
Bioorganic & Medicinal Chemistry Letters 19 (2009) 922–925
Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier .com/ locate/bmcl
Stereo-controlled synthesis of novel photoreactive c-secretase inhibitors

Guangli Yang a, Ye Ingrid Yin b�, Jiong Chun b�, Christopher C. Shelton b, Ouathek Ouerfelli a, Yue-Ming Li b,*

a Organic Synthesis Core Facility, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
b Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 September 2008
Revised 25 November 2008
Accepted 26 November 2008
Available online 7 December 2008

Keywords:
Aspartyl proteases
Alzheimer disease
Photoaffinity labeling
Secretase
Dipeptide isostere
0960-894X/$ - see front matter � 2008 Elsevier Ltd.
doi:10.1016/j.bmcl.2008.11.117

* Corresponding author. Tel.: +1 646 888 2193; fax
E-mail address: liy2@mskcc.org (Y.-M. Li).

� Present Address: Wellington Management, Boston,
� Present Address: Symrise Inc., 300 North Street, Te
The stereoselective synthesis of novel photoreactive c-secretase inhibitors 2 and 3 has been achieved.
Key steps of the strategy involve preparation of a-N-Boc-epoxide 8 and formation of lactone 14 in a prac-
tical and stereo-controlled fashion. Compounds 2 and 3 are potent c-secretase inhibitors and directly
interact with presenilin-1, a catalytic subunit of c-secretase.

� 2008 Elsevier Ltd. All rights reserved.
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c-Secretase cleaves the amyloid precursor protein (APP) to
generate b-amyloid (Ab) peptides, which are believed to play a
causative role in the pathogenesis of Alzheimer disease (AD).1 c-
Secretase is an aspartyl protease composed of at least four proteins,
including presenilin, nicastrin, APH and Pen2.2 Genetic and bio-
chemical studies have indicated that presenilin is the catalytic core
of c-secretase3–5 and as such, familial mutations of presenilin have
been associated with early on-set of AD6 through alteration of the
specificity of c-secretase. Furthermore, c-secretase represents a
novel class of protease that hydrolyzes the scissile bond within
the transmembrane domain of substrate.7,8

L-685,458 (1) (Fig. 1), a potent c-secretase inhibitor9 that
contains a hydroxyethylene isostere, can be modified into a
photoreactive compound by replacing an unsubstituted phenyl
with a benzophenone (BP). These substitutions at P2, P10 and
P30 have been synthesized and utilized to study c-secretase.4,10

However, synthesis of a photoreactive dipeptide isostere at the
P1 position has not yet been achieved. In this study, we describe
the stereo-controlled synthesis of two new analogs of L-685,458
(2 and 3, Chart 1) with BPA (benzophenone alanine) at the P1
position and demonstrate that they directly interact with
presenilin, the catalytic subunit of c-secretase. Moreover, this
novel BPA-Phe isostere could be useful as a functional unit to
synthesize active site directed inhibitors for profiling aspartyl
proteases.
All rights reserved.
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The synthesis of 2 and 3 started with the preparation of epoxide
8 using a modified Barrish–Polniaszek’s method11 (Scheme 1).
Methylation of Boc-p-Bz-Phe-OH (4) with TMSCHN2 in methanol12

provided methyl ester 5.
However, an attempt that followed the same synthetic route for

preparation of Phe-BPA isostere10 to protect benzophenone 5 as a
dioxolane using ethylene glycol, p-TsOH and benzene at reflux
for 2 days failed to generate any product. Thus, we changed our
strategy by reducing ketone to an alcohol. We intended to find con-
ditions that allow for the stereo- and regioselective reduction the
ketone of benzophenone. Initially, we treated 5 with NaBH4 at
0 �C13 with favorable stereoselectivity (85:15 dr) and 70% yield,
but this condition also led to the formation of a small amount of
reduced methyl ester. However, when we performed the same
reaction at �60 �C, we obtained the stereoselective product
(85:15 dr) in 86% yield without reducing the methyl ester. Silyla-
tion of the resulting secondary alcohol produced 6, which led to
the generation of a chiral center at the benzylic carbon. The config-
P1 P2'

Figure 1. