3

4

5

7

16

1 An Efficient Room Temperature Oxygen Radical Anion (O₂⁻) Mediated One-

Pot Multi-Component Synthesis of Spirooxindoles

Somaiah Gajaganti, Shivam Bajpai, Vandana Srivastava, Sundaram Singh^{*}

Department of Chemistry, Indian Institute of Technology-BHU, Varanasi 221 005, Uttar Pradesh,

India.

6 Abstract:

8 The present report highlights an efficient use of oxygen radical anion to promote a room 9 temperature multi-component synthesis of spirooxindoles (**4a–1**) under mild reaction conditions. 10 The potassium superoxide (KO₂) and tetraethylammonium bromide (TEAB) combination 11 generate the oxygen radical anion *in situ* to promote this transformation. This method offers a 12 sustainable and direct access to the biologically important spirooxindole derivatives in good to 13 excellent yields.

Keywords: Sustainable synthesis, Superoxide ion, Heterocycle synthesis, Room temperature
 transformation, Spirooxindoles.

*Corresponding author: Dr. Sundaram Singh, Associate Professor of Organic Chemistry,
Department of Chemistry, Indian Institute of Technology–BHU, Varanasi 221 005, Uttar Pradesh,
India; Mobile: +919451658650.

20 E-mail: <u>sundaram.apc@iitbhu.ac.in</u> (Dr. Sundaram Singh)

21 **1. Introduction**

22

23

24

25

26

The nitrogen–containing heterocycles are the prominent entities present in natural products and drug molecules. In particular, indole heterocycles exhibit a large spectrum of biological activities such as agonists of migraine associated $5HT_{1B}$ and $5HT_{1D}$ serotonin receptors ¹, anti–convulsant ², anti–depressant ³, anti–histamine ⁴, anti–obesity ⁵, anti–diabetic ⁶, and anti–allergic ⁷.

Spirocyclic structures are frequently found in numerous natural products, and their 27 efficient synthesis is a formidable challenge for synthetic organic chemists⁸⁻⁹. Also, the creation 28 of spirooxindole derivatives through the involvement of 3-carbon of indole further elevate the 29 bioactivity of the indole core ¹⁰⁻¹³. The high disease control properties of spirooxindole moiety is 30 frequently utilized in the formulation of many active pharmaceutical ingredients ¹⁴⁻¹⁸; for 31 example spirotryprostatin A, an anti-mitotic agent¹⁹, pteropodine and isopteropodine, modulators 32 of rat muscarinic M1 and 5-HT2 receptors²⁰, and formosanine, which serves as an active anti-33 cancer agent (Figure 1) 21 . 34

Figure 1. Some biologically active spirooxindole-containing molecules.

The spirooxindole compounds are the most wanted synthetic targets because of their exclusive structural features and attractive drug like properties ²². The fusion of the spirooxindole

36

37

ring system with pyranopyrimidine has significant biological relevance because of the analgesic 39 and anticonvulsant activity and the effects of amphetamine-induced stereotypy of the resultant 40 derivatives ²³. 41

Azaspiro derivatives are frequently found in nature ²⁴⁻²⁸, however, the synthesis of the 42 subsequent oxa analogs have received less attention ²⁹. Particularly, the chromene-indole hybrid 43 44 molecules that display potential anti-depressant, anti-hypertensive, anti-tubulin, anti-viral and anti-oxidative activities ³⁰⁻³⁷. Recent studies highlighted the potential application of tetrahydro-45 4H-chromene derivatives bearing nitrile functionality, i.e., 2-amino-5-oxo-5,6,7,8-tetrahydro-46 47 4H-chromene-3-carbonitriles for the effective treatment of human neurodegenerative disorders 38 48

Because of their attractive biological activities, extensive efforts have been made to 49 synthesize chromene based spirooxindoles by employing various metals and metal-free 50 protocols ³⁹⁻⁶². The methods previously reported are helpful to access spirooxindoles in one-pot, but still they were suffered from various operational and practical issues ranging from the use of 52 uncommon starting materials, specifically fabricated magnetic catalysts, strong acidic catalysts, 53 and specialized reaction conditions. So, there is still enough room for the exploration of a highly 54 efficient method for the synthesis of spirooxindoles. 55

The use of molecular oxygen as a promoter is an emerging area ⁶³. The academic and 56 industrial research is currently focusing more on the search for new methods which generate 57 molecular oxygen in situ and use it more efficiently to promote synthetic transformations ⁶⁴. The 58 problems associated with the use of molecular oxygen as a promoter is its less reactivity, an 59 essential requirement of low temperatures for activation, the necessity of highly expensive 60 metals/metal surfaces and expensive techniques are needed to generate the more reactive species 61

69

73

78

79

or to bind an oxygen molecule ⁶⁵. Alternatively, reactive oxygen species (ROS) are the better and 62 promising oxygen containing radicals, which show better reactivity to promote synthetic 63 conversions⁶⁶⁻⁶⁷. The most interesting point to observe in all molecular oxygen promoted 64 reactions is the intermediacy of ROS. 65

Superoxide ion (O_2^{\bullet}) is a reactive oxygen species and have significant biological and 66 synthetic relevance and the molecule of interest for current scientific investigations. Therefore, the research on the reactions promoted by $O_2^{\bullet-}$ can certainly provide better insights to understand 68 the nature and behavior of O_2^{\bullet} . The O_2^{\bullet} is a green oxidant and a reactive replacement of oxygen ⁶⁸⁻⁶⁹. The *in situ* generation of O_2^{-} from molecular oxygen requires an expensive and costlier 70 electrochemical or electric arc methods. Alternatively, the simple and cheapest method includes 71 the decomposition of a stable superoxide salt in the presence of a stable superoxide salt and a 72 phase transfer catalyst 70-71.

In view of all the above facts, we are exploring an insitu generation of O_2^{-} and first time 74 utilizing it for a one-pot multicomponent synthesis of spirooxindoles 4 in excellent yields (80-75 88%) through the reaction of isatins 1, dimedone/ barbituric acid and meldrum's acid 2 and 76 malononitrile/ethyl cyanoacetate 3, at room temperature (Scheme 1). 77

Scheme 1 Superoxide promoted one-pot three-component synthesis of spirooxindoles 4a-l.

83

2. Experimental (Materials and methods)

2.1. General Information

The isatins, 1,3-diketones, malononitriles, promoters, additives, and solvents were 84 purchased from Sigma-Aldrich Chemicals, USA, and E. Merck, Germany and were used as 85 received. The Thin Layer Chromatography (TLC) was carried out on Merck Kieselgel 60 GF254 86 plates (thickness 0.25 mm). The solvent system employed was ethyl acetate: n-hexane (2:1) and 87 the TLC spots were determined by UV or staining the TLC plate to iodine vapors. Infra Red (IR) 88 spectra were recorded on a Perkin-Elmer FT-IR spectrometer. The NMR was conducted using a 89 JEOL AL300 FT-NMR spectrometer (¹H NMR at 300 MHz, ¹³C NMR at 75 MHz); chemical 90 shifts are given in δ ppm, relative to TMS as an internal standard. Melting points were measured 91 with a Stuart SMP 10 digital melting point apparatus. 92

93 2.2 General experimental procedure for the synthesis of compounds 4a–l

Potassium superoxide (2 mmol) and tetraethylammonium bromide (1 mmol) were 94 weighed under N₂ atmosphere using an atmosbag and transferred into a three necked R. B. flask, 95 96 dry DMF (20 mL) was added to it and the mixture was thoroughly mixed using a magnetic stirrer for 15 min to facilitate the formation of tetraethylammonium superoxide. To the stirred reaction 97 mixture, ethylcyanoacetate/malononitrile (3a, b) (1 mmol) was added. After 10 min, the isatin 98 99 derivatives (1) (1 mmol) and cyclic 1, 3-diketones (2a-c) (1 mmol) were introduced, and the stirring was continued for 4 h. After the reaction was over as indicated by TLC, the reaction 100 mixture was treated with cold brine solution (2 mL) followed by saturated sodium hydrogen 101 102 carbonate solution (2 mL) to decompose the unreacted KO₂. The mixture was then extracted with dicholoromethane $(3 \times 15 \text{ mL})$ and the combined organic phase was dried over anhydrous 103

104 Na₂SO₄, filtered, and evaporated to give the products 4a-l, which was purified by column 105 chromatography.

106 **3. Results and discussion**

In order to establish an optimized reaction condition for the synthesis of spirooxindoles at 107 room temperature a model reaction of isatin 1a, dimedone 2a and malononitrile 3a was carried 108 109 out in the presence of various unexplored oxidants under nitrogen atmosphere in different solvents like DMF, THF, CH₃CN, CH₂Cl₂, PEG, DMSO and H₂O at room temperature (Table 110 1). The solvent study showed that dry DMF provided the best yield. All the reactions were 111 conducted in an inert atmosphere to avoid a possible helping hand from the oxygen present in the 112 atmosphere. As it was reported in several investigations that atmospheric air/oxygen serves as a 113 terminal oxidant for the regeneration of the catalytic species. In the present study, the 114 investigations were carried out by using 50 mol% iodine as a catalyst in DMF for the synthesis 115 of spirooxindoles at room temperature, but the iodine delivered the desired product in 27% yield 116 only (entry 1). Some potential oxidants like tetrabutylammonium iodide (TBAI), sodium 117 hypochlorite (NaOCl), perchloric acid (HClO₄), tert-butylhydroperoxide (TBHP), ceric 118 ammonium nitrate (CAN), potassium periodide (KIO₃), diacetoxyiodobenzene (PhI(OAC)₂), 119 120 ferrocene, potassium persulfate ($K_2S_2O_8$), hydrogen peroxide (H_2O_2), manganese dioxide (MnO_2) , copper perchlorate (CuClO₄), calcium oxychloride (CaOCl₂), and sulphur (S₈) were 121 screened but none of them provided a significant yield (entries 2-15). However, when 50 mol% 122 123 of potassium superoxide (KO₂) was applied, the desired spirooxindole was formed in 57% yield (entry 16). This encouraging result further indicates that the potassium superoxide (K_2O) can be 124 125 efficiently used for the optimization of the experimental protocol. A thorough revision of the 126 literature suggested that the superoxide ion released from the KO₂ must act as a promoter. So, it was envisioned that the additives which fasten the decomposition of KO_2 must increase the yield of the reaction (entries 17–19, 32–34). To test this, various phase transfer catalysts as additives were screened. And it was discovered that 200 mol% of KO_2 and 100 mol% of tetraethylammonium bromide (TEAB) act as the best combination to deliver the spirooxindoles in 88% yield at room temperature (entry 25).

Table 1 Evolution of reaction parameters the synthesis of **4a**.

2a

3a

Entry	Promoter	Additive	Atmosphere	here Solvent		Time	Yield ^a (%)
	(mol %)	(mol %)	ol %)		(⁰ C)	(h)	
1	I ₂ (50)	—	N ₂		rt	2	27
2	TBAI (50)	—	N ₂	DMF	rt	2	15
3	NaOCI (50)	—	N ₂	DMF	rt	2	30
4	HClO ₄ (50)	—	N ₂	DMF	rt	2	26
5	TBHP (50)	— N ₂		DMF	rt	2	20
6	CAN (50)	— N ₂		DMF	rt	2	17
7	KIO ₃ (50)	—	— N ₂ DMF		rt	2	24
8	PhI(OAc) ₂ (50)	$PhI(OAc)_2$ (50) - N_2 DMF		DMF	rt	2	_
9	Ferrocene (50) — N ₂ DMF		DMF	rt	2	35	
10	$K_2S_2O_8(50)$ — N_2 DM		DMF	rt	2	37	
11	H ₂ O ₂ (50)	$O_2(50)$ — N_2		DMF	rt	2	40
12	MnO ₂ (50)	— N ₂		DMF	rt	2	22
13	CuClO ₄ (50)	0) — N ₂		DMF	rt	2	28
14	CaOCl ₂	l ₂ — N ₂		DMF	rt	2	25
15	S ₈ (50) — N ₂		DMF	rt	2	33	
16	KO ₂ (50)	O ₂ (50) — N ₂		DMF	rt	2	57
17	KO ₂ (50)	TBAF (50) N ₂		DMF	rt	2	30
18	KO ₂ (50)) $Et_3BnNCl (50)$ N_2		DMF	rt	2	41
19	KO ₂ (50)	TEAB (50)	N ₂	DMF	rt	2	52
20	KO ₂ (100)	TEAB (50)	N ₂	DMF	rt	2	65
21	KO ₂ (200)	TEAB (50)	N ₂	DMF	rt	2	58
22	KO ₂ (300)	TEAB (50)	N ₂	DMF	rt	2	55
23	KO ₂ (200)	TEAB (100)	N ₂	DMF	rt	2	75
24	KO ₂ (200)	TEAB (200)	N ₂	DMF	rt	2	72
25	KO ₂ (200)	TEAB (100)	N ₂	DMF	rt	4	88

133 134

1a

26	KO ₂ (200)	TEAB (100)	O ₂	DMF	rt	4	70
27	KO ₂ (200)	TEAB (100)	air	DMF	rt	4	65
28	KO ₂ (200)	TEAB (100)	N_2	DMSO	rt	4	15
29	KO ₂ (200)	TEAB (100)	N_2	CH₃CN	rt	4	73
30	KO ₂ (200)	TEAB (100)	N_2	CH_2CI_2	rt	4	20
31	KO ₂ (200)	TEAB (100)	N_2	THF	rt	4	45
32	KO ₂ (200)	Aliquat 336 (100)	N ₂	DMF	rt	4	35
33	KO ₂ (200)	18–crown–6 (100)	N_2	DMF	rt	4	28
34	KO ₂ (200)	TEAB (100)	N_2	DMF	60	4	15

^aReaction conditions: Isatin (1a) (1 mmol), dimedone (2a) (1 mmol), malononitrile (3a) (1 mmol). ^b Isolated yield after column chromatography.

Table 2: Superoxide-mediated multicomponent synthesis of spirooxindole derivatives $4^{a,b}$.

139 140

^aReaction of isatin derivatives (1) (1 mmol), cyclic 1, 3–diketones (2a–c) (1 mmol), and
ethylcyanoacetate/malononitrile (3a, b) (1 mmol) using KO₂ (2 mmol) and TEAB (1 mmol) in dry DMF
at rt for 4 h. ^bIsolated yield after column chromatography.

Page 9 of 18

The optimized reaction conditions in hand, the generality of the reaction was further 143 explored. A set of isatin (1a) and 5-chloroisatin (1b) were allowed to undergo a KO₂/TEAB 144 promoted reaction with dimedone (2a), barbituric acid (2b) and meldrum's acid (2c); and 145 malononitrile (3a)/ethyl cyanoacetate (3b) in DMF at room temperature. The unsubstituted isatin 146 served as a best partner in these reactions, when compared with 5-chloroisatin. Out of the three 147 cyclic active methylene compounds used dimedone (2a) exhibited the best reactivity. A diverse 148 set of pure substituted spirooxindoles (4a-4l) have synthesized in good to excellent yields (88-149 80). All the products were fully characterized based on their melting points, and spectral data 150 (IR, ¹H NMR, and ¹³C NMR). 151

Based on the reported literature^{71, 77-79} and isolation of products, a plausible mechanism is proposed for the superoxide ion induced multicomponent synthesis of spirooxindoles 4a-1 has been described in the Scheme 2.

156

Scheme 2. Plausible reaction mechanism.

The reaction was triggered by the abstraction of a proton from active methylene compound **3** by the naked superoxide ion which was in-situ generated by the reaction of potassium superoxide with tetraethylammonium bromide. Now, Knoevenagel condensation takes place between isatin 2 and active methylene compound 3; this gives the formation of α , β unsaturated adduct. The 1,4-addition of 1,3-dione on α , β -unsaturated adduct followed by an intramolecular cyclization and subsequent [1,3]-sigmatropic proton shift led to the formation of product **4**.

164 **3.1** Characterization data for synthesized spirooxindoles (4a–l)

2-Amino-7,7-dimethyl-2',5-dioxo-5,6,7,8-tetrahydrospiro[chromene-4,3'-indoline]-3carbonitrile (4a):

167 Colorless solid; m.p. = 268 °C; IR (KBr, $v = cm^{-1}$) 3403, 3252, 3017, 2981, 2978, 2838, 2802, 168 2213, 1708, 1691, 1669, 1610, 1600, 1558, 1453, 1386, 1270, 1184. ¹H NMR (300 MHz, 169 DMSO- d_6): $\delta = 0.98$ (s, 3H, CH₃), 1.06 (s, 3H, CH₃), 2.10–2.16 (m, 2H, CH₂), 2.55–261 (m, 2H, 170 CH₂), 6.79–7.21 (m, 4H, ArH), 7.22 (s, 2H, NH₂), 11.02 (s, 1H, NH) ppm. ¹³C NMR (75 MHz, 171 DMSO- d_6): $\delta = 26.9$, 27.6, 31.1, 36.2, 46.5, 50.1, 61.2, 111.2, 117.5, 120.5, 122.1, 127.3, 134.2, 145.4, 157.1, 162.8, 170.0, 191.8 ppm.

173 Ethyl–2–amino–7,7–dimethyl–2['],5–dioxo–5,6,7,8–tetrahydrospiro[chromene–4,3[']–

174 indoline]–3–carboxylate (4b):

Colorless solid; m.p. = 258 °C; IR (KBr, $v = cm^{-1}$): 3451, 3301, 3158, 2999, 2944, 2861 2815, 176 1733, 1711, 1685, 1675, 1621, 1608, 1590, 1551 1485, 1380, 1255, 1196; ¹H NMR (300 MHz, DMSO- d_{δ}): $\delta = 0.77$ (t, J = 6.5 Hz, 3H, Me), 0.99 (s, 3H, CH₃), 1.05 (s, 3H, CH₃), 2.04– 2.11 (m, 2H, CH₂), 2.61–2.65 (m, 2H, CH₂), 3.84 (q, 2H, J = 6.9 Hz, CH₂), 6.66–7.06 (m, 4H, ArH), 7.76 (s, 2H, NH₂), 10.54 (s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO- d_{δ}): $\delta = 14.6$, 26.2, 27.1, 30.9, 35.1., 46.9, 50.4, 59.6, 79.3, 106.8, 118.3, 121.2, 122.6, 126.9, 132.7, 143.4, 159.1, 165.0, 167.8, 174.2, 194.3 ppm. 182 2-Amino-5-chloro-7,7-dimethyl-2',5-dioxo-5,6,7,8-tetrahydrospiro[chromene-4,3'-

indoline]–3–carbonitrile (4c): Colorless solid; m.p. = 291 °C; IR (KBr, $v = cm^{-1}$) 3425, 3300, 3013, 2911, 2890, 2851, 2210, 1701, 1678, 1659, 1616, 1605, 1569, 1458, 1348, 1257, 1173; ¹H NMR (300 MHz, DMSO– d_6): $\delta = 0.97$ (s, 3H, CH₃), 1.02 (s, 3H, CH₃), 2.16–2.22 (m, 2H, CH₂), 2.47–2.54 (m, 2H, CH₂), 6.80–7.21(m, 3H, ArH), 7.24 (s, 2H, NH₂), 11.11 (s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO– d_6): $\delta = 26.8$, 32.2, 37.3, 48.1, 50.5, 61.0, 109.3, 116.8, 121.7, 122.9, 127.1, 133.2, 142.5, 156.9, 160.1, 168.5, 191.1 ppm.

189 Ethyl-2-amino-5-chloro-7,7-dimethyl-2',5-dioxo-5,6,7,8-tetrahydrospiro[chromene-

4,3'-indoline]-3-carboxlate (4d): Colorless solid; m.p. = 292 °C; IR (KBr, $v = cm^{-1}$) 3393, 3203, 3022, 2985, 2941, 2878, 2815, 1729, 1712, 1694, 1672, 1610, 1606, 1569, 1481, 1375, 1224, 1170; ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 0.80$ (t, 3H, J = 6.9 Hz, CH₃), 0.97 (s, 3H, CH₃), 1.01 (s, 3H, CH₃), 2.10–2.16 (m, 2H, CH₂), 2.51–2.58 (m, 2H, CH₂), 3.68 (q, 2H, J = 7.2Hz, CH₂), 6.67–7.12 (m, 3H, ArH), 7.84 (s, 2H, NH₂), 10.51 (s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 16.5.$, 27.2 27.5, 32.8, 37.6., 45.4, 48.9, 57.6, 74.1, 108.9, 117.5, 121.1, 122.8, 127.2, 135.7, 144.3, 158.1, 164.9, 167.1, 172.1, 190.1 ppm.

197 7'-amino-2,2',4'-trioxo-1',2',3',4'-tetrahydrospiro[indoline-3,5'-pyrano[2,3-

198 d]pyrimidine]–6'–carbonitrile (4e):

Colorless solid; m.p. = 276 °C; IR (KBr, $v = cm^{-1}$) 3423, 3298, 3134, 3001, 2213, 1701, 1682, 1620, 1609, 1566, 1453, 1372, 1289, 1192; ¹H NMR (300 MHz, DMSO– d_6): $\delta = 6.88-7.26$ (m, 4H, aromatic protons), 7.56 (s, 2H, NH₂), 10.01 (s, 1H, NH), 11.10 (s, 1H, NH), 11.25 (s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO– d_6): $\delta = 48.1$, 74.5, 87.2, 111.1, 121.1, 123.2, 126.4, 133.1, 142.5, 148.7, 151.2, 159.1, 162.2, 167.6, 175.1 ppm.

204 Ethyl7'-amino-2,2',4'-trioxo-1',2',3',4'-tetrahydrospiro[indoline-3,5'-pyrano[2,3205 d]pyrimidine]-6'-carboxylate (4f):

Pale yellow solid; m.p. = 190 °C; IR (KBr, $v = cm^{-1}$) 3405, 3315, 3188, 3014, 1732, 1705, 1680, 1621, 1614, 1558, 1491, 1347, 1270, 1188; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 1.05–1.10 (t, *J* = 6.6, 3H, CH₃), 4.25–4.30 (q, *J*= 7.4, 2H, CH₂), 7.00–7.31 (m, 4H, aromatic protons), 7.86 (s, 2H, NH₂), 10.12 (s, 1H, NH), 10.99 (s, 1H, NH), 11.20 (s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ = 13.9, 44.9., 60.3, 74.8, 88.1, 109.1, 119.3, 122.6, 127.8, 134.1, 144.1, 150.1, 153.2, 159.5, 163.2, 166.3, 177.1 ppm.

