyde 14 (Scheme 3) which was prepared through a Stille reaction between the stannane 12^{46} and the compound 11,⁴⁷ followed by lithiation and formylation with DMF.

Scheme 3. Synthesis of aldehyde 14

3.2. Optical properties

The absorption spectra of the synthesized dyes were studied in 10^{-5} M CH₂Cl₂ solution (Fig. 3) and the relevant optical data are listed in Table 1. Two absorption bands can be observed for all dyes, one between 300–400 nm assigned to a π - π * transition and the main band between 400–700 nm due to the ICT among the donor and the acceptor units. The inclusion of a proaromatic donor like 4*H*-pyranylidene or dithiafulvene results in a red-shift of the absorption when compared to the triarylamine dye. The molar extinction coefficients of the dyes increase in the order triarylamine < 4*H*-pyranylidene < dithiafulvene, being for the last one 37108 M⁻¹ cm⁻¹. When the dyes are attached to TiO₂ surface, they present broader bands than in solution and the maximum absorption peaks are around 30 nm blue-shifted. In general, the blue shifts of the absorption spectra on TiO₂ are ascribed to the deprotonation of the carboxylic acid when anchored on the titanium surface and/or to the formation of H-aggregates.⁴⁸

Fig. 3. Normalized UV-vis absorption of compounds 1-3

Table 1. Optical and electrochemical properties of dyes 1–3.

dye	$\lambda_{\mathrm{abs}},\mathrm{nm}$	$\lambda_{ m abs}$	$\lambda_{ m em}$	$E_{ m ox}^{d}$	E_{0-0}^{e}	$E^{*}{}_{\mathrm{ox}}{}^{f}$
	$(\epsilon, M^{-1}cm^{-1})^{a}$	$(nm)^{b}$	(nm) ^c	V (vs. NHE)	(eV)	V (vs. NHE)
1	570 (30370)	522	659	0.87	1.97	-1.10
2	568 (37108)	518	630	0.93	2.06	-1.12
3	460 (23958)	432	611	1.22	2.29	-1.08

^{*a*}Absorption maxima in CH₂Cl₂ solution. ^{*b*} Absorption maxima on TiO₂ films. ^{*c*} Emission spectra were recorded in CH₂Cl₂. ^{*d*} First oxidation potentials were measured from three electrode electrochemical cell in CH₂Cl₂ containing 0.1 M TBAPF₆. A glassy carbon, Ag/AgCl (KCl 3M), and Pt were used as working, reference, and counter electrode respectively. ^{*e*} Zeroth-zeroth transition energies estimated from the intersection of normalized absorption and emission spectra in CH₂Cl₂ solution. ^{*f*} Excited-state oxidation potentials of the dyes obtained from $E_{ox} - E_{0.0}$.

3.3. Electrochemical Properties

The oxidation potential (E_{ox}) of each dye was determined in solution by differential pulse voltammetry (DPV) methods. E_{ox}^* was estimated from E_{ox} - $E_{0.0}$ (Table 1, see also energy diagram shown in SI Figure S-33).

The donor unit affects significantly the oxidation potential values, with an increase on the ease of oxidation in the order 3 < 2 < 1, pointing to the superior donor ability of the 4*H*-pyranylidene moiety. The regeneration of the oxidized dye after electron injection into the conduction band of TiO₂ is guaranteed in all cases, as the E_{ox} values are more positive than the potential of the iodide/triiodide redox couple (+0.42 *vs* NHE), indicating that the oxidized dyes formed after the electron injection into the TiO₂ electrode could thermodynamically accept electrons from Γ ions.

The resulting E_{0x}^* values for all the dyes were almost similar and sufficiently more negative than the energy conduction band edge energy level of TiO₂ (-0.5 V vs NHE), indicating an efficient injection of electrons into the TiO₂ from the excited dyes.

3.4. Photovoltaic properties of DSSCs

The device performance (with an effective area of 0.16 cm²) were measured under sun-simulated AM 1.5 G irradiation (100 mW/cm²). The optimized conditions for these dyes are determined to be 0.3 mM of dye in dichloromethane solution, 2 h of immersion and LP1 (0.5 M BMII/ 0.05M I₂/ 0.5M TBP/ 0.1M LiI in acetonitrile) as electrolyte. The relevant photovoltaic parameters V_{oc} , J_{sc} , ff, and solar-to-electrical energy

conversion efficiencies (η) are collected in Table 2. Moreover, current density-voltage (*J-V*) curves and incident photon- to- current conversion efficiencies (IPCE) of devices based on these dyes are represented in Fig. 4.

dye	$J_{\rm sc}~({\rm mA~cm}^{-2})$	$V_{ m oc}\left({ m V} ight)$	ſſ	$\eta(\%)$
1	11.74	0.644	74	5.56
2	6.99	0.609	69	2.91
3	7.26	0.759	74	4.09

Table 2. Photovoltaic properties of DSSCs constructed using the dyes 1–3.

The IPCE tendencies of these dyes are in accordance with their UV-vis absorption spectra on the TiO₂ film. The onset of the IPCE spectra for dyes **1** and **2** are significantly broadened compared with the obtained for dye **3**. These results confirm the higher J_{sc} value obtained for devices based on dye **1**, with a broad and roughly constant photoresponse (~ 60%) in the range 450–600 nm. Dye **3** presents a maximum IPCE value of 93% at 475 nm and the highest V_{oc} value (0.759V) of all the molecules studied, suggesting a decrease in the charge recombination processes for this molecule. However, its J_{sc} is 60% lower than obtained for compound **1**, probably due to the narrower IPCE observed band.

Data in Table 2 indicate that the more efficient donor system is the 4*H*-pyranylidene ($\eta = 5.56\%$), followed by the triarylamine system ($\eta = 4.09\%$) and finally the 1,3-dithiole ($\eta = 2.91\%$).

3.5. Structural modification of the thiophene ring and physical properties

With the aim of understanding the influence of a different bulky silvl ether group and its position in the thiophene ring, dyes **15** and **16** were synthesized by a Knoevenagel condensation of the unreported aldehydes **21** and **23** with 2-cyanoacetic acid (Scheme 4). We have chosen the pyranylidene system as donor group due to the best results obtained in the previous section. These precursors were obtained in a three-step synthetic route starting in both cases from compound **17**.⁴⁹ Lithiation conditions (base and solvent) were finely tuned in order to activate

position 2 (*tert*-BuLi, Et_2O) or position 5 (BuLi, THF) (Scheme 5). Finally, compounds **18** and **19** were obtained by reaction of the organolithium intermediates with DMF. Next, a Horner reaction of diphenylphosphine oxide **5** with **18** or **19** afforded the corresponding pyranylidene-thiophene derivatives **20** and **22**, which by lithiation and reaction with DMF yielded final aldehydes **21** and **23** respectively (Scheme 6).

Scheme 6. Synthesis of aldehydes 21, 23

The substitution of a TBDMS group (1) by a *tert*-butyldiphenylsilyl (TBDPS (15)) does not change significantly the maximum absorption peak (570 nm for 1 and 573 nm for 15). By contrast, the molar extinction coefficient (ε) is enhanced on passing from TBDMS to TBDPS (30370 M⁻¹cm⁻¹ (1) to 33618 M⁻¹cm⁻¹ (15)), probably due to the incorporation of two additional phenyl groups. Moreover, a bigger enhancement of the ε is found when the silyloxy substituent

is located at the position 3 of the thiophene ring instead of the position 4 (from 33618 (15) to $39963 \text{ M}^{-1} \text{ cm}^{-1}$ (16)).

Regarding the electrochemical properties, it has to be pointed that the E_{ox} values for systems **1**, **15** and **16** are very similar (+0.87, +0.90, and +0.88V respectively, measured in conditions indicated in Table 1) and hence, the influence of the bulky substituent and its position is fairly null (See SI Figure S-34).

We have tested the photovoltaic response of dyes **15** and **16** (Figure 5) in DSSCs and their results were compared with those of compound **1** (Table 3). The substitution of a TBDMS group (**1**) by the bulkier group (TBDPS) (**15**) improve slightly the efficiency (from 5.56% to 5.86%), mostly due to a better value of the V_{oc} for the last one. This result suggests that a TBDPS group retards the recombination of TiO₂ conduction band electrons with the electrolyte as it has been shown from charge extraction and transient photovoltage experiments (see below).⁵⁰

The influence of the position of the silyl ether group was also studied and we have found that the solar cell based on dye **16** (with a higher molecular extinction coefficient) shows an efficiency of 3.42%, 42% lower that obtained for dye **15**. The decrease in the efficiency is mainly due to a lower J_{sc} and V_{oc} , to a lesser extent. The remarkable decrease of J_{sc} was attributed to the lower injection efficiency, probably affected by the amount of dye absorbed to the TiO₂ surface.

Desorption experiments (0.1M NaOH, EtOH:H₂O (1:1)) determined that dye **16** is less adsorbed (106 nmol/cm²) than dye **15** (140 nmol/cm²) and this observation was attributed to the steric hindrance of the TBDPS group which is closer to the anchor group. Moreover, a lower amount of dye absorbed could result in higher I_3 concentration in the interface TiO₂/electrolyte, increasing the recombination processes.

Table 3. Photovoltaic properties of DSSCs constructed using the dyes 1, 15 and 16

Fig. 5- *J*-*V* curves of compounds 1, 15 and 16

Figure 6 illustrates the charge density (charge accumulated at the device under different light bias) and the charge lifetime at a given charge. As it can be seen, the solar cells made using dye **15** have the slowest charge recombination under working conditions. Moreover, it is worthy to mention that a shift on the measured charge vs voltage is observed for the solar cells made using dye **16**. This shift can be attributed to the lower coverage of dyes at the surface of the TiO_2 , which has as a consequence the lower concentration of protons at the surface of the TiO_2 . In fact, this is also in good agreement with the lower photocurrent measured.

Fig. 6- Charge Extraction (left) and Transient Photovoltage (right) curves of compounds 1, 15 and 16

3.6. Theoretical calculations

The electronic structures of the new synthesized compounds have been studied using density functional theory methods and the most relevant parameters derived from these calculations are gathered in table 4. There is a good agreement with the experimental values described above, with estimated error of less than 0.25 eV in the excitation energies, less than 0.1 V in E_{OX} and less than 0.2 V in E^*_{OX} .

	$E_{\rm HOMO}$	E _{LUMO}	λ_{Abs}	f^a	λ_{em}	E_{0-0}	E_{OX}	E^*_{OX}
	(eV)	(eV)	(nm)		(nm)	(eV)	V (vs. NHE)	V (vs. NHE)
1	-6.38	-2.29	558	1.24	666	2.03	0.95	-1.08
2	-6.38	-2.13	528	1.00	605	2.18	1.00	-1.18
3	-6.58	-2.11	431	1.23	565	2.50	1.24	-1.26
15	-6.39	-2.30	559	1.23	666	2.03	0.93	-1.10
16	-6.40	-2.33	564	1.25	663	2.03	0.95	-1.08

Table 4. Results of DFT Calculations.

^{*a*} Oscillator strength

Calculations describe the first excited state as the consequence of a one-electron transition from the HOMO to the LUMO (see Figure 7). Excitation involves some charge transfer from the donor to the cyanoacetic acid acceptor, with a large HOMO-LUMO overlap that gives rise to large oscillator strengths and therefore to great molar extinction coefficients.

Figure 7. HOMO (left) and LUMO (right) for compound 15.

Unfortunately, a direct correlation between the oscillator strengths (proportional to the peak area) and the molar extinction coefficients (related to peak height) is not possible for compounds giving rise to absorption bands of different width. Thus, compound 2 having the largest ε gives rise to the narrowest absorption band and also the lowest f.

4*H*-pyranylidene compounds **1**, **15** and **16** display similar HOMO and LUMO energies and therefore their excitation energies and oxidation potentials are also similar. Compound **2**, with a weak donor group has a lower HOMO energy compared to the other studied dyes and, therefore, displays higher excitation energies and E_{ox} .

Conclusions

A series of five new metal free sensitizers (D- π -A) for DSSC with a trialkylsilyl ether group in the spacer have been synthesized and characterized. Several donor unities have been studied, obtaining the best performances with 4*H*-pyranylidene, followed by triphenylamine (TPA) and dithiafulvene moieties respectively. Two trialkylsilyl ether groups (TBDMS and TBDPS) were compared in order to study the influence of their molecular size in the photovoltaic properties. The best efficiencies values were obtained for a TBDPS group at the position 4 of the thiophene ring. This observation indicates that trialkylsilyl ethers can be promising substituents for future more efficient sensitizers.

Acknowledgements

We gratefully acknowledge the financial support from the Spanish Ministry of Science and Innovation, MICINN-FEDER (project CTQ2011-22727), MINECO (project CTQ2014-52331-R) and the Gobierno de Aragón-Fondo Social Europeo (E39). A predoctoral fellowship to R. Pérez-Tejada (CSIC, JAE 2011) is also acknowledged. The authors thank Prof. Emilio Palomares for the use of the equipment at ICIQ and the helpful comments on the results. Dr. Laia Pellejà thanks MICINN for the Severo Ochoa Excellence Accreditation 2014.2018 (SEV-2013-0319).

Appendix. Supplementary material

Supplementary data associated with this article can be found, in the online version at

References

- 1. Ragoussi, M.-E.; Torres, T., New generation solar cells: concepts, trends and perspectives. *Chem. Commun.* **2015**, *51*, 3957-3972.
- 2. Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C., Bulk Heterojunction Solar Cells: Morphology and Performance Relationships. *Chem. Rev.* **2014**, *114*, 7006-7043.
- 3. Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. *Chem. Rev.* 2010, *110*, 6595-6663.
- 4. Hardin, B. E.; Snaith, H. J.; McGehee, M. D., The renaissance of dye-sensitized solar cells. *Nature Photon.* **2012**, *6*, 162-169.
- 5. Mishra, A.; Fischer, M. K. R.; Bäuerle, P., Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. *Angew. Chem., Int. Ed.* **2009**, *48*, 2474-2499.
- 6. Ning, Z. J.; Tian, H., Triarylamine: a promising core unit for efficient photovoltaic materials. *Chem. Commun.* **2009**, 5483-5495.
- 7. Liang, M.; Chen, J., Arylamine organic dyes for dye-sensitized solar cells. *Chem. Soc. Rev.* **2013**, *42*, 3453-3488.
- 8. Tang, J.; Hua, J.; Wu, W.; Li, J.; Jin, Z.; Long, Y.; Tian, H., New starburst sensitizer with carbazole antennas for efficient and stable dye-sensitized solar cells. *Energy Environ. Sci.* **2010**, *3*, 1736-1745.
- 9. Liang, M.; Lu, M.; Wang, Q.-L.; Chen, W.-Y.; Han, H.-Y.; Sun, Z.; Xue, S., Efficient dyesensitized solar cells with triarylamine organic dyes featuring functionalized-truxene unit. *J. Power Sources* **2011**, *196*, 1657-1664.
- Cai, S.; Hu, X.; Zhang, Z.; Su, J.; Li, X.; Islam, A.; Han, L.; Tian, H., Rigid triarylaminebased efficient DSSC sensitizers with high molar extinction coefficients. *J. Mater. Chem. A* 2013, 1, 4763-4772.
- 11. Bonnier, C.; Machin, D. D.; Abdi, O. K.; Robson, K. C. D.; Koivisto, B. D., The effect of donor-modification in organic light-harvesting motifs: triphenylamine donors appended with polymerizable thienyl subunits. *Org. Biomol. Chem.* **2013**, *11*, 7011-7015.
- Wang, Z.; Liang, M.; Wang, H.; Wang, P.; Cheng, F.; Sun, Z.; Song, X., Joint Electrical, Photophysical, and Photovoltaic Studies on Truxene Dye-Sensitized Solar Cells: Impact of Arylamine Electron Donors. *ChemSusChem* 2014, 7, 795-803.
- Kim, S. H.; Choi, J.; Sakong, C.; Namgoong, J. W.; Lee, W.; Kim, D. H.; Kim, B.; Ko, M. J.; Kim, J. P., The effect of the number, position, and shape of methoxy groups in triphenylamine donors on the performance of dye-sensitized solar cells. *Dyes Pigm.* 2015, *113*, 390-401.
- Franco, S.; Garín, J.; Martínez de Baroja, N.; Pérez-Tejada, R.; Orduna, J.; Yu, Y.; Lira-Cantú, M., New D-π-A-Conjugated Organic Sensitizers Based on 4*H*-Pyran-4-ylidene Donors for Highly Efficient Dye-Sensitized Solar Cells. *Org. Lett.* **2012**, *14*, 752-755.
- 15. Pérez-Tejada, R.; Pellejà, L.; Palomares, E.; Franco, S.; Orduna, J.; Garín, J.; Andreu, R., Novel 4H-pyranylidene organic dyes for dye-sensitized solar cells: Effect of different heteroaromatic rings on the photovoltaic properties. *Org. Electron.* **2014**, *15*, 3237-3250.
- 16. Bolag, A.; Nishida, J.-i.; Hara, K.; Yamashita, Y., Enhanced performance of dye-sensitized solar cells with novel 2,6-diphenyl-4H-pyranylidene dyes. *Org. Electron.* **2012**, *13*, 425-431.
- 17. Gauthier, S.; Caro, B.; Robin-Le Guen, F.; Bhuvanesh, N.; Gladysz, J. A.; Wojcik, L.; Le Poul, N.; Planchat, A.; Pellegrin, Y.; Blart, E.; Jacquemin, D.; Odobel, F., Synthesis, photovoltaic performances and TD-DFT modeling of push-pull diacetylide platinum complexes in TiO2 based dye-sensitized solar cells. *Dalton Trans.* **2014**, *43*, 11233-11242.
- Guo, K.; Yan, K.; Lu, X.; Qiu, Y.; Liu, Z.; Sun, J.; Yan, F.; Guo, W.; Yang, S., Dithiafulvenyl Unit as a New Donor for High-Efficiency Dye-Sensitized Solar Cells: Synthesis and Demonstration of a Family of Metal-Free Organic Sensitizers. Org. Lett. 2012, 14, 2214-2217.

- 19. Wan, Z.; Jia, C.; Duan, Y.; Chen, X.; Lin, Y.; Shi, Y., Novel organic dye employing dithiafulvenyl-substituted arylamine hybrid donor unit for dye-sensitized solar cells. *Org. Electron.* **2013**, *14*, 2132-2138.
- Wan, Z.; Jia, C.; Duan, Y.; Chen, X.; Li, Z.; Lin, Y., Novel organic sensitizers containing dithiafulvenyl units as additional donors for efficient dye-sensitized solar cells. *RSC Adv.* 2014, *4*, 34896-34903.
- 21. Hara, K.; Dan-oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline TiO2 Solar Cells. *Langmuir* **2004**, *20*, 4205-4210.
- 22. Ren, X. M.; Feng, Q. Y.; Zhou, G.; Huang, C. H.; Wang, Z. S., Effect of Cations in Coadsorbate on Charge Recombination and Conduction Band Edge Movement in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 7190-7195.
- 23. Choi, H.; Baik, C.; Kang, S. O.; Ko, J.; Kang, M. S.; Nazeeruddin, M. K.; Gratzel, M., Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. *Angew. Chem., Int. Ed.* **2008**, *47*, 327-330.
- 24. Xu, M.; Zhang, M.; Pastore, M.; Li, R.; De Angelis, F.; Wang, P., Joint electrical, photophysical and computational studies on D-pi-A dye sensitized solar cells: the impacts of dithiophene rigidification. *Chem. Sci.* **2012**, *3*, 976-983.
- 25. Cai, L.; Tsao, H. N.; Zhang, W.; Wang, L.; Xue, Z.; Gratzel, M.; Liu, B., Organic sensitizers with bridged triphenylamine donor units for efficient dye-sensitized solar cells. *Adv. Energy Mater.* **2013**, *3*, 200-205.
- 26. Shi, J.; Chai, Z.; Zhong, C.; Wu, W.; Hua, J.; Dong, Y.; Qin, J.; Li, Q.; Li, Z., New efficient dyes containing tert-butyl in donor for dye-sensitized solar cells. *Dyes Pigm.* **2012**, *95*, 244-251.
- 27. Zhan, X.; Barlow, S.; Marder, S. R., Substituent effects on the electronic structure of siloles. *Chem. Commun.* 2009, 1948-1955.
- 28. Lu, G.; Usta, H.; Risko, C.; Wang, L.; Facchetti, A.; Ratner, M. A.; Marks, T. J., Synthesis, Characterization, and Transistor Response of Semiconducting Silole Polymers with Substantial Hole Mobility and Air Stability. Experiment and Theory. J. Am. Chem. Soc. **2008**, 130, 7670-7685.
- 29. Akhtaruzzaman, M.; Seya, Y.; Asao, N.; Islam, A.; Kwon, E.; El-Shafei, A.; Han, L.; Yamamoto, Y., Donor-acceptor dyes incorporating a stable dibenzosilole π -conjugated spacer for dye-sensitized solar cells. *J. Mater. Chem.* **2012**, *22*, 10771-10778.
- Ko, S.; Choi, H.; Kang, M. S.; Hwang, H.; Ji, H.; Kim, J.; Ko, J.; Kang, Y., Silole-spaced triarylamine derivatives as highly efficient organic sensitizers in dye-sensitized solar cells (DSSCs). J. Mater. Chem. 2010, 20, 2391-2399.
- Lin, L. Y.; Tsai, C. H.; Wong, K. T.; Huang, T. W.; Hsieh, L.; Liu, S. H.; Lin, H. W.; Wu, C. C.; Chou, S. H.; Chen, S. H.; Tsai, A. I., Organic Dyes Containing Coplanar Diphenyl-Substituted Dithienosilole Core for Efficient Dye-Sensitized Solar Cells. *J. Org. Chem.* 2010, 75, 4778-4785.
- Zeng, W. D.; Cao, Y. M.; Bai, Y.; Wang, Y. H.; Shi, Y. S.; Zhang, M.; Wang, F. F.; Pan, C. Y.; Wang, P., Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. *Chem. Mater.* 2010, 22, 1915-1925.
- 33. Minaev, B. F.; Baryshnikov, G. V.; Minaeva, V. A., Electronic structure and spectral properties of the triarylamine-dithienosilole dyes for efficient organic solar cells. *Dyes Pigm.* **2012**, *92*, 531-536.
- 34. Park, J.; Lee, E.; Kim, J.; Kang, Y., Dithienosilole based organic sensitizers for efficient dye-sensitized solar cells. *Bull. Korean Chem. Soc.* **2013**, *34*, 979-982.
- 35. Wuts, P. G. M.; Greene, T. W., Protection for the Hydroxyl Group, Including 1,2- and 1,3-Diols. In *Greene's Protective Groups in Organic Synthesis*, John Wiley & Sons, Inc.2006 (4th Ed).
- 36. Zewdu, T.; Clifford, J. N.; Hernandez, J. P.; Palomares, E., Photo-induced charge transfer dynamics in efficient TiO2/CdS/CdSe sensitized solar cells. *Energy Environ. Sci.* **2011**, *4*, 4633-4638.

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Gaussian 09 Revision A.02: Gaussian, Inc.: Wallingford, CT, USA, 2009.
- 38. Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A **1998**, *102*, 1995-2001.
- 39. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. *J. Comput. Chem.* **2003**, *24*, 669-681.
- 40. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.
- 41. Hariharan, P. C.; Pople, J. A., Influence of polarization functions on MO hydrogenation energies. *Theor. Chim. Acta* **1973**, *28*, 213-22.
- 42. Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. *J. Cheminf.* **2012**, *4*, 17.
- 43. Abaev, V. T.; Karsanov, I. V.; Urtaeva, Z. K.; Blinokhvatov, A. F.; Bumber, A. A.; Okhlobystin, O. Y., Preparation and properties of (4H-pyran-4-yl)diphenylphosphine oxides. *Zh. Obshch. Khim.* **1990**, *60*, 1012-19.
- 44. Andreu, R.; Cerdán, M. A.; Franco, S.; Garín, J.; Marco, A. B.; Orduna, J.; Palomas, D.; Villacampa, B.; Alicante, R.; Allain, M., Decreased Optical Nonlinearities upon CF3 Substitution on Tricyanofuran Acceptors. *Org. Lett.* **2008**, *10*, 4963-4966.
- Posner, G. H.; Li, Z.; White, M. C.; Vinader, V.; Takeuchi, K.; Guggino, S. E.; Dolan, P.; Kensler, T. W., 1α,25-Dihydroxyvitamin D3 Analogs Featuring Aromatic and Heteroaromatic Rings: Design, Synthesis, and Preliminary Biological Testing. *J. Med. Chem.* 1995, 38, 4529-37.
- 46. Leliège, A.; Le Regent, C.-H.; Allain, M.; Blanchard, P.; Roncali, J., Structural modulation of internal charge transfer in small molecular donors for organic solar cells. *Chem. Commun.* **2012**, *48*, 8907-8909.
- 47. Jen, K.-Y.; Ma, H.; Liu, S.; Dalton, L. R. Nonlinear optical compounds and methods for their preparation. US20040135130A1, 2004.
- 48. Eisfeld, A.; Briggs, J. S., The J- and H-bands of organic dye aggregates. *Chem. Phys.* 2006, *324*, 376-384.
- 49. Khatuya, H.; Pulito, V. L.; Jolliffe, L. K.; Li, X.; Murray, W. V., Novel thiophene derivatives for the treatment of benign prostatic hyperplasia. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2145-2148.
- 50. Mori, S. N.; Kubo, W.; Kanzaki, T.; Masaki, N.; Wada, Y.; Yanagida, S., Investigation of the Effect of Alkyl Chain Length on Charge Transfer at TiO2/Dye/Electrolyte Interface. *J. Phys. Chem. C* **2007**, *111*, 3522-3527.

Synthesis and characterization of organic sensitizers with a trialkylsilyloxy group on the π -spacer

DSSC efficiency was highly dependent on the size and position of the silyloxy group

Best efficiencies were obtained with the 4H-pyranylidene, followed by TPA and dithiafulvene systems

Organic sensitizers bearing a trialkylsilylether group for liquid dye sensitized solar cells

Raquel Pérez-Tejada^a, Natalia Martínez de Baroja^a, Santiago Franco^{*a}, Laia Pellejà^{*b}, Jesús Orduna^a, Raquel Andreu^a, Javier Garín^a,

^a Departamento de Química Orgánica-Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain.

^b Institute of Chemical Research of Catalonia (ICIQ). Avda. Països Catalans, 16. Tarragona. E-43007. Spain.

* Corresponding author. Tel.: +34 976762283; E-mail address: sfranco@unizar.es

TABLE OF CONTENTS

General experimental methods	page S2
Figures S-1 to S-2 (NMR spectra of compound 7)	page S2
Figures S-3 to S-4 (NMR spectra of compound 10)	page S3
Figures S-5 to S-6 (NMR spectra of compound 13)	page S4
Figures S-7 to S-8 (NMR spectra of compound 14)	page S5
Figures S-9 to S-10 (NMR spectra of compound 1)	page S6
Figures S-11 to S-13 (NMR spectra of compound 2)	page S7
Figures S-14 to S-15 (NMR spectra of compound 3)	page S9
Figures S-16 to S-18 (NMR spectra of compound 18)	page S10
Figures S-19 to S-21 (NMR spectra of compound 19)	page S11
Figures S-22 to S-23 (NMR spectra of compound 21)	page S13
Figures S-24 to S-25 (NMR spectra of compound 23)	page S14
Figures S-26 to S-28 (NMR spectra of compound 15)	page S15
Figures S-29 to S-30 (NMR spectra of compound 16)	page S16
Figures S-31 (Normalized UV-vis absorption of compounds 1-3)	page S17
Figures S-32 (Normalized UV-vis absorption of compounds 1, 15 and 16)	page S18
Figures S-33 (Energy diagram of compounds 1-3)	page S18
Figures S-34 (Energy diagram of compounds 1, 15 and 16)	page S19
Calculated molecular geometries and energies	page S20

General Experimental Methods:

Infrared measurements were carried out in KBr or neat using a Perkin-Elmer Fourier Transform Infrared 1600 spectrometer. Melting points were obtained on a Gallenkamp apparatus in open capillaries and are uncorrected. ¹H- and ¹³C-NMR spectra were recorded on a Bruker ARX300 or a Bruker AV400 at 300 or 400 MHz and 75 or 100 MHz respectively; δ values are given in ppm (relative to TMS) and *J* values in Hz. The apparent resonance multiplicity is described as s (singlet), d (doublet), and m (multiplet). ¹H-¹H COSY and ¹H-¹³C-HSQC experiments were recorded on a Bruker ARX300 or a Bruker AV400 at 300 or 400 MHz in order to establish peaks assignment and spatial relationships. Electrospray mass spectra were recorded on a Bruker Q-ToF spectrometer; accurate mass measurements were achieved using sodium formate as external reference. UV-Visible spectra were recorded with an UV-Vis UNICAM UV4 spectrophotometer. Pulse differential voltammetry measurements were performed with a μ -Autolab type III potentiostat using a glassy carbon working electrode, Pt counter electrode, and Ag/AgCl reference electrode. The experiments were carried out under argon in CH₂Cl₂, with Bu₄NPF₆ as supporting electrolyte (0.1 mol L⁻¹). Scan rate was 0.01V s⁻¹, modulation amplitude 0.025V and modulation time 0.05 s⁻¹.

Figure S-1: ¹H NMR spectrum of compound 7 (400 MHz, CDCl₃).

Figure S-3: ¹H NMR spectrum of compound 10 (400 MHz, CDCl₃).

Figure S-4: ¹³C NMR (APT) spectrum of compound **10** (100 MHz, CDCl₃).

Figure S-5: ¹H NMR spectrum of compound **13** (300 MHz, CD₂Cl₂).

Figure S-6: ¹³C NMR (APT) spectrum of compound **13** (100 MHz, CD₂Cl₂).

Figure S-7: ¹H NMR spectrum of compound 14 (400 MHz, CD₂Cl₂).

Figure S-8: ¹³C NMR (APT) spectrum of compound 14 (100 MHz, CD₂Cl₂).

Figure S-9: ¹H NMR spectrum of compound **1** (400 MHz, dmso-d₆).

Figure S-10: ¹³C NMR (APT) spectrum of compound 1 (75 MHz, dmso-d₆).

Figure S-11: ¹H NMR spectrum of compound **2** (300 MHz, CDCl₃).

Figure S-14: ¹H NMR spectrum of compound **3** (400 MHz, acetone-d₆).

Figure S-15: ¹³C NMR (APT) spectrum of compound **3** (100 MHz, acetone-d₆).

Figure S-16: ¹H NMR spectrum of compound 18 (400 MHz, CD₂Cl₂).

Figure S-17: ¹³C NMR (APT) spectrum of compound 18 (100 MHz, CD₂Cl₂).

Figure S-19: 1 H NMR spectrum of compound 19 (400 MHz, CD₂Cl₂).

Figure S-23 ¹³C NMR (APT) spectrum of compound 21 (100 MHz, CD_2Cl_2).

Figure S-25: ¹³C NMR (APT) spectrum of compound **23** (100 MHz, CD_2Cl_2).

Figure S-27: ¹³C NMR (APT) spectrum of compound **15** (100 MHz, THF-d₈).

Figure S-29: ¹H NMR spectrum of compound **16** (400 MHz, THF-d₈).

Figure S-31: Normalized UV-vis absorption of compounds (1-3)

Figure S-32: Normalized UV-vis absorption of compounds (1, 15 and 16)

Figure S-33: Energy diagram of compounds (1-3)

Figure S-34: Energy diagram of compounds (1, 15 and 16)

Calculated molecular geometries and energies (M06-2x/6-31G* PCM-Dichloromethane)

Compound 1: Ground State.

		Standard or	ientation:		
Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
2	6	0	3.829008 2 478089	0.342082	0.207179
.3	6	0	1.731942	-0.892423	0.028851
4	6	õ	2.564467	-2.070627	-0.092789
5	6	0	3.912057	-1.990169	-0.096131
6	1	0	1.981432	1.251855	0.495987
7	1	0	2.094994	-3.038354	-0.226174
8	8	0	4.551757	-0.789206	0.006538
9	6	0	0.365498	-1.000661	-0.060482
10	б	0	-0.629703	0.027659	-0.076143
11	6	0	-2.010315	-0.207906	-0.063898
12	16	0	-0.302215	1.731147	-0.194028
13	6	0	-2.763090	0.966586	-0.132055
14	6	0	-2.002098	2.128615	-0.204331
15	1	0	-3.847412	0.976890	-0.123754
16	1	0	-0.029902	-2.008728	-0.161306
17	6	0	-2.544154	3.435840	-0.260948
18	6	0	-1.913927	4.650039	-0.317747
19	1	0	-3.631334	3.469993	-0.256994
20	6	0	-2.612789	-1.585528	0.019983
21	1	0	-2.278136	-2.188277	-0.839224
22	1	0	-2.253256	-2.092671	0.928396
23	6	0	-0.492120	4.790478	-0.332263
24	7	0	0.663384	4.891731	-0.343831
25	6	0	-2.657749	5.922795	-0.367085
26	8	0	-2.134075	7.014452	-0.420847
27	8	0	-3.990355	5.753046	-0.346417
28	1	0	-4.392111	6.639242	-0.380817
29	8	0	-4.018277	-1.479167	0.034402
30	14	0	-4.999634	-2.846555	0.090944
31	6	0	-4.816614	-3.818593	-1.504009
<i>3∠</i> 22	1	0	-3.//8480	-4.130953	-1.000820
33	1	0	-5.429549	-4./25890	-1.4/4552
25	1	0	-3.123731	-2 007002	-2.3/24/0
35	0	0	-4.40/010	-3.90/903	2 471209
30	1	0	-4.423230 E 212660	-3.313230	2.4/1200
37	1	0	-3.512502	-4.710780	1 206226
20	5	0	-6 744942	-2 15/205	1.380230
40	6	0	-6 866241	-1 467502	1 662589
40	6	0	-7 025867	-1 129039	-0 812023
42	6	ő	-7.770280	-3.203237	0.203372
43	1	ő	-6.712658	-2.176170	2,484736
44	<u>+</u> 1	0	-6,134951	-0.658232	1.770875
45	1	0	-7.868193	-1.032724	1.781112
46	1	ŏ	-6,952751	-1.578621	-1.809370
47	1	- Co	-8,042076	-0.725656	-0.703841
48	1	0	-6.323787	-0,289436	-0.767002
49	1	Ő	-8.785384	-2.897665	0.344165
50	1	ő	-7.741206	-3.787721	-0.774706
51	1	0	-7.605519	-4.056479	0.973437
52	6	0	4.855745	-3.111812	-0.242315
53	6	0	6.163844	-2.874641	-0.682069
54	6	0	4.459138	-4.421588	0.055315
55	6	0	7.052623	-3.933559	-0.835810
56	1	0	6.477081	-1.861900	-0.912125
57	6	0	5.350763	-5.475813	-0.101663
58	1	0	3.460276	-4.615887	0.433294
59	6	0	6.649344	-5.235704	-0.549181
60	1	0	8.062636	-3.739914	-1.182854
61	1	0	5.034268	-6.486085	0.137019
62	1	0	7.345593	-6.059797	-0.668074
63	6	0	4.675973	1.532870	0.392938
64	6	0	6.022594	1.390435	0.748475
65	6	0	4.143206	2.817146	0.216961
66	6	0	6.816772	2.515999	0.940871

	67	1	0	6.440660	0.398578	0.883721
	68	6	0	4.940125	3.937364	0.415601
	69	1	0	3.111633	2.948415	-0.096955
	70	6	0	6.278417	3.790793	0.779189
	71	1	0	7.858306	2.395931	1.221487
	72	1	0	4.515437	4.926174	0.275007
	73	1	0	6.900173	4.667618	0.930565
_						

E(RM062X) = -2320.01579137

Compound 1: First Excited State.

		Standard c	prientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	 0	3.836092	0.290195	0.276223
2	6	0	2.472512	0.282149	0.330487
3	6	0	1.736599	-0.910680	0.091749
4	6	0	2.513623	-2.089577	-0.101965
5	6	0	3.877057	-2.045331	-0.106981
6	1	0	1.979051	1.201536	0.609828
7	1	0	2.015515	-3.036345	-0.274620
8	8	0	4.525935	-0.85/12/	0.044060
10	6	0	-0 626250	0 015848	-0 019158
11	6	Ő	-2.048843	-0.177854	-0.018474
12	16	0	-0.254543	1.735927	-0.182879
13	6	0	-2.760202	0.990737	-0.123002
14	6	0	-1.958884	2.161669	-0.216274
15	1	0	-3.843023	1.031773	-0.132816
16	1	0	-0.082820	-2.010871	0.032661
17	6	0	-2.454264	3.464019	-0.313147
18	6	0	-1.759528	4.673012	-0.395421
19	1	0	-3.538013	3.544080	-0.322958
20	6	0	-2.674385	-1.538972	0.093305
21	1	0	-2.320850	-2.109321	-0./38804
22	1	0	-0 341497	4 768637	-0 392845
23	7	0	0.819216	4.851907	-0.390109
25	6	0	-2.447120	5.960517	-0.485148
26	8	0	-1.894690	7.043534	-0.559455
27	8	0	-3.792795	5.844001	-0.478304
28	1	0	-4.149143	6.747423	-0.538939
29	8	0	-4.075626	-1.419182	0.071879
30	14	0	-5.074803	-2.775302	0.118099
31	6	0	-4.886190	-3.747060	-1.476130
32	1	0	-3.848869	-4.065009	-1.627093
33	1	0	-5.504219	-4.651040	-1.45133/
34	1	0	-4 586712	-3.841472	-2.345/20
36	1	0	-4.527406	-3.248093	2.504002
37	1	ő	-5.320523	-4.638933	1.746175
38	1	ō	-3.613478	-4.318463	1.427430
39	6	Ó	-6.812645	-2.061290	0.305066
40	6	0	-6.941275	-1.379382	1.674346
41	6	0	-7.066952	-1.027400	-0.800615
42	6	0	-7.851078	-3.187103	0.196000
43	1	0	-6.806775	-2.093817	2.494840
44	1	0	-6.201191	-0.580035	1.795197
45	1	0	-7.938965	-0.932467	1.783028
46	1	U	-0.989611	-1.4/3813	-1./99042
4/ 10	1	U	-0.0/0350	-0.0100/9	-0.701277
40 19	1 1	0	-8.862656	-0.130403	-0.744111
50	1	0	-7.817288	-3.676743	-0.784355
51	1	o O	-7.703952	-3.956239	0.963822
52	6	Ō	4.788257	-3.173490	-0.296833
53	6	0	6.137887	-2.944796	-0.607073
54	6	0	4.331022	-4.495002	-0.168961
55	6	0	7.003349	-4.015653	-0.796135
56	1	0	6.500318	-1.928144	-0.712033

57	6	0	5.201485	-5.558708	-0.360083	
58	1	0	3.299775	-4.695979	0.102024	
59	б	0	6.540412	-5.324548	-0.675482	
60	1	0	8.043541	-3.825831	-1.040705	
61	1	0	4.835610	-6.574733	-0.253511	
62	1	0	7.219481	-6.158311	-0.822326	
63	6	0	4.688931	1.460290	0.469502	
64	6	0	6.053946	1.303679	0.755247	
65	6	0	4.152552	2.755126	0.365923	
66	6	0	6.858532	2.419784	0.949465	
67	1	0	6.474300	0.307304	0.840287	
68	6	0	4.963130	3.863634	0.564319	
69	1	0	3.108758	2.905490	0.104830	
70	6	0	6.317602	3.701451	0.858171	
71	1	0	7.911561	2.287942	1.176611	
72	1	0	4.536527	4.857697	0.476696	
73	1	0	6.949264	4.570959	1.010030	
E(TD-HF/TD-K	(S) = -2319	.93927608				
Compound	1 · Radical	-Cation				
compound	1. Ruultui	Cation				
		Standard o	orientation:			

Compound 1: Radical-Cation.

71	1	0	7.911561	2.287942	1.176611
72	1	0	4.536527	4.857697	0.476696
73	1	0	6.949264	4.570959	1.010030
(TD-HF/T	D-KS) = -23	19.93927608			
amnou	nd 1. Padia	ol_Cation			
Jompou	nu 1. Kaul				
		Standard o	rientation:		
Center	Atomic	Atomic	Coord	unates (Ang	stroms)
Number	Number	Туре	X	Y	Z
			2 044400	0 207557	0 202411
1	6	0	-3.844499	0.30/55/	-0.323411
2	6	0	-2.4/945/	0.291135	-0.4333393
3	6	0	-1./0190/	-0.908339	-0.213340
4	6	0	-2.526/90	-2.0/8/22	0.019185
5	6	0	-3.893090	-2.011443	0.088/62
6	1	0	-1.9923/8	1.202245	-0./48441
7	Ţ	U	-2.032388	-3.027062	0.188082
8	8	U	-4.510870	-0.824664	-0.053489
9	6	0	-0.338670	-1.011889	-0.209182
10	6	0	0.608967	0.001030	-0.134891
11	6	0	2.017138	-0.223569	-0.145388
12	16	0	0.262852	1.704529	0.075109
13	6	0	2.744651	0.945671	0.000564
14	6	0	1.953456	2.092265	0.131188
15	1	0	3.827731	0.973318	0.015204
16	1	0	0.053272	-2.025763	-0.217475
17	6	0	2.490633	3.406670	0.289483
18	6	0	1.830488	4.590731	0.411477
19	1	0	3.576066	3.455413	0.313371
20	6	0	2.646003	-1.580333	-0.298536
21	1	0	2.291378	-2.234324	0.513912
22	1	0	2.312237	-2.029260	-1.246666
23	6	0	0.403578	4.703881	0.393401
24	7	0	-0.752468	4.778623	0.373699
25	6	о	2.547257	5.886858	0.570840
26	8	0	1.978262	6.946049	0.681406
27	8	0	3.874578	5.739312	0.576486
28	1	0	4.273412	6.622230	0.681552
29	8	0	4.040339	-1.441273	-0.265091
30	14	0	5.075781	-2.777760	-0.268082
31	6	0	4.593929	-3.914577	1.145637
32	1	0	3.641183	-4.418794	0.952024
33	1	0	5.351574	-4.693056	1.287251
34	1	0	4.500872	-3.361580	2.086201
35	6	0	4.922033	-3.676624	-1.906721
36	1	0	5.215853	-3.038781	-2.746372
37	1	0	5.559782	-4.567014	-1.917113
38	1	ō	3.893239	-4.010813	-2.079965
39	-	0	6.786901	-2.019348	-0.026422
40	6	0	7.028263	-0.939942	-1.091032
41	6	0	6.874752	-1.383336	1.368003
42	6	0 0	7.858289	-3.111761	-0.158076
42	1	n	6.978042	-1.351778	-2.105862
43 AA	1	0	6 201557	-0 122702	-2.105005
11 15	1	0	8 025107	-0 400727	-1.010134
45	1	0	6.749079	-2.129571	2.160917
	-	0	0.1 22012		2.10021/

