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A direct synthetic method to produce heteronuclear and heteroligand clamshell-type binuclear phthalo-
cyanines via a nucleophilic coupling reaction between A3B-type monophthalocyanines is developed with
the target compounds demonstrating the possibility to form sandwich-type heterocomplexes for the first
time.
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Binuclear phthalocyanines have become the subject of intensive
research owing to their unique spectral and electrochemical
properties resulting from a multicircuit-conjugated p-electronic
system.1–3 Significant attention has been paid to binuclear phthal-
ocyanines bridged through rigid spacers (clamshell-type). Such
bridges provide a specific geometry resulting in the macrocycles
having a cofacial conformation in solution.4 Clamshell-type metall-
ophthalocyanines are both unique catalysts of biochemical
processes1,5 and components of ion-selective electrodes6 for recog-
nition of bifunctional organic molecules. Varying the nature of the
complexing metals, as well as of the peripheral substituents,
allows the selectivity of such recognition to be increased and wid-
ens appreciably the range of molecules under investigation. In this
connection, the development of direct approaches to heteroligand
and heteronuclear clamshell-type phthalocyanines is an important
task.

Recently, we developed a selective method for preparing homo-
nuclear clamshell-type phthalocyanines.7 We now describe a new
approach to heteroligand and heteronuclear clamshell-type phthal-
ocyanines based on nucleophilic coupling of functionalized unsym-
metrically substituted monophthalocyanines.

TMS-protection of phthalogen 18 followed by cyclization of the
isolated TMS-derivative with 4-tert-butylphthalonitrile (2)9,10 in
the presence of CH3OLi in n-hexanol gave unsymmetrically substi-
tuted monophthalocyanine 3a11 after removal of the TMS-group
using AcOH. Analogues have been described earlier, for example,
zinc complex 3b,12 but the yields were poor. Reaction of phthalo-
cyanines 3a, b with TsCl gave the corresponding tosylates 4a, b13

(Scheme 1).

4a,b
a:R1=H (tBu), R2=tBu (H), M=2H, X=Ts (88%)

b:R1=R2=OPrn, M=Zn, X=Ts (79%)

Scheme 1. The synthesis of starting tosyl derivatives 4a, b. Reagents: (i)
[(CH3)3Si]2NH/THF, (CH3)3SiCl, 30 min; (ii) 4-tert-butylphthalonitrile (2), CH3OLi/
n-C6H13OH, 4 h; (iii), AcOH/H2O; (iv) NaH/DMF, TsCl, 8 h.
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i ii

N

N
N

N

N

N

N

N

O

Zn

R
1

R2
R

1

R2

R1

R2

tBu

N

N
N

N

N

N

N

N

t Bu

O

7a-d
a: R1=tBu (H), R2= H (tBu), M=Cu (99%)
b: R1=tBu (H), R2= H (tBu), M=Ni (95%)
c: R1=R2=nBu, M=Zn (98%)
d: R1=R2=OPrn, M=Zn (99%)

M

tBu

Scheme 2. The nucleophilic coupling reaction and synthesis of heteronuclear and heteroligand binuclear clamshell-type phthalocyanines 6a–c and 7a–d. Reagents: (i) K2CO3/
DMF (20–48 h, 25–80 �C) or NaH/DMF (15–20 min, 60–80 �C); (ii) M(OAc)n�mH2O, DBU/1,2,4-trichlorobenzene, 15 min.
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Tosyl derivatives 4a, b as well as 2-hydroxyphthalo-cyanines
5a–c14 were used to prepare the clamshell-type binuclear phthalo-
cyanines 6–8.

We found that the nucleophilic coupling reaction was sensitive
to the nature of the base and the temperature (Scheme 2). Sodium
tBu

N

N
N

N

N

N

N

N

O

tButBu

tBu

N

N
N

N

N

N

N

N

t
Bu

tBu

O

Zn

tBu

N

N
N

N

N

N

N

N

O

tBu tBu

t Bu

N

N
N

N

N

N

N

N

tBu

tBu

O

Zn

Lu
i

8

6a

Scheme 3. Synthesis of sandwich-clamshell tetraphthalocyanine 8. Reagents: (i)
Lu(acac)3�3H2O, MeOLi/n-hexadecanol.
hydride was found to be a good base for producing target com-
pounds 6a–c15 in yields of 51–68% in comparison with milder
K2CO3. As a result the reaction time was reduced. However,
increasing the amount of strong base led to decomposition of the
phthalocyanine compounds which was more pronounced upon
increasing the reaction temperature. Complexes 7a–d16 were
obtained by metal insertion reactions of 6a–c with Zn, Cu, and Ni
acetates.

Furthermore, we have found phthalocyanines 6 to be suitable
building-blocks for producing more complicated structures. Start-
ing from 6a, we obtained polynuclear phthalocyanine 8 consisting
of two zinc(II) monophthalocyanine and one lutetium(III) bispht-
halocyanine subunits (Scheme 3). This novel complex represents
a sandwich-clamshell-type phthalocyanine.17

The structures of new mono- (3a, 4a, b) and binuclear (6, 7)
phthalocyanines as well as of tetraphthalocyanine 8 were con-
firmed by mass spectrometry and 1H NMR-spectroscopy data.
The mass spectra (MALDI-TOF, matrix—DCTB�) revealed molecular
ion peaks [M]+, [M+nH]+ or [M�nH]+ (n = 1–3) as well as signals
characteristic of phthalocyanine fragment ions, in particular, phen-
oxide- or benzyl-type. It is important to note that changing the ma-
trix to DHB§ intensifies the fragmentation process and only fragment
ion peaks were detected. All the ion peaks observed in the mass
spectra have the characteristic isotope pattern corresponding to nat-
ural isotope distribution. The 1H NMR spectra showed all the typical
signals, but in the case of tert-butyl-substituted phthalocyanines, the
asymmetry results in a higher amount of regioisomers and broaden-
ing of the aromatic signals. Variation of the solvent as well as the
concentration and temperature did not affect the resolution of the
spectra.

Unsymmetrical binuclear phthalocyanines 6–7 as well as
tetraphthalocyanine 8 were also characterized from their UV–vis
spectra. These spectra differed strongly from the spectra of the cor-
responding monophthalocyanines. Taking into account previous
physico-chemical investigations of related compounds4 we envis-
age that the binuclear phthalocyanines synthesized in the present
investigation have ‘partially-opened’ conformations in solution.
� DCTB—2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]-malonitrile.
§ DHB—2,5-dihydroxybenzoic acid.
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The UV–vis spectrum of 8 exhibits a split Soret band in the
region 320–350 nm and a weaker absorption at 466 nm both
typical of p-radical bisphthalocyanine species. The Q-band at
675 nm, showing superimposition of the mono- and bisphthalocy-
anine absorptions is widened and has a poorly resolved vibrational
satellite as evidence of particular interactions between macrocy-
cles, which is a subject for more detailed research.

Thus, we have developed a direct synthetic method to produce
heteroligand and heteronuclear clamshell-type phthalocyanines for
scientific investigations. A new tetraphthalocyanine di-Zn-Lu
heteronuclear complex has been synthesized for the first time.
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