7'-amino-5-chloro-2,2',4'-trioxo-1',2',3',4'-tetrahydrospiro[indoline-3,5'-pyrano[2,3d]pyrimidine]-6'-carbonitrile (4g):

Colorless solid; m.p. = 261 °C; IR (KBr, $v = cm^{-1}$) 3430, 3263, 3111, 3020, 2234, 1710, 1685, 1622, 1612, 1572, 1460, 1352, 1248, 1171; ¹H NMR (300 MHz, DMSO– d_6): $\delta = 6.79-7.17$ (m, 3H, aromatic protons), 7.95 (s, 2H, NH₂), 10.15 (s, 1H, NH), 11.18 (s, 1H, NH), 11.23 (s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO– d_6): $\delta = 48.9$, 76.1, 89.5, 106.2, 120.9, 123.5, 127.1, 134.1, 144.3, 149.6, 152.7, 158.9, 162.2, 169.2, 179.3 ppm.

219 Ethyl 7'-amino-5-chloro-2,2',4'-trioxo-1',2',3',4'-tetrahydrospiro[indoline-3,5'-

220 pyrano[2,3–d]pyrimidine]–6'–carboxylate (4h):

Pale yellow solid; m.p. = 248 °C; IR (KBr, $v = cm^{-1}$) 3391, 3281, 3112, 2990, 1739, 1705, 1684, 1625, 1613, 1605, 1562, 1478, 1380, 1271, 1183; ¹H NMR (300 MHz, DMSO– d_6): $\delta = 1.15-$ 1.21 (t, J= 7.2, 3H, CH₃), 4.21–4.26 (q, J= 7.2, 2H, CH₂), 6.92–7.23 (m, 3H, aromatic protons), 8.00 (s, 2H, NH₂), 10.20 (s, 1H, NH), 11.02 (s, 1H, NH), 11.21 (s, 1H, NH) ppm; ¹³C NMR (75

MHz, DMSO-*d*₆): δ = 14.5, 49.1, 59.5, 76.6, 88.4, 106.2, 120.2, 122.3, 127.9, 134.1, 143.5, 148.3, 153.3, 158.2, 162.1, 168.1, 179.1 ppm.

7'-amino-2',2'-dimethyl-2,4'-dioxo-4'H-spiro[indoline-3,5'-pyrano[2,3-d][1,3]dioxine]6'-carbonitrile (4i):

Pale yellow solid; m.p. = 294 °C; IR (KBr, $v = cm^{-1}$) 3413, 3251, 3011, 2946, 2933, 2838, 2827, 2211, 1706, 1698, 1661, 1615, 1609, 1600, 1568, 1455, 1456, 1378, 1351, 1255, 1200; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.41$ (s, 6H, CH₃), 7.11–7.75 (m, 4H, aromatic protons), 8.12 (s, 2H, NH₂), 11.14 (s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 24.9$, 46.4, 75.6, 88.6, 105.0, 118.2, 122.6, 129.1, 135.9, 144.3, 145.6, 161.2, 163.4, 169.2 ppm.

234 Ethyl 7'-amino-2',2'-dimethyl-2,4'-dioxo-4'H-spiro[indoline-3,5'-pyrano[2,3-

235 d][1,3]dioxine]–6'–carboxylate (4j):

Yellow solid; m.p. = 298 °C; IR (KBr, $v = cm^{-1}$) 3391, 3259, 3033, 2968, 2941, 2823, 2810, 1735, 1710, 1701, 1658, 1620, 1613, 1599, 1571, 1449, 1435, 1389, 1363, 1251, 1185; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.10-1.15$ (t, J = 6.9, 3H, CH₃), 1.68 (s, 6H, CH₃), 4.20- 4.28 (q, J = 6.9, 2H, CH₂), 6.88-7.63 (m, 4H, aromatic protons), 8.00 (s, 2H, NH₂), 11.29 (s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 13.9$, 27.8, 48.5, 58.7, 79.2, 86.5, 110.0, 117.6, 121.2, 127.5, 129.2, 134.1, 142.5, 145.2, 158.1, 162.2, 164.2, 168.1, 188.8 ppm.

242 7'-amino-5-chloro-2',2'-dimethyl-2,4'-dioxo-4'H-spiro[indoline-3,5'-pyrano[2,3-

243 d][1,3]dioxine]–6'–carbonitrile (4k):

Yellow solid; m.p. = 301 °C; IR (KBr, v = cm⁻¹) 3400, 3261, 3023, 2978, 2959, 2877, 2855,
2227, 1711, 1703, 1665, 1618, 1610, 1590, 1570, 1465, 1435, 1372, 1352, 1264, 1192; ¹H NMR
(300 MHz, DMSO-*d₆*): δ = 1.63 (s, 6H, CH₃), 6.92–7.54 (m, 3H, aromatic protons), 8.05 (s, 2H,

NH₂), 10.80 (s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO-*d₆*): δ = 25.1, 48.2, 72.2, 89.5, 107.3,
117.9, 123.5, 127.4, 132.1, 141.3, 145.7, 158.1, 162.3, 164.1, 167.8 ppm.

Ethyl 7'-amino-5-chloro-2',2'-dimethyl-2,4'-dioxo-4'H-spiro[indoline-3,5'-pyrano[2,3d][1,3]dioxine]-6'-carboxylate (4l):

Yellow solid; m.p. = 315 °C; IR (KBr, $v = cm^{-1}$) 3400, 3231, 3008, 2970, 2953, 2829, 2823, 1732, 1711, 1703, 1667, 1617, 1611, 1601, 1560, 1463, 1446, 1388, 1295, 1189; ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 1.02-1.08$ (t, J = 7.2, 3H, CH₃), 1.56 (s, 6H, CH₃), 4.12–4.19 (q, J = 6.9, 2H, CH₂), 6.96–7.51 (m, 3H, aromatic protons), 8.12 (s, 2H, NH₂), 11.13 (s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) $\delta = 14.2$, 26.1, 46.5, 60.1, 75.2, 89.4, 112.8, 119.2, 122.7, 127.6, 128.8, 135.1, 141.9, 144.2, 159.1, 161.6, 164.5, 167.5, 184.1 ppm.