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	
Compour	nd 2: Grou	nd State. Standard	orientation:	~		
(UM062X)	= -2319.825	537035 A	.U.			
		U	-0.904344	4.588511	-0.945140	
72	1	0	-4.555388	4.871559	-0.407921	
71	1	0	-7.925029	2.312279	-1.172835	
70	6	0	-6.330667	3.716920	-0.816102	
69	1	0	-3.119355	2.908062	-0.090656	
68	6	0	-4.977618	3.878638	-0.519733	
67	1	0	-6.484570	0.324459	-0.886028	
66	6	0	-6.872729	2.438272	-0.941623	
65	6	0	-4.163793	2.766589	-0.352800	
64	б	0	-6.066674	1.319504	-0.775666	
63	б	0	-4.704569	1.479539	-0.486655	
62	1	0	-7.250255	-6.046885	1.045434	
61	1	0	-4.957329	-6.511009	0.216000	
60	1	0	-7.985422	-3.706407	1.414497	
59	б	0	-6.567837	-5.226384	0.848553	
58	1	0	-3.410153	-4.656314	-0.249840	
57	б	0	-5.278438	-5.489161	0.387273	
56	1	0	-6.433859	-1.835630	0.971723	
55	6	0	-6.983202	-3.911609	1.053637	
54	6	0	-4.401945	-4.442265	0.135009	
53	6	0	-6.114154	-2.858032	0.801288	
52	6	0	-4.814736	-3,119341	0.344774	
51	1	0	7.851679	-3.568965	-1,154478	
50	1	0	7,722539	-3,909260	0.582259	
49	1	0	8.855910	-2.680935	0.001463	
48	1	0	6.110558	-0.609585	1.505232	

Compound 2: Ground State.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.426071	-1.571114	-0.022272
2	6	0	0.711921	-0.328655	-0.025472
3	6	0	-0.681025	-0.222364	-0.039683
4	16	0	1.460585	1.238451	-0.010271
5	6	0	-1.117116	1.104975	-0.038003
6	6	0	-0.089779	2.040866	-0.023001
7	1	0	-2.164696	1.384772	-0.046952
8	1	0	0.799835	-2.459782	-0.030767
9	6	0	-0.302107	3.444352	-0.018660
10	6	0	0.596543	4.473113	-0.002133
11	1	0	-1.350089	3.734676	-0.030105
12	6	0	-1.607567	-1.410134	-0.052109
13	6	0	2.010941	4.270792	0.015196
14	7	0	3.157349	4.097411	0.029225
15	б	0	0.176179	5.888404	-0.000155
16	8	0	0.945564	6.823941	0.015778
17	8	0	-1.158206	6.038083	-0.017922
18	1	0	-1.339809	6.994649	-0.015071
19	8	0	-2.941178	-0.957986	-0.087731
20	14	0	-4.233903	-2.036519	-0.011307
21	6	0	-5.758459	-0.924935	0.036404
22	6	0	-5.779506	-0.138449	1.354840
23	6	0	-5.717196	0.061447	-1.139171
24	6	0	-7.028140	-1.782392	-0.065349
25	1	0	-5.854584	-0.804909	2.221817
26	1	0	-4.876762	0.471860	1.472905
27	1	0	-6.646140	0.536309	1.378863
28	1	0	-5.710755	-0.458075	-2.104596
29	1	0	-6.603676	0.710096	-1.118720
30	1	0	-4.829465	0.701245	-1.093266
31	1	0	-7.919832	-1.143425	-0.009092
32	1	0	-7.072952	-2.329038	-1.014330
33	1	0	-7.095518	-2.512687	0.750007
34	1	0	-1.390079	-2.041124	-0.927562
35	1	0	-1.429915	-2.026374	0.842899
36	6	0	2.770362	-1.783043	-0.009761
37	6	0	5.399790	-1.652791	0.015415
38	6	0	5.124736	-2.964653	0.009282
39	16	0	3.419890	-3.415068	-0.007517
40	16	0	4.015137	-0.551172	0.005602

41	6	0	6.093490	-4.110816	0.014888	
42	1	0	5.958392	-4.734837	-0.873769	
43	1	0	7.123289	-3.753503	0.027620	
44	1	0	5.939199	-4.742485	0.894972	
45	6	0	6.742121	-0.983506	0.029590	
46	1	0	6.849881	-0.351124	0.916132	
47	1	0	7.546028	-1.719844	0.036322	
48	1	0	6.867229	-0.348235	-0.852590	
49	6	0	-4.074756	-3.074099	1.545733	
50	1	0	-3.893162	-2.444601	2.423049	
51	1	0	-4.992319	-3.645309	1.724776	
52	1	0	-3.252212	-3.792837	1.468171	
53	6	0	-4.219131	-3.143530	-1.526925	
54	1	0	-4.324564	-2.564679	-2.450109	
55	1	0	-3.286261	-3.713942	-1.591336	
56	1	0	-5.041352	-3.865907	-1.483483	

Compound 2: First Excited State.

56	1	0	-5.041352	-3.865907	-1.483483	
(RM062X)	= -2580.41	.952258 A.U	·			
Compou	nd 2: First	Excited State				
•		Standard o	rientation:			
Center	Atomic	Atomic	Coord	linates (Angs	stroms)	
Number	Number	Туре	X 	¥ 	Z	
1	б	0	1.389727	-1.532117	-0.023849)
2	6	0	0.713844	-0.312847	-0.026747	
3	6	0	-0.709313	-0.175246	-0.044129	
4	16	0	1.485606	1.271611	-0.007967	
5	6	0	-1.130702	1.132643	-0.042974	
6	6	0	-0.079211	2.088298	-0.024602	
7	1	0	-2.173851	1.425073	-0.054182	
8	1	0	0.756721	-2.417562	-0.034009	
9	6	0	-0.261717	3.471900	-0.019795	
10	6	0	0.693637	4.495984	-0.001339	
11	1	0	-1.298292	3.796699	-0.031841	
12	6	0	-1.636833	-1.357858	-0.059072	
13	6	0	2.094186	4.265414	0.016025	
14	7	0	3.244376	4.086297	0.030200	
15	6	0	0.318486	5.906457	0.001104	
16	8	0	1.101064	6.841227	0.016851	
17	8	0	-1.019994	6.099903	-0.016201	
18	1	0	-1.158107	7.063035	-0.013037	
19	8	0	-2.970451	-0.914380	-0.094808	
20	14	0	-4.259388	-1.997600	-0.009832	
21	6	0	-5.786752	-0.890529	0.036483	
22	6	0	-5.808223	-0.100396	1.352774	
23	6	0	-5.749423	0.092621	-1.141987	
24	6	0	-7.053972	-1.752106	-0.061321	
25	1	0	-5.880555	-0.764592	2.221733	
26	1	0	-4.907065	0.512771	1.467943	
27	1	0	-6.676649	0.572035	1.375794	
28	1	0	-5.742406	-0.429639	-2.105943	
29	1	0	-6.637903	0.738506	-1.122436	
30	1	0	-4.863649	0.735255	-1.098652	
31	1	0	-7.947409	-1.115607	-0.005307	
32	1	0	-7.098558	-2.301166	-1.008921	
33	1	0	-7.118055	-2.480605	0.755928	
34	1	0	-1.412076	-1.986749	-0.934910	
35	1	0	-1.452373	-1.974345	0.835142	
36	6	0	2.763034	-1.796113	-0.010148	
37	6	0	5.363997	-1.762249	0.015204	
38	6	0	5.031403	-3.074676	0.008910	
39	16	0	3.325952	-3.437114	-0.007570	
40	16	0	4.037902	-0.622532	0.003689	
41	6	0	5.959399	-4.253978	0.017524	
42	1	0	5.772796	-4.895648	-0.848411	
43	1	0	7.000325	-3.933566	-0.013737	
44	1	0	5.810559	-4.853245	0.920547	
45	6	0	6.739154	-1.163399	0.030250	
46	1	0	6.869953	-0.524525	0.908493	
47	1	0	7.503633	-1.939395	0.055673	
48	1	0	6.900794	-0.549372	-0.860589	
49	6	0	-4.090865	-3.026322	1.552038	
50	1	0	-3.905561	-2.391446	2.424697	

51	1	0	-5.007143	-3.597033	1.739104
52	1	0	-3.268345	-3.745130	1.474659
53	6	0	-4.243039	-3.111305	-1.520412
54	1	0	-4.352764	-2.536791	-2.445793
55	1	0	-3.308117	-3.678446	-1.584418
56	1	0	-5.062336	-3.836684	-1.472066

E(TD-HF/TD-KS) = -2580.33519498

Compound 2: Radical-Cation.

Center Number Atomic Number Coordinates (Angstroms) Type Coordinates (Angstroms) X Z 1 6 0 1.434745 -1.526387 -0.045295 2 6 0 0.372920 -0.043529 3 6 0 -0.684074 -0.233605 -0.061379 4 16 0 1.455360 1.268302 -0.018197 5 6 0 -1.133821 1.081451 -0.057463 6 6 0 -0.108057 2.025469 -0.035193 7 1 0 -2.139118 1.35089 -0.062270 8 1 0 0.2826097 -2.427095 -0.066110 9 6 0 -1.60987 -1.425962 -0.077574 11 1 0 -1.397458 3.717051 -0.062477 13 6 0 1.22465 4.867938 0.00304 14 7 0 3.108953 4.081086 -0.12274			Standard	orientation:		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang Y	stroms) Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	6	0	1.434745	-1.526387	-0.045285
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	0	0.729910	-0.317292	-0.043559
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	16	0	-0.004074	1 268202	-0.001/85
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	6	0	-1.133821	1.081451	-0.057469
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6	0	-0.108057	2.025469	-0.035199
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1	0	-2.183118	1.350989	-0.069270
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	1	0	0.826009	-2.427095	-0.066110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	6	0	-0.347769	3.438235	-0.028236
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	6	0	0.546845	4.458820	-0.002524
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1	0	-1.397858	3.717051	-0.046100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	0	0	-1.000897 1 964450	-1.425962 4 261601	-0.0//5/6
1560 0.122246 5.887338 0.000304 1680 0.904310 6.806598 0.022423 1780 -1.205582 6.025345 -0.026776 1810 -1.406498 6.978566 -0.023251 1980 -2.929251 -0.980886 -0.02578 20140 -4.22483 -2.064435 -0.002578 2160 -5.744502 -0.949554 0.044307 2260 -5.717974 0.015311 -1.149562 2360 -7.015169 -1.809307 -0.025969 2460 -7.015169 -1.809307 -0.025969 2510 -6.613950 0.5352311 1.371615 2810 -6.604529 0.663482 -1.129095 3010 -4.833647 0.657059 -1.1264858 3110 -7.072234 -2.524587 0.803268 3310 -7.072234 -2.036262 0.818993 3660 2.817292 -1.742757 -0.0234400 3860 5.100742 -2.944162 0.01147 39160 6.25528 -4.044118 0.984268 4560 6.778679 -0.023440 3860 5.100742 -2.944162 0.01147 39160 6.125805 -4.044936 0	14	7	0	3.108953	4.085108	0.046112
1680 0.904310 6.806908 0.024423 1780 -1.205582 6.025345 -0.026776 1810 -1.406498 6.978566 -0.023251 1980 -2.929251 -0.980886 -0.115080 20140 -4.224338 -2.064435 -0.002578 2160 -5.744502 -0.949554 0.043307 2260 -5.748140 -0.140277 1.349185 2360 -5.717974 0.015311 -1.149562 2460 -7.015169 -1.809307 -0.225969 2510 -5.813200 -0.791237 2.228564 2610 -4.843862 0.471732 1.445558 2710 -6.613950 0.535231 1.3716152 2810 -5.723690 -0.521250 -2.105524 2910 -6.604529 0.663482 -1.1264853 3110 -7.072258 -2.372667 -0.964376 3310 -7.072258 -2.372667 -0.964376 3310 -7.072258 -2.052622 0.818993 3660 2.817292 -1.742757 -0.023440 3760 5.392648 -1.615272 0.034400 3860 5.100742 -2.944162 0.011474 39160 4.039080 <td>15</td> <td>, 6</td> <td>0</td> <td>0.122246</td> <td>5.887938</td> <td>0.000304</td>	15	, 6	0	0.122246	5.887938	0.000304
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	8	0	0.904310	6.806908	0.024423
1810 -1.408498 6.978566 -0.023251 19 8 0 -2.929251 -0.980886 -0.115080 20 14 0 -4.224838 -2.064435 -0.002578 21 6 0 -5.748140 -0.44337 1.349185 22 6 0 -5.748140 -0.140277 1.349185 23 6 0 -5.71974 0.015311 -1.149552 24 6 0 -7.015169 -1.809307 -0.025969 25 10 -5.813200 -0.791237 2.228564 26 10 -4.843662 0.471732 1.445588 27 10 -6.613950 0.535231 1.371615 28 10 -5.723690 -0.521250 -2.105524 29 10 -6.604529 0.663482 -1.126085 31 10 -7.905607 -1.188972 0.030278 32 10 -7.072234 -2.524587 0.803268 34 10 -1.368548 -2.050633 -0.953697 35 10 -1.410458 -2.036262 0.818993 36 60 2.817292 -1.42757 -0.0234400 38 60 5.100742 -2.944162 0.011477 39 160 3.424706 -3.350647 -0.29410 41 6 6.125805 -5.021471 -0.155344 43	17	8	0	-1.205582	6.025345	-0.026776
1980 -2.929251 -0.980866 -0.115080 20140 -4.224838 -2.064435 -0.002578 2160 -5.744502 -0.949554 0.044307 2260 -5.748140 -0.140277 1.349185 2360 -5.717974 0.015311 -1.149562 2460 -7.015169 -1.809307 -0.025969 2510 -5.813200 -0.791237 2.228564 2610 -4.843862 0.471732 1.445558 2710 -6.613950 0.535231 1.371615 2810 -5.723690 -0.521250 -2.105524 2910 -6.604529 0.663422 -1.126485 3010 -7.905607 -1.168972 0.030278 3210 -7.072258 -2.372667 -0.964376 3310 -7.072258 -2.372667 -0.964376 3310 -1.36548 -2.050683 -0.953697 3510 -1.410458 -2.036262 0.818993 3660 2.817292 -1.742757 -0.023440 3760 5.392648 -1.615272 0.034400 3860 5.100742 -2.944162 0.01147 39160 6.655528 -4.040336 0.0226903 4160 6.555769	18	1	0	-1.408498	6.978566	-0.023251
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	8	0	-2.929251	-0.980886	-0.115080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	14	0	-4.224838	-2.064435	-0.002578
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	6	0	-5.744502	-0.949554	0.044307
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	6	0	-5.717974	0.015311	-1.149562
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	6	0	-7.015169	-1.809307	-0.025969
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1	0	-5.813200	-0.791237	2.228564
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	1	0	-4.843862	0.471732	1.445558
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1	0	-6.613950	0.535231	1.371615
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	1	0	-5.723690	-0.521250	-2.105524
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	1	0	-6.604529	0.663482	-1.129095
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	0	-7 905607	-1 168972	-1.120485
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1	0	-7.072258	-2.372667	-0.964376
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	1	ō	-7.072234	-2.524587	0.803268
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	1	0	-1.368548	-2.050683	-0.953697
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	1	0	-1.410458	-2.036262	0.818993
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	6	о	2.817292	-1.742757	-0.023340
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	6	0	5.392648	-1.615272	0.034400
35 16 0 $3.424/06$ -3.330647 -0.023410 40 16 0 4.039080 -0.536769 0.016769 41 6 0 6.125805 -4.040936 0.026903 42 1 0 5.669500 -5.021471 -0.115634 43 1 0 6.855769 -3.880385 -0.770907 44 1 0 6.655528 -4.044118 0.984268 45 6 0 6.778862 -1.042547 0.052883 46 1 0 6.775691 0.009741 0.341026 47 1 0 7.233761 -1.127335 -0.938925 49 6 0 -4.031850 -3.066573 1.57237 50 1 0 -3.832844 -2.418301 2.431920 51 1 0 -3.213616 -3.790216 1.494695 53 6 0 -4.215204 -3.193251 -1.500129 54 1 0 -3.282193 -3.763748 -1.52331 56 1 0 -5.035554 -3.916415 -1.439292	38	6	0	5.100742	-2.944162	0.011147
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	10	0	3.424/00	-3.350047	-0.029410
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	6	0	6.125805	-4.040936	0.026903
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	1	0	5.669500	-5.021471	-0.115634
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	1	0	6.855769	-3.880385	-0.770907
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	1	0	6.655528	-4.044118	0.984268
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	6	0	6.778862	-1.042547	0.052883
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46	1	0	6.775691	0.009741	0.341026
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	1	0	7.398763	-1.593300	0.764851
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48	1	0	-4 031850	-1.12/335	-0.938925
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49 50	8	0	-3.832844	-2.418301	2.431920
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	1	õ	-4.946948	-3.631185	1.781912
53 6 0 -4.215204 -3.193251 -1.500129 54 1 0 -4.329022 -2.629054 -2.431245 55 1 0 -3.282193 -3.763748 -1.562331 56 1 0 -5.035554 -3.916415 -1.439292	52	_ 1	ō	-3.213616	-3.790216	1.494695
54 1 0 -4.329022 -2.629054 -2.431245 55 1 0 -3.282193 -3.763748 -1.562331 56 1 0 -5.035554 -3.916415 -1.439292	53	6	0	-4.215204	-3.193251	-1.500129
55 1 0 -3.282193 -3.763748 -1.562331 56 1 0 -5.035554 -3.916415 -1.439292	54	1	0	-4.329022	-2.629054	-2.431245
56 1 0 -5.035554 -3.916415 -1.439292	55	1	0	-3.282193	-3.763748	-1.562331
	56	1	0	-5.035554	-3.916415	-1.439292

