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Abstract—3-Quinolinecarboxylic acid ethyl esters 4 were prepared from 1, the Baylis–Hillman adducts of o-halobenzaldehyde
N-tosylimines, in a one-pot reaction. © 2001 Elsevier Science Ltd. All rights reserved.

The Baylis–Hillman reaction is one of the most power-
ful carbon�carbon bond-forming methods in organic
synthesis.1 The Baylis–Hillman adducts, which are
allylic alcohol or allylic amine derivatives, can be
formed most often by the reaction of activated vinyls
and carbonyl compounds or N-tosylimines.1 Besides
the usefulness of these Baylis–Hillman adducts them-
selves, further derivatization with various nucleo-
philic reagents toward synthetically useful compounds
has been studied in depth by us and other groups.2

Some papers reported on the formation of hetero-
cyclic compounds, including quinoline from the Baylis–
Hillman adducts.3

Quinolines and their derivatives occur in numerous
natural products.4 Many quinolines display interesting
physiological activities and have found attractive appli-

cations as pharmaceuticals and agrochemicals, as well
as being general synthetic building blocks.4b Many syn-
thetic methods have been developed for the preparation
of quinolines,5 but due to their great importance, the
development of novel synthetic methods remains an
active research area.6

Recently, we reported on the synthesis of 4-hydroxy-3-
ethoxycarbonylquinoline N-oxide derivatives from the
Baylis–Hillman adducts of 2-nitrobenzaldehydes.3a As a
continuation of our work, we intended to examine the
possibility of transforming the Baylis–Hillman adducts
of o-halobenzaldehyde N-tosylimines 1 into the corre-
sponding quinolines.

The choice of the Baylis–Hillman adducts 1 as sub-
strates was based on the following assumptions: (1)

Scheme 1.
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aN-(p-Toluenesulfonyl)-3-ethoxycarbonyl-5-chloro-1,2-dihydroquinoline (3a) was obtained in 8% yield.
bN-(p-Toluenesulfonyl)-3-ethoxycarbonyl-7-chloro-1,2-dihydroquinoline (3b) was obtained in 10% yield.
cN-(p-Toluenesulfonyl)-3-ethoxycarbonyl-7-flouro-1,2-dihydroquinoline (3f) was
3-Ethoxycarbonyl-7-(p-toluenesulfonamido)quinoline (5f) was also isolated in 11% yield.

Cl Cl

Cl Cl

FF

1a

1b

1c

1d

1e

1f

4a

4b

4a

4d

4e

4f

obtained in 6% yield.

(%)4( )

J. N. Kim et al. / Tetrahedron Letters 42 (2001) 3737–37403738

catalytic amounts of tosylamide might effect the rear-
rangement of 1 toward the thermodynamically more
stable rearranged tosylamide derivatives 2; (2) nucleo-
philic aromatic substitution reaction can be easily con-
ducted at the ortho position; and (3) elimination of
p-toluenesulfinic acid is possible to give the quinolines 4
directly in a one-pot reaction, as shown in Scheme 1.

Reaction of the Baylis–Hillman adduct 1a in N,N-
dimethylformamide in the presence of potassium car-
bonate (2.0 equiv.) and tosylamide (0.2 equiv.) at
80–90°C afforded the desired quinoline 4a in 76% yield
in a short time.7 The reaction conditions and yields of
products for the representative examples are shown in

Table 1. In some cases, when we used catalytic amounts
of tosylamide in the reaction, long reaction times were
needed to obtain appreciable amounts of products. In
such cases (entries c, d, and f in Table 1), we used
0.5–1.0 equiv. of tosylamide.

However, reaction of 1g under the reaction conditions
gave the 1,2-dihydroquinoline derivative 3g in 81%
yield instead of the expected quinoline 4g. Elimination
of p-toluenesulfinic acid was not efficient under the
reaction conditions even after a long reaction time.
Synthesis of quinoline 4g was realized by the reaction
of 3g and DBU in THF in 69% yield (Scheme 2). As we
already stated in other cases, 3a–f, elimination of p-

Table 1. One-pot synthesis of 3-ethoxycarbonylquinolines 4
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Scheme 2.

Scheme 3.

Scheme 4.

toluenesulfinic acid occurred readily under the reaction
conditions to give the corresponding quinolines 4a–f in
a one-pot reaction. The discrepancy between 1g and
1a–f might be due to the subtle difference in the acidity
of the proton at the 2-position of the corresponding
dihydroquinolines 3g and 3a–f. Depending on the sub-
strate, we could isolate low yields of 3 and/or other
compounds, such as 5f (see footnotes a–c in Table 1).
Quinoline 5f was generated from the initially formed 4f
by successive SNAr reactions with tosylamide at the
7-position.

The reaction mechanism is shown in Scheme 1 (vide
sufra) and is as follows: (1) tosylamide catalyzed succes-
sive SN2� type reactions of 1a–f to form the primary
rearranged allylic tosylamides 2a–f (selective formation
of the E-isomer);2a–c (2) SNAr reaction with the aid of
potassium carbonate to produce dihydroquinolines 3a–
f; and, finally, (3) elimination of p-toluenesulfinic acid
gave quinolines 4a–f.

The nitrile substituted Baylis–Hillman adduct 1h pro-
duced low yields of dihydroquinoline 3h (2%) and
quinoline 4h (11%). Instead, we could obtain the rear-
ranged tosylamide derivative 2h (Z-form) as the major
product,2a–c which cannot undergo the requisite SNAr
reaction (Scheme 3).

It is interesting to compare these results with our
previous paper.3a As shown in Scheme 4, 4-hydroxy-3-
ethoxycarbonylquinolines can be synthesized from the
Baylis–Hillman adducts of o-nitrobenzaldehydes,3a

whereas 3-ethoxycarbonylquinolines can be prepared
from the Baylis–Hillman adducts of o-halobenzalde-
hyde N-tosylimines.
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