257 4. Conclusion

In conclusion, this work addresses the successful synthesis of a variety of spirooxindoles by employing a superoxide ion mediated one-pot multicomponent reaction of isatin derivatives, ethyl cyanoacetate/malononitrile and cyclic 1,3-diketones under ambient temperature. Further, the developed protocol explores the new avenues of the superoxide ion reactivity and focuses a limelight on the unexplored side of the superoxide ion chemistry.

263 Acknowledgement

The authors are thankful to Dr. Bharat Kumar Allam for his precious support during the preparation of this manuscript. Mr. Prabhu Das is grateful to the IIT(BHU) for financial support in the form of Institute Fellowship. Dr. Sundaram Singh acknowledges the fund received [Sanction Letter No.41-294/2012(SR)] from the University Grants Commission, Government of India, New Delhi.

	269	References				
IIOI	270	1.	Kochanowska-Karamyan, A. J.; Hamann, M. T., Chemical reviews 2010, 110 (8), 4489.			
	271	2.	Gribble, G. W. Indole Ring Synthesis: From Natural Products to Drug Discovery. John Wiley &			
Ial	272		Sons2016.			
	273	3.	Sarris, J.; Byrne, G. J., Sleep medicine reviews 2011, 15 (2), 99.			
ੇ ਚ	274	4.	Jain, R. P.; Chakravarty, S. Google Patents2017.			
	275	5.	Kang, MC.; Ding, Y.; Kim, EA.; Choi, Y. K.; De Araujo, T.; Heo, SJ.; Lee, SH., Marine Drugs			
am	276		2017, <i>15</i> (4), 119.			
	277	6.	Singh, A.; Verma, R. K.; Kuhad, A.; Mall, R., Medicinal Chemistry Research 2017, 26 (4), 745.			
	278	7.	Zhao, YL.; Cao, J.; Shang, JH.; Liu, YP.; Khan, A.; Wang, HS.; Qian, Y.; Liu, L.; Ye, M.; Luo, X			
am	279		D., Phytomedicine 2017, 27, 63.			
ν Γ	280	8.	Verano, A. L.; Tan, D. S., Israel Journal of Chemistry 2017 .			
	281	9.	Janssen-Müller, D.; Fleige, M.; Schlüns, D.; Wollenburg, M.; Daniliuc, C. G.; Neugebauer, J.;			
1. 11	282		Glorius, F., ACS Catalysis 2016, 6 (9), 5735.			
IOI	283	10.	Lindemann, M.; Deuther-Conrad, W.; Moldovan, R.; Sekhar, K. V. G. C.; Brust, P.; Wenzel, B.,			
ISO	284		Bioorganic & Medicinal Chemistry 2017 .			
	285	11.	Asit, M., Universal Journal of Chemistry (UJC) 2017 , 1 (1), 17.			
ຽ	286	12.	Liu, T.; Li, C. B.; Yu, Y. Q.; Xu, D. Z., <i>ChemistrySelect</i> 2017 , <i>2</i> (10), 2917.			
hak	287	13.	Sharma, A.; Piplani, P.; Mohamed, M. I.; Kandile, N. G.; Zaky, H. I.; Mahajan, P. S.; Nikam, M. D.;			
nIId	288	1.4	Chate, A. V.; Bobade, A. S.; Gill, C. H.			
an An	289	14. 15	Fan, L.; Llao, CH.; Kang, QR.; Zheng, K.; Jiang, YC.; He, ZD., <i>Molecules</i> 2016, 21 (8), 968.			
	290	15.	Knandelwal, S.; Kajawat, A.; Kumar Tallor, Y.; Kulhari, A.; Kumar, M., <i>Current Organocatalysis</i>			
5 2	291	16	2017, 4 (1), 69. Tang M. C. Zou, V. Watanaho, K. Walch, C. T. Tang, V. Chemical Boulous 2016			
cob	292	10. 17	Talig, IVIC., 200, F., Walandbe, K., Walsh, C. T., Talig, F., Chennicul Reviews 2010.			
3	295	17.	Notitinaliti, M., McNalilaia, C., Teurig, B. N., Lee, M. C., 200, B., Russell, B., Seltz, P., Flourie, D. $M \cdot Dharia, N. V \cdot Tan, L. science 2010, 220 (5006), 1175$			
1011	294	18	$M_{\rm olls}$ T N Science 2010 , 329 (5996), 1173.			
h h	200	10.	Borthwick A D. Chemical reviews 2012 , 112 (7) 36/1			
, CII	297	20	Kang T-H: Matsumoto K: Tohda M: Murakami Y: Takayama H: Kitajima M: Aimi N:			
mm	298	20.	Watanabe, H., Furonean journal of pharmacoloay 2002 , 444 (1), 39.			
	299	21.	Pavlovska, T. L.: Redkin, R. G.: Lipson, V. V.: Atamanuk, D. V., <i>Molecular diversity</i> 2016 , <i>20</i> (1).			
	300		299.			
2	301	22.	Kattela. S.: Heerdt, G.: Correia. C. R., Advanced Synthesis & Catalysis 2017 , 359 (2), 260.			
e D	302	23.	Wang, S.; Izquierdo, J.; Rodríguez-Escrich, C.; Pericàs, M. A., ACS Catalysis 2017 , 7, 2780.			
	303	24.	Vitnik, Ž. J.; Popović-Đorđević, J. B.; Vitnik, V. D., Journal of Molecular Structure 2017 , 1137, 97.			
гЪ	304	25.	Jung, H.; Aman, W.; Hah, JM., Bioorganic & Medicinal Chemistry Letters 2017.			
2CT	305	26.	Moradi, R.; Ziarani, G. M.; Lashgari, N., Organic Chemistry 2017, (part i), 148.			
allu	306	27.	Roh, H. J.; Kim, S. Y.; Min, B. K.; Kim, J. N., <i>Tetrahedron Letters</i> 2017 , <i>58</i> (1), 21.			
	307	28.	Xia, M.; Ma, R. Z., Journal of Heterocyclic Chemistry 2014, 51 (3), 539.			
Ŧ.	308	29.	Wang, X. N.; Zhang, Y. Y.; Ye, S., Advanced Synthesis & Catalysis 2010, 352 (11-12), 1892.			
Sul	309	30.	Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.; Verma, A. K.; Choi, E. H., Molecules			
	310		2013, <i>18</i> (6), 6620.			
۲.۲	311	31.	Gupta, N.; Goyal, D., Chemistry of Heterocyclic Compounds 2015, 51 (1), 4.			
In	312	32.	Chen, L. Google Patents2004.			
DSL DSL	313	33.	Arshad, M.; Bhat, A. R.; Hoi, K. K.; Choi, I.; Athar, F., Chinese Chemical Letters 2017.			
ומו	314	34.	Ellis, G. P. The chemistry of heterocyclic compounds, chromenes, chromanones, and chromones.			
IOS I	315		Vol. 31; John Wiley & Sons2009.			
D D						