Compound 3: Ground State.

		Standard (orientation:		
Center	Atomia	Atomic	Coorr	linates (Ana	strome)
Number	Number	Type	X	Y	Z
1	6	0	0.925769	-0.944905	0.261375
2	6	0	1.923397	0.004844	0.398190
3	16	0	1.575201	-2.548047	0.150145
4	6	0	3.209647	-0.575905	0.397114
5	0	0	3.20/090	-1.951553	0.205228
7	6	0	4 402672	-2 734928	0.404209
, 8	6	0	4.562616	-4.078900	0.100391
9	1	0	5.317668	-2.154693	0.322422
10	6	0	1.714312	1.495480	0.480880
11	6	0	3.464826	-4.987564	-0.028644
12	7	0	2.572131	-5.719066	-0.131938
13	6	0	5.898194	-4.719873	0.082678
14	8	0	6.069834	-5.912338	-0.027903
15	8	0	6.900302	-3.837555	0.201818
16	1	0	7.733946	-4.340659	0.179960
17	8	0	2.873811	2.144414	0.006013
18	14	0	2.900249	3.823384	-0.005980
20	6	0	5 672341	3 805607	0 668150
20	6	0	5.165513	3.332655	-1.736784
22	6	0	4.938127	5.662531	-0.845460
23	1	0	5.455321	4.420481	1.549195
24	1	0	5.556256	2.753125	0.952043
25	1	0	6.726101	3.966419	0.402382
26	1	0	4.543327	3.564287	-2.609394
27	1	0	6.209387	3.537986	-2.010996
28	1	0	5.073560	2.260989	-1.531113
29	1	0	5.990533	5.879400	-1.073444
30	1	0	4.343618	5.954889	-1.718614
31	1	0	4.644916	6.304434 1.775670	-0.005835
22	1	0	1 519695	1 703200	1 522210
34	6	0	-0.524459	-0.747416	0.198444
35	6	0	-1.331030	-1.547293	-0.626088
36	6	0	-1.153454	0.241112	0.969903
37	6	0	-2.701070	-1.358456	-0.693243
38	1	0	-0.873336	-2.307060	-1.253688
39	б	0	-2.525385	0.430776	0.915925
40	1	0	-0.568973	0.841662	1.659998
41	6	0	-3.323552	-0.362656	0.077423
42	1	0	-3.298253	-1.974997	-1.356369
43	1	0	-2.989120	1.188983	1.537712
44	1	0	-4.711628	-0.167362	0.012081
45	6	0	-5.583155	-1.259161	-U.248861
40	6	0	-5 402127	-2 482572	-1.152527
48	6	0	-7.505371	-2.171734	-1.393928
49	1	o o	-6.777079	-0.158945	-1.658479
50	6	0	-6.261190	-3.545121	0.142966
51	1	0	-4.587226	-2.593881	1.113395
52	6	0	-7.318471	-3.395157	-0.752870
53	1	0	-8.322674	-2.043741	-2.096791
54	1	0	-6.109985	-4.490526	0.654540
55	1	0	-7.991157	-4.223720	-0.948538
56	6	0	-5.270770	1.124691	0.202414
57	6	0	-4.691321	2.245276	-0.402367
58	6	U	-0.418959	1.281374	0.985417
59	0	0 0	-3.24/039 -3.806256	2,121520	-0.210886
61	5	n	-6.979507	2.543070	1.155949
62	1	0	-6.866821	0.410293	1.453875
63	6	õ	-6.395403	3.661866	0.564535
64	1	0	-4.788057	4.367932	-0.684102

	65	1	0	-7.871511	2.651557	1.765030
	66	1	0	-6.831167	4.645531	0.705215
	67	6	0	2.512934	4.538197	1.611434
	68	1	0	1.442082	4.434249	1.816014
	69	1	0	3.061919	4.037416	2.415806
	70	1	0	2.753185	5.606308	1.654541
	71	6	0	1.783804	4.463395	-1.376720
	72	1	0	2.059032	4.107788	-2.374841
	73	1	0	0.757045	4.139781	-1.174785
	74	1	0	1.784185	5.558586	-1.394529
-						

E(RM062X) = -2300.17371142 A.U.

Compound 3: First Excited State.

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Type	Х	Y	Z
1	6	 0	_0 707053	0 864027	0
2	6	0	-1.918820	-0.020630	0.098354
3	16	0	-1.360879	2.537309	-0.144039
4	-10 6	0	-3.128739	0.635088	0.064069
5	6	0	-3 042983	2 047078	-0.062855
6	1	0	-4.080942	0.121732	0.116251
7	6	0	-4.145173	2.900988	-0.117365
, 8	6	0	-4.188293	4.296482	-0.236267
9	1	0	-5.110220	2.405643	-0.058968
10	-	0	-1 848652	-1 524089	0 193785
11	6	0	-3.030560	5.113552	-0.314177
12	7	0	-2.088265	5.794062	-0.377223
13	6	0	-5,446841	5.031769	-0.284527
14	8	0	-5.551543	6.242676	-0.384284
15	8	0	-6.534245	4.230222	-0.206489
16	1	0	-7.309515	4.816652	-0.246296
17	8	0	-3.143833	-2.062787	0.096727
18	14	0	-3.413082	-3.723320	0.206764
19	6	0	-5.293079	-3.882601	0.214813
20	6	0	-5.852874	-3.279557	1.511071
21	6	0	-5.880859	-3.129659	-0.987110
22	6	0	-5.688276	-5.363771	0.128933
23	1	0	-5.496721	-3.820390	2.395463
24	1	0	-5.568368	-2.226580	1.619425
25	1	0	-6.950167	-3.332191	1.509527
26	1	0	-5.512292	-3.532514	-1.937842
27	1	0	-6.975565	-3.222072	-0.991040
28	1	0	-5.631967	-2.063665	-0.952060
29	1	0	-6.781507	-5.464726	0.163174
30	1	0	-5.343467	-5.821624	-0.805366
31	1	0	-5.278370	-5.945815	0.963156
32	1	0	-1.205189	-1.914422	-0.609238
33	1	0	-1.390660	-1.812895	1.152717
34	6	0	0.592186	0.610750	-0.007353
35	6	о	1.525493	1.664653	-0.289491
36	6	0	1.166000	-0.671864	0.274549
37	6	0	2.877933	1.463402	-0.296449
38	1	0	1.155990	2.652754	-0.543509
39	6	0	2.518464	-0.881158	0.261615
40	1	0	0.534982	-1.503844	0.553282
41	6	0	3.421309	0.179731	-0.023890
42	1	0	3.543567	2.282104	-0.545905
43	1	0	2.912109	-1.859046	0.515353
44	7	0	4.782220	-0.029224	-0.025009
45	6	0	5.682335	1.031069	0.275173
46	6	0	6.829582	1.208907	-0.505471
47	6	0	5.426351	1.879083	1.358488
48	6	0	7.711121	2.239221	-0.202339
49	1	0	7.015055	0.546949	-1.345372
50	6	0	6.312648	2.909853	1.647086
51	1	0	4.545162	1.716324	1.971196
52	6	0	7.455830	3.093965	0.870167
53	1	0	8.596860	2.380223	-0.812914
54	1	0	6.114524	3.562835	2.490639
55	1	0	8.146587	3.898016	1.101013
56	6	0	5.326717	-1.308948	-0.321439

