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Rotaxanes[1] are mechanically interlocked molecules com-
posed of a dumbbell-shaped component around which one or
more macrocycles are trapped. In some cases, the ability to
move—in a controlled fashion—these intimate noncovalently
linked components with respect to one another, has led to the
creation of molecular switches[2] which have had a significant
impact on the emerging field of molecular computing.[3]

Although the majority of rotaxane syntheses to date have
relied upon kinetic control,[4] that is, employing an irreversible
final reaction step, a resurgence in the popularity of dynamic
covalent chemistry[5] has spurred an interest in pursuing
rotaxane formation under thermodynamic control.[6] Rever-
sible reactions[7] utilized for this purpose include the forma-
tion (and subsequent associated cleavage) of functional
groups such as imines[8] and disulfides.[9] Olefin metathesis,
mediated by functional-group-tolerant ruthenium alkylidene
catalysts,[10] has been used in the thermodynamically con-
trolled synthesis of a [2]catenane,[8d,11] and, more recently, has
been applied[12] to the anion-templated synthesis of a
[2]rotaxane. One of the most established[13] supramolecular
synthons employed in the construction of rotaxanes exploits
the mutual recognition exhibited by secondary dialkylammo-
nium (R2NH2

+) ions and suitably sized crown ethers,[14] most
notably dibenzo[24]crown-8 (DB24C8). Here, we combine
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the reliability of this supramolecular synthon with the
versatile reversible ring-closing-metathesis (RCM) reaction
to form rotaxanes under thermodynamic control.

In an effort to mimic the significant R2NH2
+ ion binding

capability of DB24C8, our first target macrocycle was
designed such that it retained many of the desirable features
of the original crown ether. Pentaethylene glycol (3) was
bisalkylated with 5-bromo-1-pentene (5) to afford (Scheme 1)

the terminal diolefin 6 in moderate yield. Treatment of 6 with
(PCy3)2(Cl)2Ru¼CHPh (1),[15] under dilute conditions, gave
the 24-membered olefinic crown ether analogue 8 as a
mixture of E and Z isomers. The constitution of 8 is strikingly
similar in nature to the macrocyclic skeleton of DB24C8,
thereby satisfying our primary design criterion outlined

above. Indeed, subsequent 1H NMR spectroscopic investiga-
tions revealed that 8 does interact with dibenzylammonium
hexafluorophosphate (DBA·PF6) to form a 1:1 complex with
a threaded geometry, that is, a pseudorotaxane. The associ-
ation constant (Ka)

[16] for this process is 100m�1 (CD3CN,
295 K), which is slightly lower than the value of 320m�1

reported[17] for DB24C8 under similar conditions. The major
contributing factor[18] to this reduced binding affinity arises
presumably from the “loss” of two ether oxygen atoms—on
going from DB24C8 to 8—thereby decreasing the hydrogen-
bonding potential between the two components.

Encouraged by these findings, the RCM reaction of the
terminal diolefin 6 was repeated (Scheme 1) in the presence
of a dumbbell-shaped template containing an ammonium ion,
namely bis(3,5-dimethoxybenzyl)ammonium hexafluoro-
phosphate (10·PF6),

[19] to afford, in 73% yield, the corre-
sponding [2]rotaxane 11·PF6 as a mixture of E and Z isomers.
The significant templating effect of the R2NH2

+ ion can be
appreciated by comparing this reaction with the untemplated
macrocyclization of 6 to form 8. Whereas the untemplated
reaction is carried out at about 5 mm (to avoid oligo/polymer-
ization) and yields only 48% of the desired macrocycle, the
templated reacton can be performed at much higher concen-
trations (ca. 100 mm in this case) to give 73% of the ring-
closed product, namely the rotaxane. Subsequent character-
ization by 1H and 13C NMR spectroscopy, mass spectrometry
(electrospray), and single-crystal X-ray analysis[20] (Figure 1)

confirmed unambiguously the interlocked nature of 11·PF6.
The cluster of peaks in the carbon–carbon double bond region
of the final difference map, as well as displacement ellipsoids,
some anomalous bond lengths, and the high R and GOF val-
ues indicate a degree of conformational disorder of this
hydrocarbon loop and suggest that a mixture of E and
Z isomers are present. No attempt was made to model this
disorder. Subsequent hydrogenation (H2/Pd/C) of 11·PF6 gave
the saturated rotaxane 13·PF6 (see Supporting Information),

