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Abstract: An effective synthesis of structurally di-
verse pyrroline derivatives has been accomplished by
a gold(I)-catalyzed tandem 1,3-acyloxy rearrange-
ment/intramolecular azacylization reaction of g-
amino-substituted propargylic esters in good to ex-
cellent chemical yields (52–98%). The reaction pro-
ceeds under extremely mild conditions and has also
demonstrated its potential in a concise formal syn-
thesis

of (�)-aphanorphine with a catalyst loading as low
as 0.5 mol% to provide the key intermediate 5-(4-
methoxybenzyl)-1-tosyl-2,5-dihydro-1H-pyrrol-3-yl
pivalate on a gram scale.

Keywords: 1,3-acyloxy rearrangement; azacylization;
gold(I)-catalyzed reaction; propargylic esters; pyrro-
lines

Introduction

Nitrogen-containing heterocycles, especially of the
pyrroline and pyrrolidine types, are particularly ubiq-
uitous and essential structural elements for pharma-
ceutical agents and biologically active natural alka-
loids, such as preussin,[1] codonopsinine,[2] aphanor-
phine,[3] and pretomaymycin[4] (Figure 1). Consequent-
ly, the development of efficient methodologies for the
synthesis of structurally diverse pyrrolines and pyrro-

lidines is of considerable importance. Various meth-
ods have been developed, especially those based on
transition metal catalysis including Pd, Ru, Rh, Fe,
Cu and so on.[5] At the end of the 20th century,
Fukuda, Utimoto and Teles et al. reported that gold
salts could efficiently catalyze the addition reactions
of O- and N-nucleophiles to alkenes or alkynes due
to their incredible and unique reactivity for the elec-
trophilic activation of carbon-carbon multiple
bonds.[6] Ever since, the applications of gold com-
plexes as p-acid catalysts for organic transformations
have increased dramatically.[7]

As well, the metal, especially gold- and platinum-
catalyzed isomerization of propargylic esters has
become a powerful tool to obtain valuable functional-
ized synthons for organic chemistry. The isomeriza-
tion of propargylic esters proceeds via two routes:
1,2-acyloxy migration and 1,3-acyloxy rearrangement,
which differ mainly in the initial carbonyl group cycli-
zation to the activated carbon-carbon triple bond in
either the 5-exo-dig or 6-endo-dig model[8]

(Scheme 1). Recently, the Diver group developed an
elegant gold-promoted heterocyclization of internal
alkynes for the generation of dehydropyrrolidines or
dehydropiperidine. However, the ratio of the products

Figure 1. Natural products with a substituted pyrroline subu-
nit.
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depends on the alkyne substrates.[9] To the best of our
knowledge, a cascade transformation between the in
situ formed metal-allene complex intermediates and
an internal nucleophilic species would be synthetically
valuable, as it would lead to an overall reductive sub-
stitution process of the starting propargylic esters. In
this manuscript, we describe our efforts to expand the
scope of this reaction via gold-catalyzed tandem 1,3-
acyloxy rearrangement/intramolecular azacylization,
which provides an efficient synthesis of 2,5-disubsti-
tuted pyrrolines from g-amino-substituted propargylic
esters. As well, its potential was also demonstrated in
a concise formal synthesis of (�)-aphanorphine.

Results and Discussion

Initially, propargylic ester 1a was selected as a model
substrate to investigate this proposed tandem trans-
formation. The isomerization of g-amino-substituted
propargylic ester 1a was examined under a variety of
conditions (Table 1). Pleasingly, the reaction proceed-
ed smoothly in the presence of AuCl3·2 H2O
(10 mol%) in dichloromethane (DCM) at room tem-
perature for 0.5 h, leading to 2a in 61% yield
(Table 1, entry 1), while AuBr3 (10 mol%) or
AuPPh3Cl (10 mol%) (entries 2 and 3) proved to be
ineffective. To our delight, the yield was readily in-
creased to 96% in the presence of 5 mol% AuPPh3Cl/
AgSbF6 (entry 4). Likewise, employing gold(I) com-
plexes with alternative counter ions such as SO3CF3

¢

or BF4
¢ could also provide the desired product with

slightly lower yields (entries 5 and 6). Using
AuPPh3Cl/AgSbF6 as the catalyst system, the reaction
also proceeded well in tetrahydrofuran (THF) or 1,2-
dichloroethane (DCE) as solvent (entries 7 and 8).
When the reaction was carried out in CH3NO2, tolu-
ene, wet DCM or CH3CN, no reaction was observed
(entries 9–12). In addition to Au catalysts, PtCl2 in tol-
uene was also examined, which was ineffective for
this transformation (entry 13).

