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Abstract—3-Quinolinecarboxylic acid ethyl esters 4 were prepared from 1, the Baylis—Hillman adducts of o-halobenzaldehyde
N-tosylimines, in a one-pot reaction. © 2001 Elsevier Science Ltd. All rights reserved.

The Baylis—Hillman reaction is one of the most power-
ful carbon—carbon bond-forming methods in organic
synthesis.! The Baylis-Hillman adducts, which are
allylic alcohol or allylic amine derivatives, can be
formed most often by the reaction of activated vinyls
and carbonyl compounds or N-tosylimines.! Besides
the usefulness of these Baylis—Hillman adducts them-
selves, further derivatization with various nucleo-
philic reagents toward synthetically useful compounds
has been studied in depth by us and other groups.”
Some papers reported on the formation of hetero-
cyclic compounds, including quinoline from the Baylis—
Hillman adducts.?

Quinolines and their derivatives occur in numerous
natural products.* Many quinolines display interesting
physiological activities and have found attractive appli-

cations as pharmaceuticals and agrochemicals, as well
as being general synthetic building blocks.*® Many syn-
thetic methods have been developed for the preparation
of quinolines,®> but due to their great importance, the
development of novel synthetic methods remains an
active research area.®

Recently, we reported on the synthesis of 4-hydroxy-3-
ethoxycarbonylquinoline N-oxide derivatives from the
Baylis-Hillman adducts of 2-nitrobenzaldehydes.** As a
continuation of our work, we intended to examine the
possibility of transforming the Baylis—Hillman adducts
of o-halobenzaldehyde N-tosylimines 1 into the corre-
sponding quinolines.

The choice of the Baylis—Hillman adducts 1 as sub-
strates was based on the following assumptions: (1)
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catalytic amounts of tosylamide might effect the rear-
rangement of 1 toward the thermodynamically more
stable rearranged tosylamide derivatives 2; (2) nucleo-
philic aromatic substitution reaction can be easily con-
ducted at the ortho position; and (3) elimination of
p-toluenesulfinic acid is possible to give the quinolines 4
directly in a one-pot reaction, as shown in Scheme 1.

Reaction of the Baylis—Hillman adduct 1a in N,N-
dimethylformamide in the presence of potassium car-
bonate (2.0 equiv.) and tosylamide (0.2 equiv.) at
80-90°C afforded the desired quinoline 4a in 76% yield
in a short time.” The reaction conditions and yields of
products for the representative examples are shown in

Table 1. One-pot synthesis of 3-ethoxycarbonylquinolines 4

Table 1. In some cases, when we used catalytic amounts
of tosylamide in the reaction, long reaction times were
needed to obtain appreciable amounts of products. In
such cases (entries ¢, d, and f in Table 1), we used
0.5-1.0 equiv. of tosylamide.

However, reaction of 1g under the reaction conditions
gave the 1,2-dihydroquinoline derivative 3g in 81%
yield instead of the expected quinoline 4g. Elimination
of p-toluenesulfinic acid was not efficient under the
reaction conditions even after a long reaction time.
Synthesis of quinoline 4g was realized by the reaction
of 3g and DBU in THF in 69% yield (Scheme 2). As we
already stated in other cases, 3a—f, climination of p-

Entry B-H adducts (1) Conditions Quinolines (4) Yield (%)
Cl NHTs cl
COOEt TsNH, (0.2 equiv.) Xy COOEL .
a K,COs (2.0 equiv.) | 76
c 1la 1h N" 4a
NHTs
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b KoCO3 (20 eqUiV.) | 7 &
cl c1b 7h cl N 4b
Cl  NHTs cl
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aN-(p-Toluenesulfonyl)-3-ethoxycarbonyl-5-chloro-1,2-dihydroquinoline (3a) was obtained in 8% yield.

PN-(p-Toluenesulfonyl)-3-ethoxycarbonyl-7-chloro-1,2-dihydroquinoline (3b) was obtained in 10% yield.

°N-(p-Toluenesulfonyl)-3-ethoxycarbonyl-7-flouro-1,2-dihydroquinoline (3f) was obtained in 6% yield.
3-Ethoxycarbonyl-7-( p-toluenesulfonamido)quinoline (5f) was also isolated in 11% yield.
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toluenesulfinic acid occurred readily under the reaction
conditions to give the corresponding quinolines 4a—f in
a one-pot reaction. The discrepancy between 1g and
la—f might be due to the subtle difference in the acidity
of the proton at the 2-position of the corresponding
dihydroquinolines 3g and 3a—f. Depending on the sub-
strate, we could isolate low yields of 3 and/or other
compounds, such as 5f (see footnotes a—c in Table 1).
Quinoline 5f was generated from the initially formed 4f
by successive SyAr reactions with tosylamide at the
7-position.

The reaction mechanism is shown in Scheme 1 (vide
sufra) and is as follows: (1) tosylamide catalyzed succes-
sive SN2’ type reactions of la—f to form the primary
rearranged allylic tosylamides 2a—f (selective formation
of the E-isomer);?** (2) SyAr reaction with the aid of
potassium carbonate to produce dihydroquinolines 3a—
f; and, finally, (3) elimination of p-toluenesulfinic acid
gave quinolines 4a—f.

The nitrile substituted Baylis—Hillman adduct 1h pro-
duced low yields of dihydroquinoline 3h (2%) and
quinoline 4h (11%). Instead, we could obtain the rear-
ranged tosylamide derivative 2h (Z-form) as the major
product,®* which cannot undergo the requisite SyAr
reaction (Scheme 3).

It is interesting to compare these results with our
previous paper.*® As shown in Scheme 4, 4-hydroxy-3-
ethoxycarbonylquinolines can be synthesized from the
Baylis-Hillman adducts of o-nitrobenzaldehydes,*
whereas 3-ethoxycarbonylquinolines can be prepared
from the Baylis—Hillman adducts of o-halobenzalde-
hyde N-tosylimines.
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. Typical procedure for the synthesis of 4a and some

selected spectroscopic data were as follows: A stirred
solution of 1a (860 mg, 2 mmol),® tosylamide (70 mg, 0.4
mmol), and K,COj; (552 mg, 4 mmol) in N,N-dimethylfor-
mamide (5 mL) was heated at 80-90°C for 1 h. After
cooling to room temperature, the reaction mixture was
poured into a cold HCI solution and extracted with ether.
After the usual work-up process, column chromatographic
purification (hexane/ether, 8:2) gave 4a as a white solid,
360 mg (76%); mp 97-98°C; IR (KBr): 3299, 2987, 1724,
1279 em™!; '"H NMR (CDCL,): 6 1.48 (t, J=7.2 Hz, 3H),
451 (q, J=7.2 Hz, 2H), 7.66-7.78 (m, 2H), 8.09 (dt,
J=38.1 and 1.2 Hz, 1H), 9.22 (dd, /=2.1 and 0.9 Hz, 1H),
9.48 (d, J=2.1 Hz, 1H); '*C NMR (CDCl,): 6 14.33,
61.75, 124.10, 125.26, 127.45, 128.63, 131.38, 132.68,
135.44, 150.41, 150.70, 164.99; MS (70 eV) m/z (rel. int.):
99 (38), 162 (66), 190 (100), 192 (35), 207 (54), 235 (M*,
60), 237 (M*+2, 20).

. For the preparation of the Baylis—Hillman adducts la-h,

see Refs. 2b and 2c.