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 0.868945 -0.932596 0.206689 2 6 0 1.883486 0.004093 0.339982	Compound 3: Radical-Cation. Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 0.868945 -0.932596 0.206689 2 6 0 1.883486 0.004093 0.339982	1 2	6 6	0 0	0.868945 1.883486	-0.932596 0.004093	0.206689 0.339982	
Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z	Compound 3: Radical-Cation. Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Type X Y Z		~	0	0 00015	0 000505	0 000000	
Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z	Compound 3: Radical-Cation. Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Type X Y Z	Mulliper.						
	Compound 3: Radical-Cation. Standard orientation:	Center	Atomic Number	Atomic Type	Coord X	dinates (Angs Y	stroms) Z	
SLADDARD ORIAN ALION	Compound 3: Radical-Cation.			Standard	orientation:			
C(TD-HF/TD-KS) = -2300.07905494		74	1	0	-2.775341	-5.666888	-1.200771	
74 1 0 -2.775341 -5.666888 -1.200771 :(TD-HF/TD-KS) = -2300.07905494	74 1 0 -2.775341 -5.666888 -1.200771	73	1	0	-1.562819	-4.390151	-1.323350	
73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771 C(TD-HF/TD-KS) = -2300.07905494	73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771	72	1	0	-3.087489	-4.245748	-2.212861	
72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771 :(TD-HF/TD-KS) = -2300.07905494	72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771	70	1	0	-2.90/10/	-2.392552	-1 272187	
70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771	7010 -2.967167 -5.392552 1.992612 71 60 -2.640022 -4.582281 -1.272187 72 10 -3.087489 -4.245748 -2.212861 73 10 -1.562819 -4.390151 -1.323350 74 10 -2.775341 -5.666888 -1.200771	69 70	1	0	-2.942160	-3.749769	2.654034	
69 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771	69 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771	68	1	0	-1.552347	-4.366351	1.743312	
68 1 0 -1.552347 -4.366351 1.743312 69 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	67	6	0	-2.646263	-4.363497	1.796825	
67 6 0 -2.646263 -4.363497 1.796825 68 1 0 -1.552347 -4.366351 1.743312 69 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771 C(TD-HF/TD-KS) = -2300.07905494	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66	1	0	6.836046	-4.779010	-1.133890	
66 1 0 6.836046 -4.779010 -1.133890 67 6 0 -2.646263 -4.363497 1.796825 68 1 0 -1.552347 -4.366351 1.743312 69 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -2.775341 -5.666888 -1.200771 74 1 0 -2.775341 -5.666888 -1.200771		65	1	0	7.731533	-3.442304	0.758929	
65 1 0 7.731533 -3.442304 0.758929 66 1 0 6.836046 -4.779010 -1.133890 67 6 0 -2.646263 -4.363497 1.796825 68 1 0 -1.552347 -4.366351 1.743312 69 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -2.775341 -5.666888 -1.200771 -(TD-HF/TD-KS) = -2300.07905494	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	63 64	0	0	0.412828	-3.800357	-0.906410	
63 0 0.41232 -3.800337 -0.300410 64 1 0 4.975068 -3.876414 -2.510144 65 1 0 7.731533 -3.442304 0.758929 66 1 0 6.836046 -4.779010 -1.133890 67 6 0 -2.646263 -4.363497 1.796825 68 1 0 -1.552347 -4.366351 1.743312 69 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771 (TD-HF/TD-KS) = -2300.07905494	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0⊿ 62	1	0	6 112020	-1.222095	-0 906410	
62 1 0 6.76093 -1.222695 1.282500 63 6 0 6.412828 -3.806357 -0.906410 64 1 0 4.975068 -3.876414 -2.510144 65 1 0 7.731533 -3.442304 0.758929 66 1 0 6.836046 -4.779010 -1.133890 67 6 0 -2.646263 -4.363497 1.796825 68 1 0 -1.552347 -4.366351 1.743312 69 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771 (TD-HF/TD-KS) = -2300.07905494	6210 6.760933 -1.222895 1.282500 63 60 6.412828 -3.806357 -0.906410 64 10 4.975068 -3.876414 -2.510144 65 10 7.731533 -3.442304 0.758929 66 10 6.836046 -4.779010 -1.133890 67 60 -2.646263 -4.363497 1.796825 68 10 -1.552347 -4.366351 1.743312 69 10 -2.942160 -3.749769 2.654034 70 10 -2.967167 -5.392552 1.992612 71 60 -2.640022 -4.582281 -1.272187 72 10 -3.087489 -4.245748 -2.212861 73 10 -1.562819 -1.323350 74 10 -2.775341 -5.666888 -1.200771	60	6	0	6.918823	-3.054106	0.153922	
61 6 0 6.918823 -3.054106 0.153922 62 1 0 6.760933 -1.222695 1.282500 63 6 0 6.412828 -3.806357 -0.906410 64 1 0 4.975068 -3.876414 -2.510144 65 1 0 7.731533 -3.442304 0.758929 66 1 0 6.836046 -4.779010 -1.133890 67 6 0 -2.646263 -4.363497 1.796825 68 1 0 -1.552347 -4.366351 1.743312 69 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771 (TD-HF/TD-KS) = -2300.07905494	61 6 0 6.918823 -3.054106 0.153922 62 1 0 6.760933 -1.222695 1.282500 63 6 0 6.412828 -3.806357 -0.906410 64 1 0 4.975068 -3.876414 -2.510144 65 1 0 7.731533 -3.442304 0.758929 66 1 0 6.836046 -4.779010 -1.133890 67 6 0 -2.646263 -4.363497 1.796825 68 1 0 -1.552347 -4.3663511 1.743312 69 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -1.562819 -4.390151 -1.323350 74 1 0 -2.775341 -5.666888 -1.200771	61	1	0	4.020874	-1.646268	-2.001058	
60 1 0 4.020874 -1.646268 -2.001058 61 6 0 6.918823 -3.054106 0.153922 62 1 0 6.760933 -1.222695 1.282500 63 6 0 6.412828 -3.806357 -0.906410 64 1 0 4.975068 -3.876414 -2.510144 65 1 0 7.731533 -3.442304 0.758929 66 1 0 6.836046 -4.779010 -1.133890 67 6 0 -2.646263 -4.363497 1.796825 68 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -3.087489 -4.245748 -2.212861 73 1 0 -2.775341 -5.666888 -1.200771 (TD-HF/TD-KS) = -2300.07905494	6010 4.020874 -1.646268 -2.001058 61 60 6.918823 -3.054106 0.153922 62 10 6.760933 -1.222695 1.282500 63 60 6.412828 -3.806357 -0.906410 64 10 4.975068 -3.876414 -2.510144 65 10 7.731533 -3.442304 0.758929 66 10 6.836046 -4.779010 -1.133890 67 60 -2.646263 -4.363497 1.796825 68 10 -1.552347 -4.366351 1.743312 69 10 -2.942160 -3.749769 2.654034 70 10 -2.967167 -5.392552 1.992612 71 60 -2.640022 -4.245748 -2.212861 73 10 -1.562819 -4.390151 -1.323350 74 10 -2.775341 -5.666888 -1.200771	60 61	1					
59 6 0 5.364572 -3.302647 -1.675698 60 1 0 4.020874 -1.646268 -2.001058 61 6 0 6.918823 -3.054106 0.153922 62 1 0 6.760933 -1.222695 1.282500 63 6 0 6.412828 -3.806357 -0.906410 64 1 0 4.975068 -3.876414 -2.510144 65 1 0 7.731533 -3.442304 0.758929 66 1 0 6.836046 -4.779010 -1.133890 67 6 0 -2.646263 -4.363497 1.796825 68 1 0 -1.552347 -4.366351 1.743312 69 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 72 1 0 -2.967167 -5.392552 1.992612 71 6 0 -2.640022 -4.582281 -1.272187 <	5960 5.364572 -3.302647 -1.675698 6010 4.020874 -1.646268 -2.001058 6160 6.918823 -3.054106 0.153922 6210 6.760933 -1.222695 1.282500 6360 6.412828 -3.806357 -0.906410 6410 4.975068 -3.876414 -2.510144 6510 6.836046 -4.779010 -1.133890 6610 -2.646263 -4.363497 1.796825 6810 -2.942160 -3.749769 2.654034 7010 -2.967167 -5.392552 1.992612 7160 -2.640022 -4.582281 -1.272187 7210 -3.087489 -4.245748 -2.212861 7310 -1.562819 -4.390151 -1.323350 7410 -2.775341 -5.666888 -1.200771	59 60 61	6	0	5.364572	-3.302647	-1.675698	
58 6 0 6.380541 -1.808630 0.451927 59 6 0 5.364572 -3.302647 -1.675698 60 1 0 4.020874 -1.646268 -2.001058 61 6 0 6.918823 -3.054106 0.153922 62 1 0 6.760933 -1.222695 1.282500 63 6 0 6.412828 -3.806357 -0.906410 64 1 0 4.975068 -3.876414 -2.510144 65 1 0 7.731533 -3.442304 0.758929 66 1 0 6.836046 -4.779010 -1.133890 67 6 0 -2.646263 -4.366351 1.743312 69 1 0 -2.942160 -3.749769 2.654034 70 1 0 -2.942160 -3.749769 2.654034 72 1 0 -2.640022 -4.582281 -1.272187 72 1 0 -2.775341 -5.666888 -1.200771 <t< th=""><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><td>58 59 60 61</td><td>6 6 1</td><td>0</td><td>6.380541 5.364572</td><td>-1.808630 -3.302647</td><td>0.451927 -1.675698</td><td></td></t<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58 59 60 61	6 6 1	0	6.380541 5.364572	-1.808630 -3.302647	0.451927 -1.675698	

Compound 3: Radical-Cation.

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Type	Х	Y	Z
1	 б	0	0.868945	-0.932596	0.206689
2	6	0	1.883486	0.004093	0.339982
3	16	0	1.491000	-2.546760	0.070216
4	6	0	3.157925	-0.600968	0.321433
5	6	0	3.124909	-1.975192	0.186217
6	1	0	4.080716	-0.036223	0.387404
7	6	0	4.310364	-2.786667	0.158314
8	6	0	4.433632	-4.130680	0.036854
9	1	0	5.237018	-2.225646	0.249667
10	6	0	1.720088	1.501336	0.433476
11	6	0	3.311534	-5.011274	-0.091420
12	7	0	2.396370	-5.713616	-0.194554
13	6	0	5.756507	-4.810063	0.026252
14	8	0	5.888250	-6.006182	-0.080019
15	8	0	6.776259	-3.953044	0.146386
16	1	0	7.600981	-4.471576	0.129962
17	8	0	2.915642	2.111005	0.012969
18	14	0	3.094685	3.790511	0.006290
19	6	0	4.921345	4.056197	-0.381717
20	6	0	5.772705	3.603047	0.812886
21	6	0	5.312250	3.238182	-1.620706
22	6	0	5.177685	5.545578	-0.654444
23	1	0	5.561942	4.198618	1.708510
24	1	о	5.595704	2.548971	1.056857
25	1	0	6.840266	3.718108	0.581314
26	1	0	4.727550	3.530302	-2.501008
27	1	0	6.372237	3.399817	-1.859436
28	1	0	5.162306	2.165988	-1.455423
29	1	0	6.245920	5.714941	-0.845289
30	1	0	4.625020	5.897244	-1.533171
31	1	0	4.892875	6.173347	0.198612
32	1	0	0.869257	1.821851	-0.185594
33	1	0	1.496085	1.785265	1.473306
34	6	0	-0.570894	-0.715926	0.153241
35	6	0	-1.401337	-1.574572	-0.598912
36	6	0	-1.169039	0.346671	0.861538
37	6	0	-2.763342	-1.381731	-0.652563
38	1	0	-0.961194	-2.377565	-1.181112
39	6	0	-2.530026	0.559323	0.809395
40	1	0	-0.567102	0.976595	1.505732
41	6	0	-3.347629	-0.304404	0.049626
42	1	0	-3.381973	-2.021463	-1.271768
43	1	0	-2.980971	1.352267	1.395278
44	7	0	-4.721654	-0.099541	-0.001629
45	6	0	-5.605476	-1.194909	-0.140361

58 59 60	6 1 6	0	-5.158686 -3.743272	3.538752 2.068189	-0.500574 -1.193712	
62	1	0	-6.885154	0.602098	1.365575	
63	6	0	-6.313290	3.765409	0.250348	
64	1	0	-4.682847	4.356101	-1.030777	
65	1	0	-7.830916	2.889827	1.507188	
66	1	0	-6.727382	4.765872	0.314657	
67	6	0	2.627353	4.457244	1.697814	
68	1	0	1.547365	4.399340	1.870011	
69	1	0	3.129271	3.900184	2.495873	
70	1	0	2.917568	5.509769	1.789301	
71	6	0	1.980352	4.527698	-1.310992	
72	1	0	2.263411	4.189975	-2.313080	
73	1	0	0.933368	4.251902	-1.144779	
74	1	ō	2.037151	5.621402	-1.293060	

Compound 15: Ground State.

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	б	0	-4.674455	-0.199336	-0.213047
2	6	0	-3.371845	0.145756	-0.103460
3	6	0	-2.358469	-0.833897	0.216520
4	6	0	-2.860025	-2.189491	0.290046
5	6	0	-4.172128	-2.470769	0.144806
6	1	0	-3.115398	1.173603	-0.311376
7	1	0	-2.169309	-2.996929	0.503332
8	8	0	-5.089269	-1.483297	-0.067510
9	6	0	-1.025346	-0.584664	0.436844
10	6	0	-0.327588	0.661524	0.508944
11	6	0	1.062806	0.779645	0.639258
12	16	o	-1.076809	2.230274	0.519961
13	6	0	1.489688	2.106787	0.730148
14	6	О	0.460695	3.041331	0.678921
15	1	0	2.532553	2.388729	0.827819
16	1	0	-0.399430	-1.457907	0.604113
17	6	0	0.653298	4.443379	0.738410
18	6	0	-0.261379	5.460233	0.685483
19	1	0	1.691989	4.748655	0.841677
20	6	0	1.990786	-0.405955	0.662887
21	1	0	1.726059	-1.082151	1.488292
22	1	0	1.873825	-0.982036	-0.268853
23	6	0	-1.666299	5.237443	0.550598
24	7	0	-2.805033	5.045577	0.441233
25	6	0	0.132001	6.879588	0.762047
26	8	0	-0.649314	7.804939	0.716882
27	8	0	1.458718	7.049753	0.888374
28	1	0	1.621270	8.008733	0.930596
29	8	0	3.322510	0.038854	0.826444
30	14	0	4.603130	-0.785269	0.124669
31	6	0	6.147076	-0.007454	0.881498
32	6	0	6.110975	1.505497	0.617994
33	6	0	6.175894	-0.259069	2.395497
34	6	0	7.406070	-0.608839	0.241765

35	1	0	6.077334	1.727825	-0.455012	
36	1	0	5.239447	1.972140	1.090128	
37	1	0	7.011901	1.979426	1.030421	
38	1	0	6.255398	-1.327335	2.625638	
39	1	0	7.046039	0.243128	2.839418	
40	1	0	5.276997	0.131294	2.886086	
41	1	0	8.302781	-0.192962	0.720279	
42	1	0	7.442686	-1.699095	0.359740	
43	1	0	7.465491	-0.377760	-0.827593	
44	6	0	-4.796211	-3.802431	0.222542	
45	6	0	-6.163276	-3.921379	0.502257	
46	6	0	-4.034809	-4.960255	0.018535	
47	6	0	-6.752130	-5.178550	0.591471	
48	1	0	-6.758821	-3.028571	0.659111	
49	6	0	-4.628029	-6.213471	0.110494	
50	1	0	-2.982389	-4.883190	-0.235251	
51	6	0	-5.987623	-6.327061	0.398774	
52	1	0	-7.811132	-5.259757	0.814217	
53	1	0	-4.029212	-7.103311	-0.054160	
54	1	0	-6.449338	-7.306844	0.466883	
55	б	0	-5.781096	0.723115	-0.518910	
56	б	0	-6.988919	0.227869	-1.025500	
57	б	0	-5.636669	2.101120	-0.308495	
58	6	0	-8.028056	1.100584	-1.331463	
59	1	0	-7.105546	-0.838174	-1.188407	
60	6	0	-6.676998	2.967894	-0.619394	
61	1	0	-4.721110	2.500849	0.117334	
62	б	0	-7.874809	2.471023	-1.132543	
63	1	0	-8.958536	0.708322	-1.728951	
64	1	0	-6.554051	4.032699	-0.450010	
65	1	0	-8.687261	3.149920	-1.370980	
66	б	0	4.523765	-0.496270	-1.729396	
67	6	0	5.398512	-1.113805	-2.639369	
68	6	0	3.582547	0.411280	-2.240370	
69	6	0	5.327710	-0.846002	-4.004569	
70	1	0	6.154020	-1.811751	-2.284214	
71	6	0	3.505870	0.682160	-3.605387	
72	1	0	2.901350	0.920070	-1.560483	
73	б	0	4.377670	0.051138	-4.489821	
74	1	0	6.013993	-1.335514	-4.688846	
75	1	0	2.767820	1.386282	-3.977519	
76	1	0	4.320221	0.260183	-5.553700	
77	б	0	4.397509	-2.601592	0.559971	
78	б	0	4.028100	-2.934287	1.875356	
7 <i>9</i>	б	0	4.568574	-3.649074	-0.356049	
80	б	0	3.852055	-4.259660	2.263953	
81	1	0	3.868084	-2.143541	2.606399	
82	б	0	4.398413	-4.978629	0.027632	
83	1	0	4.823782	-3.430547	-1.389568	
84	6	0	4.042588	-5.285314	1.338818	
85	1	0	3.564764	-4.493006	3.284704	
86	1	0	4.537296	-5.773661	-0.698711	
87	1	0	3.906982	-6.320140	1.638361	

E(RM062X) = -2703.34040424 A.U.

Compound 15: First Excited State.

	Y	Standard o	prientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	-4.657042	-0.232123	-0.342067
2	6	0	-3.336126	0.095355	-0.239489
3	6	0	-2.369149	-0.875053	0.141789
4	6	0	-2.856000	-2.203534	0.313153
5	6	0	-4.180371	-2.494992	0.167142
6	1	0	-3.047749	1.101264	-0.508830
7	1	0	-2.169237	-2.993493	0.593252
8	8	0	-5.071864	-1.507508	-0.125210
9	6	0	-0.983697	-0.610758	0.344922
10	6	0	-0.330364	0.603043	0.476173

11	6	0	1.088030	0.762265	0.632787	
10	16	0	1 10/17/	2 100200	0 546620	
12	10	0	-1.1241/4	2.100200	0.340030	
13	6	0	1.478185	2.069640	0.782790	
14	6	0	0.410140	3.008574	0.758307	
15	1	0	2 510286	2 274407	0 011210	
15	1	0	2.510500	2.3/449/	0.911219	
16	1	0	-0.356751	-1.495247	0.440763	
17	6	0	0.561640	4.391669	0.881409	
10	6	0	_0 /00210	5 205552	0 916002	
10	8	0	-0.408219	5.5955555	0.040092	
19	1	0	1.584238	4.731384	1.021575	
20	6	0	2.030711	-0.406727	0.614450	
21	1	0	1 754760	1 104475	1 400007	
21	1	0	1./54/02	-1.1244/5	1.400927	
22	1	0	1.927586	-0.936529	-0.346550	
23	6	0	-1.793723	5.145407	0.649971	
24	7	0	2 029705	1 017220	0 407600	
24	/	0	-2.920/95	4.94/320	0.40/090	
25	б	0	-0.068487	6.809508	0.999885	
26	8	0	-0.868638	7.727191	0.970570	
27	0	0	1 252142	7 010520	1 102610	
21	0	0	1.255142	7.019330	1.103010	
28	1	0	1.370686	7.981422	1.272807	
29	8	0	3.353762	0.038014	0.818894	
20	14	0	1 640252	0 750000	0 101020	
30	14	0	4.049253	-0./52233	0.101830	
31	б	0	6.180161	0.008609	0.899886	
32	6	0	6.139076	1.529086	0.684359	
22	6	0	6 107040	0 201710	2 105120	
33	0	U	0.197049	-0.291/19	2.405120	
34	6	0	7.447422	-0.566319	0.251827	
35	1	0	6.116806	1.785309	-0.381323	
36	1	- 0	5 250016	1 076767	1 160605	
30	1	U	5.433340	1.9/0/02	1.100095	
37	1	0	7.032907	1.993614	1.122087	
38	1	0	6.280119	-1.366472	2.601377	
20	1	0	7 060001	0 200005	2 072100	
39	1	U	/.000881	0.200005	2.0/2400	
40	1	0	5.292189	0.078361	2.900407	
41	1	0	8.338037	-0.160276	0.749698	
42	1	0	7 400242	1 650/17	0 226012	
42	1	0	/.409542	-1.03941/	0.330913	
43	1	0	7.513617	-0.302555	-0.809578	
44	б	0	-4.811481	-3.804426	0.326235	
45	6	0	-6 203652	-3 900126	0 478362	
10	6	ő	4.040045	4 000410	0.200502	
40	0	0	-4.04084/	-4.9/8418	0.328/90	
47	6	0	-6.805799	-5.142024	0.641695	
48	1	0	-6.807016	-2.999276	0.482420	
49	6	0	-4.649936	-6.214620	0.493030	
	1	0	4.049990	4 020714	0.10000	
50	1	0	-2.90/180	-4.930/14	0.1/990/	
51	6	0	-6.033675	-6.302092	0.651503	
52	1	0	-7.882261	-5.202966	0.764495	
53	1	0	-4 043798	-7 114556	0 488369	
55	-	0	4.045750	7.114550	0.400505	
54	1	0	-0.506580	-/.2/0625	0.///665	
55	6	0	-5.738198	0.682697	-0.698825	
56	6	0	-6.976677	0.181201	-1.128693	
E7	E	0	E EE0174	2 072072	0 610060	
57	0	0	-5.552174	2.072072	-0.010800	
58	6	0	-7.999477	1.054468	-1.478336	
59	1	0	-7.125878	-0.890625	-1.201596	
60	6	0	-6.578784	2.937235	-0.964065	
61	1	0	_1 617205	2 105171	_0 2/216/	
101	1	0	-4.01/303	2.4051/1	-0.242104	
62	6	0	-7.804739	2.432763	-1.400200	
63	1	0	-8.951175	0.657397	-1.816297	
64	1	0	-6 472909	4 008526	-0.887120	
61	-		0.125000	2.000520	1.650400	
05	1	U T	-8.606144	3.111944	-1.672422	
66	6	0	4.585305	-0.396098	-1.740535	
67	6	0	5.462378	-0.985725	-2,666476	
60			2.1023/0	0 500000	2.0004/0	
08	0	U	3.050117	0.539226	-2.222904	
69	6	0	5.404680	-0.665080	-4.020875	
70	1	0	6,209904	-1.702344	-2.332165	
71		Ň	2 500075	0 060004	2 552105	
11	0	U	3.5928/5	0.802984	-3.5//05/	
7 <i>2</i>	1	0	2.975298	1.028819	-1.528455	
73	6	0	4,466065	0.258327	-4.478414	
74	, Y	- 0	6 000000	_1 100001	_1 710101	
/*	<u> </u>	U	0.092389	-1.135/34	-4./10191	
75	1	0	2.864495	1.588054	-3.927380	
76	1	0	4.419023	0.508668	-5.533867	
77	6	n	4 445071	-2.582722	0 474079	
	0	0	1.1103/1	-2.502/22	1	
78	6	0	4.065244	-2.957813	1.774801	
7 <i>9</i>	6	0	4.626695	-3.600131	-0.473441	
80	6	n	3.888082	-4.295122	2.119402	
01	1	~	2 007004	2 101055	2.520200	
81	1	U	3.89/004	-2.191050	2.529220	
82	6	0	4.455305	-4.941462	-0.133819	
83	1	0	4.890514	-3.348682	-1.497227	
84	~	- 0	4 088520	-5 200406	1 162720	
0-1	1	0	7.000349	4 561055	2 100000	
85	1	U	3.592239	-4.561275	3.129629	
86	1	0	4.601776	-5.712692	-0.883943	
87	1	0	3.952161	-6.334482	1.428821	
2.	-	-			0021	

E(TD-HF/TD-KS) = -2703.26408981

Compound 15: Radical-Cation.

Standard orientation: Coordinates (Angstroms) Center Atomic Atomic Number Number Type Х Y Z _____ _ _ _ _ _ _ _ _ _____ . _ _ _ _ _ _ _____ 1 0 -4.680240 -0.209540 -0.353717 6 2 6 0 -3.356279 0.131598 -0.266250 3 6 0 -2.393995 -0.841930 0.094933 4 6 0 -2.858511 -2.169215 0.270433 5 6 0 -4.191086 -2.459835 0.145926 6 1 -3.079784 0 1.139695 -0.536399 7 -2.166602 -2.955180 0.545356 1 0 -5.064432 -1.476263 8 8 0 -0.136246 9 6 0 -1.003378 -0.581370 0.282807 6 -0.347503 0.635671 0.414654 10 0 11 6 0 1.065155 0.761705 0.568813 12 16 0 -1.114833 2.206936 0.494279 1.468328 13 6 0 2.076800 0.728599 14 6 0 0.414589 2.998283 0.709902 15 1 0 2.503416 2.370763 0.857006 16 1 0 -0.376732 -1.464816 0.371671 17 0 6 0.601681 4.407760 0.849526 18 6 0 -0.329372 5.399743 0.824722 19 1 0 1.633511 4.718008 0.990449 20 6 0 2.009429 -0.406821 0.543133 1.728047 21 1 0 -1.131070 1.321408 -0.425317 22 1 0 1.912010 -0.922993 -1.728913 23 6 0 5.162203 0.640627 24 7 0 -2.858301 4.952658 0.489339 6 25 0 0.035408 6.835253 0.983119 26 8 0 -0.776594 7.728478 0.959325 27 8 0 1.348318 7.013131 1.151929 28 1 0 1.510655 7.969327 1.247656 29 8 0 3.321413 0.051453 0.758341 30 14 0 4.640879 -0.770032 0.108349 31 6 0 6.144875 0.016207 0.929457 6 6.109656 32 0 1.529775 0.668474 0 6.120732 -0.240640 33 6 2.442691 7.429424 34 6 0 -0.576364 0.332510 35 1 0 6.113515 1.755456 -0.404270 0 5.220252 1.991567 36 1 1.111290 37 1 0 6.992969 2.006241 1.114181 38 1 0 6.200908 -1.308888 2.672186 39 1 0 6.970652 0.266671 2.918335 40 1 0 5.202435 0.141604 2.903065 41 1 0 8.305656 -0.153573 0.841447 1 42 0 7.470379 -1.666147 0.452334 1 7.523621 43 0 -0.344874-0.73425144 6 0 -4.824020 -3.767671 0.319492 45 6 -6.200179 -3.851709 0 0.574342 46 6 0 -4.057719 -4.938224 0.232225 6 -5.093951 47 0 -6.796167 0.749662 48 1 0 -6.793812 -2.947215 0.649908 49 6 0 -4.662582 -6.175899 0.405830 50 1 0 -2.998311 -4.888375 0.003498 51 -6.030196 -6.255910 0.666723 6 0 -7.859523 -5.155082 52 1 0 0.954411 53 1 0 -4.067471 -7.079387 0.329848 54 1 0 -6.499370 -7.224829 0.802568 55 6 0 -5.780597 0.692785 -0.692381 6 0.174706 56 0 -6.994191 -1.165714 57 6 0 -5.621063 2.078172 -0.544382 58 6 0 -8.030167 1.037986 -1.498235 59 -7.115525 -0.896343 1 0 -1.286957 6 -6.662920 60 0 2.933010 -0.87789361 1 0 -4.700595 2.492582 -0.144613 62 6 0 -7.866293 2.415493 -1.356566 -8.965503 63 1 0 0.635727 -1.872062

Number	Number	Туре	X	Y	Z	
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	
		Standard	orientation:			
Compou	nd 16: Grou	und State.			\sim	
5(UMU62A)	= -2/03.145	356783 A.	υ.			
	- 2702 140		 TT			
87	1	0	3.846632	-6.300609	1.580389	
86	1	0	4.535793	-5.750580	-0.738923	
85	1	0	3.490521	-4.477920	3.228629	
84	б	0	4.001046	-5.266070	1.289319	
83	1	0	4.866551	-3.408248	-1.411190	
82	6	0	4.389954	-4.957497	-0.011943	
81	1	0	3.838775	-2.129721	2.571015	
80	6	0	3 802553	-4 242942	2 215614	
70	6	0	4.585209	-2.918000	_0 284959	
77	6	0	4.40/0/5	-2.583802	1 020206	
/6	1	0	4.580899	0.31902/	-5.500408	
75	1	0	2.995385	1.466486	-4.039728	
74	1	0	6.209894	-1.315901	-4.652694	
73	6	0	4.594604	0.101059	-4.502935	
72	1	0	3.032678	0.982276	-1.622940	
71	6	0	3.703823	0.743819	-3.646368	
70	1	0	6.252620	-1.811912	-2.248332	
69	б	0	5.508342	-0.818287	-3.990270	
68	6	0	3.725196	0.461367	-2.281859	
67	6	0	5.523704	-1.097553	-2.625706	
66	6	0	4.627967	-0.469252	-1.743989	
65	1	0	-8.678521	3.086590	-1.615982	

Compound 16: Ground State.