Page 17 of 18

ord.			
rece	316	35.	Zheng, BJ.; Chan, KW.; Lin, YP.; Zhao, GY.; Chan, C.; Zhang, HJ.; Chen, HL.; Wong, S. S.;
n of	317		Lau, S. K.; Woo, P. C., Proceedings of the National Academy of Sciences 2008, 105 (23), 8091.
Sio.	318	36.	Smith, B. J.; Colman, P. M.; Von Itzstein, M.; Danylec, B.; Varghese, J. N., Protein Science 2001, 10
vei	319		(4), 689.
cial	320	37.	Honda, T.; Masuda, T.; Yoshida, S.; Arai, M.; Kaneko, S.; Yamashita, M., Bioorganic & medicinal
offic	321		chemistry letters 2002, <i>12</i> (15), 1925.
ial (322	38.	Canul-Tec, J. C.; Assal, R.; Cirri, E.; Legrand, P.; Brier, S.; Chamot-Rooke, J.; Reyes, N., Nature
fir	323		2017, <i>544</i> (7651), 446. doi: 10.1038/nature22064.
the	324	39.	Hojati, S. F.; Amiri, A. H.; Raouf, H., Applied Organometallic Chemistry 2017, 31 (5). doi:
MO MO	325		10.1002/aoc.3595.
er fi	326	40.	Javanshir, S.; Saghiran Pourshiri, N.; Dolatkhah, Z.; Farhadnia, M., Monatshefte fur Chemie 2017,
	327		<i>148</i> (4), 703. doi: 10.1007/s00706-016-1779-6.
ayc	328	41.	Esmaeilpour, M.; Javidi, J.; Divar, M., Journal of Magnetism and Magnetic Materials 2017, 423,
t B	329		232. doi: 10.1016/j.jmmm.2016.09.020.
	330	42.	Keshavarz, M., Journal of the Iranian Chemical Society 2016, 13 (3), 553. doi: 10.1007/s13738-
I:ii	331		015-0765-у.
bos	332	43.	Chandam, D. R.; Mulik, A. G.; Patil, D. R.; Deshmukh, M. B., Research on Chemical Intermediates
	333		2016, <i>42</i> (2), 1411. doi: 10.1007/s11164-015-2093-3.
e co	334	44.	Kumari, P.; Nandi, S.; Kumar, G.; Khan, N. H.; Kureshy, R. I.; Abdi, S. H. R.; Suresh, E.; Bajaj, H. C.,
r pag	335		RSC Advances 2016, 6 (57), 52384. doi: 10.1039/c6ra06812j.
and	336	45.	Sadeghi, B.; Ghasemi Pirbaluti, M.; Farokhi Nezhad, P.; Abbasi Nezhad, R., Research on Chemical
ng	337		Intermediates 2015 , <i>41</i> (6), 4047. doi: 10.1007/s11164-013-1509-1.
diti	338	46.	Karimi, A. R.; Sourinia, M.; Dalirnasab, Z.; Karimi, M., <i>Canadian Journal of Chemistry</i> 2015 , <i>93</i> (5),
oy e	339		546. doi: 10.1139/cjc-2014-0345.
	340	47.	Sadeghi, B.; Lasemi, Z.; Azimi, R., <i>Oriental Journal of Chemistry</i> 2015, 31 (2), 1175. doi:
r to	341	40	10.13005/0jc/310272.
	342	48.	Zakeri, M.; Naset, M. M.; Abouzari-Lott, E.; Monarami, A.; Heravi, M. M., <i>Journal of Industrial</i>
pt p	343	40	and Engineering Chemistry 2015 , 29, 273. doi: 10.1016/J.Jiec.2015.03.035.
SCI	344 245	49.	Heravi, M. M.; Hashemi, E.; Azimian, F., <i>Journal of the Iranian Chemical Society</i> 2015, <i>12</i> (4), 647.
anu	345	50	001: 10.100//\$13/38-014-0523-6.
E E	340	50.	Nikham, K.; Abolpour, P., <i>Monuishejte jur Chemie</i> 2015, 146 (4), 683. doi: 10.1007/500706-014-
pter	547 270	E 1	1343-1. Azizi N.: Dozfanli S.: Mahmaudi Hashami M. Journal of Malacular Liquids 2014 , 104, 62, doi:
ccel	2/0	51.	10 1016/i mollig 2014 01 009
le a	349	52	Baghhanian S. M. Taihakhch M. Earhang M. Comptes Rendus Chimie 2014, 17(12) 1160 doi:
S T T S T S T S	350	52.	10 1016/i crci 2013 12 005
ibt i	351	53	Wang H : Guo L N : Duan X H <i>Organic Letters</i> 2013 <i>15</i> (20) 5254 doi: 10.1021/0402473m
	352	53. 54	Bazgir A : Hosseini G : Ghahremanzadeh R ACS Combinatorial Science 2013 15 (10) 530 doi:
. J.	354	54.	10 1021/co400057h
	355	55	Dandia A · Parewa V · Jain A K · Rathore K S. Green Chemistry 2011 , 13 (8) 2135 doi:
-T-	356	55.	10 1039/c1gc15244k
Jus	357	56.	Chen W B: Wu 7, L: Pei O L: Cun L E: Zhang X M: Yuan W. C. Organic Letters 2010 , 12
his	358	50.	(14) 3132. doi: 10.1021/ol1009224
y. T	359	57.	Liang, B.; Kalidindi, S.; Porco Jr. J. A.; Stephenson, C. R. J., <i>Organic Letters</i> 2010 , <i>12</i> (3), 572, doi:
ino	360	0	10.1021/ol902764k.
ISe	361	58.	Wang, L. M.: Jiao, N.: Oiu, J.: Yu, J. J.: Liu, J. O.: Guo, F. L.: Liu, Y., <i>Tetrahedron</i> 2010 , <i>66</i> (1), 339.
וal ו	362	- •	doi: 10.1016/j.tet.2009.10.091.
SOL			
pei			
For			17