Scheme 1. Synthesis of the olefin macrocycles 8 and 9, via their corre-
sponding diolefin precursors 6 and 7, respectively. Rotaxane synthesis
can be achieved through either a ring-closing-metathesis approach, by
utilizing 6 and 7 as starting materials (lower left pathway), or by a
magic ring synthesis in which the preformed macrocycles 8 and 9 are
employed (lower right pathway).

Figure 1. Ball-and-stick representation of the solid-state structure of
the [2]rotaxane 11·PF6. Hydrogen-bonding geometries [N

+···O],
[H···O] [C], [N+�H···O] [8]: a) 2.86, 2.04, 156; b) 2.87, 2.08, 142; c) 3.03,
2.27, 137; [C···O], [H···O] [C], [C�H···O] [8]: d) 3.35, 2.89, 109; e) 3.41,
2.48, 161; f) 3.34, 2.88, 110; g) 3.53, 2.66, 152.
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in which the two olefin isomers collapsed into a single species,
thereby facilitating the spectroscopic analysis.

Derivatization of the crown ether, to allow for the
construction of extended supramolecular arrays,[21] is most
easily achieved through a benzo ring that is fused to the
parent macrocycle. The benzo analogues of both 6 and 8 were
prepared (Scheme 1) in a similar fashion. Alkylation of the
known[22] diol 4 afforded the diolefin 7, which was subse-
quently converted into the desired benzocrown ether ana-
logue 9 through a RCM reaction mediated by 1. The Ka value
for the interaction between 9 and DBA·PF6 was shown

[23] to
be about 10m�1 (CD3CN, 295 K), approximately one order of
magnitude lower that that observed for 8. This decreased
affinity for ammonium ion binding can be attributed to the
reduced hydrogen-bonding ability of the benzo-substituted
macrocycle, namely, two of the oxygen atom donors are now
phenolic in nature and are consequently less basic. Nonethe-
less, the benzo-substituted rotaxane 12·PF6 (E/Z mixture) was
obtained (Scheme 1) upon the RCM reaction of 7 in the
presence of 10·PF6, albeit in a reduced yield (30% instead of
73%). In addition to NMR spectroscopic and mass spectro-
metric characterization, X-ray quality single crystals[24] of this
compound (Figure 2) were obtained upon slow evaporation
of an EtOAc solution. The crystal structure of 12·PF6 contains
both E and Z isomers, which are present at the same site in an
approximately 1:1 ratio. Reasonable geometries in this
disordered region were only obtained with a number of
restraints. Once again, the E/Z mixture contributes to the
high R and GOF values obtained.

To demonstrate the inherent reversibility of rotaxane
formation by olefin metathesis, a “magic ring”[11a] experiment
was performed in which the rotaxane was assembled
(Scheme 1) directly from its preformed components, namely,
the dumbbell and the macrocycle. A CD2Cl2/CD3NO2 (80:20)

solution[25] containing equimolar quantities of crown ether 8
and the dumbbell-shaped compound 10·PF6 was prepared.
Prior to the addition of any catalyst, 1H NMR spectroscopic
analysis revealed that, as expected, the terminally bulky-
substituted secondary ammonium cation 10+ cannot pass
through the cavity of the 24-membered macrocyclic ring.
Enabling the metathesis pathway, however, upon the addition
of (IMesH2)(PCy3)(Cl)2Ru¼CHPh (2)[26] (10 mol%), allows
the system to equilibrate to a thermodynamic minimum (a
process driven by the creation of N+�H···O and C�H···O
hydrogen bonds), and results in the formation of the
[2]rotaxane 11·PF6. This transformation was monitored
(Figure 3) by 1H NMR spectroscopy, and equilibrium