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	5.284291	0.427806	0.107187
2	6	0	3.936706	0.325973	0.071430
3	6	0	3.284547	-0.934926	-0.202134
4	6	0	4.198478	-2.051184	-0.320348
5	6	0	5.535988	-1.885508	-0.248561
6	1	0	3.369544	1.215398	0.301262
7	1	0	3.800042	-3.041684	-0.506181
8	8	0	6.088585	-0.650496	-0.073035
9	6	0	1.933977	-1.139129	-0.343967
10	6	0	0.861497	-0.194476	-0.352412
11	6	0	-0.487941	-0.544564	-0.436346
12	16	0	1.034191	1.532919	-0.325271
13	6	0	-1.357867	0.547280	-0.467461
14	6	0	-0.696152	1.779125	-0.413192
15	1	0	1.608612	-2.166310	-0.490497
16	6	0	-1.332998	3.041165	-0.422101
17	6	0	-0.799624	4.302648	-0.365171
18	1	0	-2.418427	3.008366	-0.484981
19	6	о	-2.857477	0.405040	-0.527060
20	6	0	0.603178	4.557978	-0.280325
21	7	0	1.743379	4.760865	-0.212909
22	6	0	-1.641297	5.512591	-0.390584
23	8	0	-1.208725	6.644004	-0.344361
24	8	0	-2.954700	5.237840	-0.471472
25	1	0	-3.423962	6.090722	-0.484249
26	8	0	-3.197523	-0.953141	-0.693495
27	14	0	-4.671345	-1.554852	-0.157432
28	6	0	-4.625847	-3.383058	-0.628326
29	6	0	-4.226830	-3.573025	-2.099748
30	6	0	-3.561371	-4.066797	0.247722
31	6	0	-5.988726	-4.033948	-0.351913
32	1	0	-4.947252	-3.132248	-2.795828
33	1	0	-3.248360	-3.126298	-2.303426
34	1	0	-4.164082	-4.645333	-2.328960
35	1	0	-3.816457	-4.015464	1.311401
36	1	0	-3.480604	-5.126174	-0.030088
37	1	0	-2.573935	-3.609423	0.113138
38	1	0	-5.937355	-5.111606	-0.556449
39	1	0	-6.285205	-3.910435	0.697088

S33

40	1	0	-6.783419	-3.612933	-0.976993	
41	6	0	6.557754	-2.938647	-0.375447	
42	6	0	7.870535	-2.602705	-0.729277	
43	6	0	6.232049	-4.281260	-0.144950	
44	6	0	8.834521	-3.596502	-0.865005	
45	1	0	8.129575	-1.564580	-0.907019	
46	6	0	7.198724	-5.269928	-0.283635	
47	1	0	5.228452	-4.553714	0.165767	
48	6	0	8.502181	-4.931411	-0.645599	
49	1	0	9.847510	-3.325940	-1.145006	
50	1	0	6.936025	-6.306282	-0.097921	
51	1	0	9.256117	-5.705033	-0.750154	
52	6	0	6.043252	1.663877	0.363086	
53	6	0	7.371411	1.594414	0.801123	
54	6	0	5.445911	2.917417	0.174282	
55	6	0	8.082954	2.761038	1.061432	
56	1	0	7.838419	0.626354	0.947152	
57	6	0	6.160661	4.078915	0.439588	
58	1	0	4.429073	2.992479	-0.199322	
59	6	0	7.480165	4.004640	0.884825	
60	1	0	9.110001	2.697231	1.406048	
61	1	0	5.687653	5.043752	0.288005	
62	1	0	8.037448	4.913493	1.087954	
63	1	0	-0.823173	-1.573710	-0.478926	
64	1	0	-3.264322	0.995913	-1.358582	
65	1	0	-3.288474	0.809298	0.402375	
66	6	0	-4.694040	-1.333841	1.707077	
67	6	0	-5.889196	-1.320212	2.441401	
68	6	0	-3.484296	-1.237125	2.412706	
69	6	0	-5.879023	-1.221350	3.831484	
70	1	0	-6.843738	-1.377682	1.921085	
71	6	0	-3.467325	-1.130648	3.801678	
72	1	0	-2.542052	-1.242509	1.865529	
73	6	0	-4.666621	-1.125342	4.512276	
74	1	0	-6.814558	-1.213688	4.382542	
75	1	0	-2.521709	-1.051188	4.329448	
76	1	0	-4.656397	-1.043363	5.594956	
77	6	0	-6.084910	-0.547661	-0.883574	
78	6	0	-6.794996	-0.921073	-2.035503	
7 <i>9</i>	6	0	-6.423407	0.676303	-0.280529	
80	6	0	-7.799288	-0.111915	-2.562654	
81	1	0	-6.571717	-1.859432	-2.534653	
82	6	0	-7.421226	1.494166	-0.805730	
83	1	0	-5.907651	0.993770	0.623830	
84	6	0	-8.112510	1.098950	-1.948997	
85	1	0	-8.336845	-0.427034	-3.451730	
86	1	0	-7.662235	2.435120	-0.320642	

E(RM062X) = -2703.33896712 A.U.

Compound 16: First Excited State.

		Standard	orientation:			
Center	Atomic	Atomic	Coord	dinates (Angs	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	5.282313	0.409001	0.220923	
2	6	0	3.925573	0.267248	0.196362	
3	6	0	3.325920	-0.984220	-0.117837	
4	6	0	4.225869	-2.072918	-0.310418	
5	6	0	5.576127	-1.894163	-0.244172	
6	1	0	3.328137	1.123601	0.474081	
7	1	0	3.833405	-3.055525	-0.543023	
8	8	0	6.093138	-0.655839	-0.011779	
9	6	0	1.926762	-1.210394	-0.240231	
10	6	0	0.887654	-0.295902	-0.318258	
11	6	0	-0.492240	-0.643953	-0.408367	
12	16	0	1.066908	1.458407	-0.393468	
13	6	0	-1.343768	0.425810	-0.517443	
14	6	0	-0.670682	1.689505	-0.519506	
15	1	0	1.623122	-2.253036	-0.312955	

16	6	0	-1.298749	2,933307	-0.605734	
17	6	0	-0 736228	4 212280	_0 596141	
10	1	0	-0.750220	4.213209	-0.590141	
18	1	0	-2.381839	2.910956	-0.691448	
19	6	0	-2.838417	0.312890	-0.620010	
20	6	0	0.657046	4.464412	-0.473696	
21	7	0	1.795878	4.680910	-0.371590	
	,	ő	1 555261	1.000J10	0.572550	
22	0	0	-1.555361	5.4194/1	-0./03046	
23	8	0	-1.125275	6.559009	-0.699051	
24	8	0	-2.876042	5.155137	-0.810489	
25	1	0	-2 225086	6 015532	_0 875322	
25	1	0	-3.325900	0.015552	-0.075522	
26	8	0	-3.209949	-1.047614	-0.626451	
27	14	0	-4.701216	-1.553095	-0.044465	
28	6	0	-4.666554	-3.430141	-0.255113	
20	6	0	-4 232974	-2 826272	-1 674810	
29	6	0	-4.2323/4	-5.020575	-1.074010	
30	0	0	-3.032328	-3.994466	0./34892	
31	6	0	-6.043048	-4.026129	0.072991	
32	1	0	-4.929409	-3.479308	-2.444450	
33	1	0	-3 243720	-3 421732	-1 911934	
55	1	0	-3.243/20	-3.421/32	-1.911934	
34	1	0	-4.178764	-4.920694	-1.751749	
35	1	0	-3.913056	-3.793773	1.774143	
36	1	0	-3.557377	-5.082825	0.608775	
27	1	0	-2 626465	-2 569260	0 564216	
37	1	0	-2.030405	-3.508300	0.504310	
38	1	0	-5.997719	-5.122266	0.024646	
39	1	0	-6.365501	-3.753219	1.085465	
40	1	0	-6.816709	-3.692905	-0.626972	
11	-	ő	6 605242	2 0150/1	0 422070	
41	0	0	0.005242	-2.915841	-0.4339/8	
42	6	0	7.938408	-2.538251	-0.658432	
43	6	0	6.278522	-4.281063	-0.394398	
44	6	0	8,917022	-3.506495	-0.849657	
45	1	ő	0.000000	1 406860	0.0015057	
45	1	0	8.200238	-1.486/60	-0.696004	
46	6	0	7.261507	-5.241571	-0.587299	
47	1	0	5.260652	-4.596783	-0.190902	
48	6	Ô	8 583832	-4 859211	-0 816825	
10	1	0	0.000002	2.000210	1.000023	
49	1	0	9.943332	-3.202310	-1.02//30	
50	1	0	6.996827	-6.293173	-0.549765	
51	1	0	9.350140	-5.613167	-0.964954	
52	6	0	6 007490	1 644913	0 506086	
52	0	0	0.00/490	1.044913	0.500080	
53	6	0	7.364705	1.602561	0.860868	
54	6	0	5.356682	2.887665	0.424610	
55	6	0	8.049067	2.778488	1.143621	
56	1	0	7 072/70	0 646621	0 020010	
50	1	0	1.8/24/3	0.040021	0.920949	
57	6	0	6.047643	4.056668	0.711018	
58	1	0	4.317918	2.950978	0.113875	
59	6	0	7,394565	4,007369	1.072671	
60	7	0	0 006516	2 724745	1 422006	
00	1	0	9.090510	2./34/45	1.423000	
61	1	0	5.534219	5.010099	0.640477	
62	1	0	7.932238	4.923887	1.293040	
63	1	0	-0.827063	-1.675041	-0.392823	
61	-	0	2 102208	0 002172	1 520022	
04	1	U	-3.193398	0.0031/3	-1.536032	
65	1	0	-3.296921	0.847587	0.227933	
66	6	0	-4.761408	-1.075695	1.770438	
67	6	0	-5,970803	-0.951933	2.470239	
60	6		2 564082	0 002022	2 401667	
00	0	0	-3.304982	-0.092032	2.40100/	
69	6	0	-5.987182	-0.664263	3.833878	
70	1	0	-6.915260	-1.071791	1.942167	
71	6	0	-3.574487	-0.597657	3.843082	
70	1		2 612511	0.070107	1 050440	
12	1	0	-2.012511	-0.9/912/	1.959440	
73	6	0	-4.787665	-0.486154	4.520801	
74	1	0	-6.933378	-0.573667	4.358782	
75	1	0	-2.638821	-0.454222	4,375067	
75	-	č	4 700145	0 057200	E 500015	
/0	1	U	-4./98145	-0.25/386	5.582217	
77	6	0	-6.088119	-0.648165	-0.937261	
78	6	0	-6.773627	-1.175892	-2.042640	
70	E Y	0	-6 427620	0 651417	-0 522/67	
/ 3	6	0	-0.12/020	0.05141/	-0.52240/	
80	6	U	-7.755326	-0.442382	-2.705431	
81	1	0	-6.547837	-2.177085	-2.397698	
82	6	0	-7,403033	1.393829	-1,184345	
82	1	- 0	_5 020124	1 000260	0 240451	
05	1	0	-5.350154	1.030209	0.540431	
84	6	0	-8.069949	0.845665	-2.277919	
85	1	0	-8.273824	-0.876429	-3.554858	
86	1	0	-7.645395	2.396034	-0.844226	
07		0	0 0 2 2 0 7 0	1 410200	0.011220	
0/	Ţ	U	-0.0339/9	1.419320	-2.193/19	

E(TD-HF/TD-KS) = -2703.26276188

Compound 16: Radical-Cation.

		Standard	orientation:		
Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	6	0	5.329078	0.405998	0.207354
2	6	0	3.90324/ 2 246578	-0 945772	-0 060415
4	6	0	4 204065	-2 058860	-0.246372
5	6	0	5.563929	-1.901975	-0.208743
6	1	0	3.393785	1.179561	0.470161
7	1	0	3.787109	-3.035584	-0.455845
8	8	0	6.087880	-0.679523	-0.007771
9	6	0	1.939181	-1.158160	-0.148537
10	6	0	0.906447	-0.229033	-0.211102
11	6	0	-0.461378	-0.591893	-0.279425
12	16	0	1.076423	1.507687	-0.281820
13	6	0	-1.322534	0.486086	-0.3/0692
14	1	0	-0.044340	_2 195882	-0.302403
16	6	0	-1.297518	2.988316	-0.464733
17	6	0	-0.753355	4.237258	-0.469952
18	1	0	-2.381708	2.951015	-0.530146
19	6	0	-2.821293	0.346697	-0.439948
20	б	0	0.652889	4.488979	-0.388842
21	7	0	1.793785	4.679953	-0.322496
22	6	0	-1.591715	5.465017	-0.559913
23	8	0	-1.129781	6.580542	-0.566033
24	8	0	-2.896817	5.188889	-0.632206
25	1	0	-3.378268	6.034116	-0.691435
20 27	0 1 A	0	-4 692872	-1.556931	-0.402097
28	6	0	-4.600488	-3.427964	-0.285130
29	6	0	-4.021578	-3.797269	-1.659538
30	6	0	-3.660130	-3.988296	0.796544
31	6	0	-5.992991	-4.049237	-0.102667
32	1	0	-4.643969	-3.450601	-2.490252
33	1	0	-3.020255	-3.374710	-1.792406
34	1	0	-3.941667	-4.889312	-1.743694
35	1	0	-4.046012	-3.806119	1.804984
36	1	0	-3.554886	-5.073442	0.665905
37	1	0	-2.659356	-3.544816	0.730625
38	1	0	-5.924559	-5.143552	-0.160040
39 40	1	0	-6 698501	-3.795519	_0 872121
41	5	0	6 573385	-2 944376	-0.397336
42	6	ő	7.886316	-2.593906	-0.742833
43	6	ő	6.231577	-4.293996	-0.233394
44	6	Ō	8.839935	-3.586061	-0.930908
45	1	o	8.151351	-1.550926	-0.877734
46	б	0	7.192158	-5.278879	-0.420672
47	1	0	5.227669	-4.577005	0.065386
48	6	О	8.495457	-4.927552	-0.771291
49	1	0	9.852817	-3.311916	-1.205439
50	1	0	6.925338	-6.321342	-0.285293
51	1	0	9.243450	-5.699964	-0.917159
52	6	0	6.099652	1.626499	0.446387
53	0	0	/.441119	1.542/8/	0.844883
55	6	0	5.4905/1 8 162822	2.001419	1 084894
56	1	0	7.906458	0.572539	0.981366
57	6	0	6.227532	4.036957	0.520143
58	1	0	4.469766	2.963948	-0.063742
59	6	0	7.559329	3.950635	0.924822
60	1	0	9.199131	2.636919	1.401101
61	1	0	5.758414	5.005281	0.383368
62	1	0	8.127566	4.855827	1.112253
63	1	0	-0.792973	-1.623119	-0.261680
64	1	0	-3.204744	0.847753	-1.339707
65	1	0	-3.267058	0.849120	0.432923
66	6	U	-4.955368	-1.097749	1.744864
0/ 62	0	0	-0.230034 -3 848070	-0.90415/ -0.926502	2.300035 2 502620
69	6	0	-6.408350	-0.686781	3.654944
	•	•			

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87	1 6 1 6 1 1 1 6 6 6 1 6 1 6 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-7.114407 -4.012590 -2.842269 -5.295182 -7.408108 -3.143875 -5.426679 -5.973172 -6.543902 -6.347516 -7.449056 -6.288864 -7.246416 -5.940739 -7.799904 -7.880422 -7.518930 -8.504969	$\begin{array}{c} -1.068995\\ -0.651638\\ -1.035308\\ -0.529040\\ -0.588729\\ -0.525498\\ -0.308380\\ -0.648110\\ -1.172080\\ 0.652729\\ -0.432848\\ -2.174400\\ 1.400357\\ 1.087879\\ 0.856194\\ -0.863654\\ 2.402789\\ 1.433579\end{array}$	1.664897 3.946225 2.185882 4.478524 4.066794 4.585248 5.533464 -1.090134 -2.260603 -0.709855 -3.019034 -2.591762 -1.466883 0.201282 -2.623952 -3.917315 -1.151325 -3.214090	R
E(UM062X) =	-2703.1475388	8 A.	U.			

E(UM062X) =	-2703.14753888	A.U.
= (,		

S37