- 363 Dabiri, M.; Bahramnejad, M.; Baghbanzadeh, M., Tetrahedron 2009, 65 (45), 9443. doi: 59. 364 10.1016/j.tet.2009.08.070. Zhang, M.; Fu, Q.-Y.; Gao, G.; He, H.-Y.; Zhang, Y.; Wu, Y.; Zhang, Z.-H., ACS Sustainable 365 60. 366 Chemistry & Engineering 2017. Yan, L. J.; Wang, Y. C., ChemistrySelect 2016, 1 (21), 6948. 367 61. 368 62. Guo, R.-Y.; An, Z.-M.; Mo, L.-P.; Wang, R.-Z.; Liu, H.-X.; Wang, S.-X.; Zhang, Z.-H., ACS 369 *Combinatorial Science* **2013**, *15* (11), 557. doi: 10.1021/co400107j. 370 63. Turner, J., Nat Mater 2008, 7 (10), 770. 371 64. Li, R.; Zhu, X.; Yan, X.; Kobayashi, H.; Yoshida, S.; Chen, W.; Du, L.; Qian, K.; Wu, B.; Zou, S.; Lu, L.; 372 Yi, W.; Zhou, Y.; Fan, J., ACS Catalysis 2017, 7 (2), 1478. doi: 10.1021/acscatal.6b03370. 373 65. Haruta, M., Nature 2005, 437 (7062), 1098. Pöschl, U.; Shiraiwa, M., Chemical reviews 2015, 115 (10), 4440. 374 66. Lakey, P. S.; Berkemeier, T.; Tong, H.; Arangio, A. M.; Lucas, K.; Pöschl, U.; Shiraiwa, M., Scientific 375 67. 376 reports 2016, 6. 377 68. Sawyer, D. T. Oxygen chemistry. Oxford university press1991. 378 69. Halliwell, B.; Gutteridge, J., Free radicals in biology and medicine 1999, 3, 1. 379 70. Stoin, U.; Shames, A. I.; Malka, I.; Bar, I.; Sasson, Y., ChemPhysChem 2013, 14 (18), 4158. 380 71. Hayyan, M.; Hashim, M. A.; AlNashef, I. M., Chemical reviews 2016, 116 (5), 3029. 381 72. Moosavi-Zare, A. R.; Zolfigol, M. A.; Salehi-Moratab, R.; Noroozizadeh, E., Canadian Journal of 382 Chemistry 2016, 95 (2), 194. 383 73. Pogosyan, S.; Avakimyan, D. A.; Stepanyan, H., Russian Journal of Organic Chemistry 2016, 9 384 (52), 1308.Mohamadpour, F.; Maghsoodlou, M. T.; Heydari, R.; Lashkari, M., Research on Chemical 385 74. 386 Intermediates 2016, 42 (12), 7841. doi: 10.1007/s11164-016-2565-0. 387 75. Niknam, K.; Khataminejad, M.; Zeyaei, F., Tetrahedron Letters 2016, 57 (3), 361. doi: 388 http://dx.doi.org/10.1016/j.tetlet.2015.12.034. 389 76. Sachdeva, H.; Saroj, R.; Dwivedi, D., The Scientific World Journal 2014, 2014. 390 77. Chin, D. H.; Chiericato Jr, G.; Nanni Jr, E. J.; Sawyer, D. T., Journal of the American Chemical 391 Society 1982, 104 (5), 1296. 392 78. Nosaka, Y.; Nosaka, A. Y., Chemical Reviews 2017. 79. 393 Hayyan, M.; Alakrach, A. M.; Hayyan, A.; Hashim, M. A.; Hizaddin, H. F., ACS Sustainable
 - 394 *Chemistry & Engineering* **2017**, *5* (2), 1854. doi: 10.1021/acssuschemeng.6b02573.