Having established the optimal reaction conditions,
a series of bifunctional propargylic esters was then
easily prepared in a modular way either from the cor-
responding imines in 3 steps or from the correspond-
ing propargylic alcohols in 6 steps (Scheme 2). The
details of their preparation and characterization data
can be found in the Supporting Information.

Scheme 1. Activation of the carbon-carbon multiple bond.

Table 1. Optimization of the reaction conditions.[a]

[a] Reaction conditions: room temperature, freshly distilled
solvent, in the air.

[b] Isolated yields.
[c] The remaining 1a was recovered.
[d] DCE= 1,2-dichloroethane.
[e] Ts= p-methylbenzenesulfonyl, Piv= pivaloyl.
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With the propargylic esters in hand, we then inves-
tigated the scope of this reaction. Firstly, the sub-
strates 1b and 1c with the different N-protecting
group or the ester group were treated with 5 mol%
AuPPh3Cl/AgSbF6 at room temperature in dichloro-

methane and were also found to be suitable for this
gold-catalyzed reaction, but needing much more time
and the yields were slightly lower (Table 2, entries 1
and 2), which also demonstrated that the substrate
with the p-methylbenzenesulfonyl group as the N-pro-

tecting group and pivaloyl as the ester was the most
suitable one for this gold-catalyzed tandem reaction.

The generality of this gold-catalyzed cyclization re-
action was then examined. As revealed in Table 2, the
reaction of the g-amino-substituted propargylic esters

Scheme 2. Synthesis of the key substrate for the starting materials.

Table 2. Gold(I)-catalyzed synthesis of substituted pyro-
lines.[a]

Table 2. (Continued)

[a] Reaction conditions: catalyst (5 mol%), room tempera-
ture, dry dichloromethane, in the air.

[b] Yield of isolated product.
[c] Ts= p-methylbenzenesulfonyl, Bz=benzoyl, Piv= pivalo-

yl.
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with another alkyl or aryl substituent at the g-position
proceeded in the presense of AuPPh3Cl (5 mol%) and
AgSbF6 (5 mol%) in dichloromethane (DCM) at
room temperature for 0.5 h, leading to the corre-
sponding pyrolines in good yields ranging from 78 to
98%. During these runs, the substrates with a strong
electron-donating group (OMe) at the para position
of the phenyl ring required a longer reaction time
(Table 2, entry 6 vs. entries 4 and 5) probably due to
electronic activation of the double bond of the allene

which was not beneficial for the formation of pyrro-
lines.

For substrates substituted in the a- or g-position,
the transformation was expected to be more favorable
because of a Thorpe–Ingold effect.[10] To our delight,
all the gold-catalyzed cyclization reactions led to the
corresponding 2,5-disubstituted pyrrolines (entries 7–
9) in 75–84% yield and the relative configuration of
2h was confirmed by X-ray crystallographic analy-
sis.[11] Especially, the cyclization of substrate 1j pro-
vides a facile construction of the essential structural
element, the azaspiro[4,5]decane ring system, which
could be found in many kinds of natural alkaloids.
Also, a g-amino-substituted propargylic ester with
a protected hydroxy group, 1k, was tolerated under
our reaction conditions and the corresponding pyrro-
line 2k was obtained in high 98% yield, which could
be further converted to the bicyclic amine and used
for the synthesis of biologically active alkaloids, such
as castanospermine[12] and serratinine[13] (Figure 1).
The easily modifiable functional groups (Br and
OPiv) on the alkyl chain are well-tolerated and the
desired products 2l and 2m (entries 11 and 12) are ob-
tained in attractive yields, demonstrating the mild
nature of the catalytic conditions.

Our present understanding of the mechanism of
this gold-catalyzed cycloisomerization reaction of g-

Scheme 3. Proposed mechanism for gold-catalyzed pyrroline
formation.

Scheme 4. The favorable route for 2,5-disubstituted pyrrolines (2h).
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amino-substituted propargylic esters is shown in
Scheme 3.[14] Firstly, in the presence of AgSbF6,
gold(I) coordinated to the p-system of the alkyne and
initiated the 3,3-rearrangement of the pivaloate group
to form p-complex C. Subsequently, an intramolecular
SN2-type reaction occurred to give the cyclic vinylgold
intermediate D which underwent an elimination reac-
tion to produce the pyrroline product and regenerate
the catalytic gold(I) species.[15] During this course, p-
complex C was produced from isomerization of the
alkyne, and the conformation of the allene intermedi-
ate C could be (R)- or (S)- which depended on the
difference of its substituents.

The observed 2h as the cis-product could be ex-
plained by an envelope-like transition state in which
the p–p interaction between the aryl substituent and
the p-methylbenzenesulfonyl group to lead the gold
coordinated to the upside of the allene intermediate,
and the aryl groupÏs preference for the equatorial po-
sition rather than the axial one. Next, an intramolecu-
lar SN2-type reaction takes place to produce the pyr-
roline as the cis-product. (Scheme 4)

In light of this novel gold-catalyzed cyclization, we
became interested in exploring its application to syn-
thesize structurally diverse natural alkaloids. (�)-
Aphanorphine (Figure 1), an alkaloid with potential
biological activity and a unique tricyclic 3-benzaze-
pine framework which has attracted considerable at-

tention and a number of syntheses have been report-
ed,[16] was chosen as our target molecule.

Our synthesis commenced from the addition reac-
tion of 4-methoxyphenylacetaldehyde 3 and Ts-pro-
tected propargylic amine 4.[17] The obtained secondary
alcohol was subsequently protected as pivolate 5, and
the overall yield of the two steps was 59%. As we ex-
pected, the gold-catalyzed tandem reaction of propar-
gylic amine 5 proceeded smoothly in the presence of
AuPPh3Cl and AgSbF6 as the catalyst system in di-
chloromethane at ambient temperature to give pyrro-
line 6 in 95% yield. It was worthy to note here that
this step could be executed on a gram-scale together
with the catalyst loading being reduced to 0.5 mol%.
Subsequently hydrolysis of the pivaloyl followed by
a nucleophilic methylation produced the tertiary alco-
hol 7 in 77% yield. Then an AlCl3-promoted intramo-
lecular Friedel–Crafts alkylative cyclization of alcohol
7 was effected to furnish the desired tricyclic com-
pound 8 as colorless needles,[18] for which the relative
structure was confirmed by X-ray crystallographic
analysis (Figure 2). The synthesis of (�)-aphanor-
phine could be accomplished from the tricyclic pre-
cursor 8 in three additional steps (desulfurization, N-
methylation, and O-demethylation), which has been
reported by Ogasawara and co-workers[19] (Scheme 5).

Conclusions

In conclusion, we have accomplished an effective syn-
thesis of structurally diverse pyrroline derivatives via
a novel gold(I)-catalyzed tandem 1,3-acyloxy rear-
rangement/intramolecular azacylization reaction of g-
amino-substituted propargylic esters. Our reaction
proceeds under mild conditions, features low catalyst
loading, short reaction time, and its potential in or-
ganic synthesis has also been demonstrated in the
concise formal synthesis of (�)-aphanorphine. A fur-
ther modification of this new tandem reaction and itsFigure 2. X-ray single crystal structure of compound 8.

Scheme 5. Formal synthesis of (�)-aphanorphine.
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applications to the syntheses of other bioactive natu-
ral products containing pyrroline motifs is currently
underway in our lab and will be reported in due
course.

Experimental Section

Typical Procedure for the Cyclization Reaction

To a solution of 1a (156 mg, 0.48 mmol) and AuClPPh3

(12 mg, 5 mol%) in DCM (10 mL), was added AgSbF6

(8 mg, 5 mol%), the mixture was stirred at room tempera-
ture for 30 min until the starting material was completely
consumed. The mixture was concentrated under reduced
pressure. Purification of the residue by flash chromatogra-
phy on silica gel (petrol ether/ethyl acetate 3:1) gave 2a as
a white crystalline solid; yield: 150 mg (96%); mp 81–82 88C.
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