(> 95% interlocked species) was achieved in 45 minutes.
Spectral assignments were made by comparison to an
authentic sample of the rotaxane isolated previously in the
RCM approach, and mass spectrometric analysis also con-
firmed that the major component in solution was, indeed, the
[2]rotaxane 11·PF6.

In an analogous fashion, the magic ring experiment was
repeated with the benzo-derivative 9 and resulted (Figure 4)
in a similar outcome. In this case, the equilibrium position is
reached in less time (ca. 20 min), and affords a smaller
proportion of the interlocked species (ca. 85% of the
[2]rotaxane 12·PF6), which presumably reflects the reduced
affinity of this particular macrocycle for secondary dibenzyl-
ammonium ions. No decrease of catalyst activity was
observed over the duration of the magic ring syntheses
described above, as indicated by the undiminished intensity of
the carbene (benzylidene) singlet of the catalytic species (d=

Figure 2. Ball-and-stick representation of the solid-state structure of
the benzo-substituted [2]rotaxane 12·PF6. Hydrogen-bonding geome-
tries [N+···O], [H···O] [C], [N+�H···O] [8]: a) 3.10, 2.55, 119; b) 3.03,
2.14, 162; c) 3.08, 2.55, 117; d) 2.88, 1.98, 167; [C···O], [H···O] [C],
[C-H···O] [8]: e) 3.14, 2.53, 120; f) 3.41, 2.56, 143; g) 3.48, 2.53, 161.

Figure 3. Partial 1H NMR spectra showing the change over time in the
environment of Ha and Hb as the dumbbell (D) component converts
into the rotaxane (R) during the magic ring synthesis in which macro-
cycle 8 and 10·PF6 were employed as starting materials.
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19.0 ppm) in the 1H NMR spectrum. Furthermore, the magic
ring syntheses of the [2]rotaxanes employ the more active
metathesis catalyst 2, and, under this particular set of
conditions, the transformations occur with very high yields
that approach, in the case of the non-benzo system, quanti-
tative numbers.

In conclusion, diolefin macrocyclic precursors have been
shown to cyclize around an appropriately substituted diben-
zylammonium salt to produce the corresponding [2]rotaxanes.
Exploiting ruthenium carbene mediated olefin metathesis in
this “clipping” procedure allows for the assembly process to
occur in a reversible fashion, namely, it can operate under
thermodynamic control. This dynamic feature can be utilized
to synthesize mechanically interlocked molecules under
magic ring conditions, whereby preformed components can
be exposed to the necessary catalytic agent (1 or 2 in this case)
causing the macrocycle to open and close repeatedly while the
system strives to reach a thermodynamic minimum. The
successful application of this methodology to the synthesis of
simple [2]rotaxanes, has enabled the creation of other, more
intricate, interlocked molecular architectures (for example,
catenanes,[1] daisy chains,[21] and other interlocked polymeric
systems) to be explored. Moreover, the ability to drive these

systems to almost quantitative conversion allows for the
pursuit of high-molecular-weight polymers with novel inter-
locked architectures.

Experimental Section
General procedure for “magic ring” experiments: Catalyst 2 (0.8 mg,
10�3 mmol) was added under a dry N2 atmosphere to a solution of
unsaturated crown ether 8 or 9 (10 mmol) and 10·PF6 (4.6 mg,
10�2 mmol) in CD2Cl2/CD3NO2 (80:20, 1.0 mL). The reaction was
followed by 1H NMR spectroscopy under ambient conditions. For all
other experimental procedures and characterization data, see the
Supporting Information.
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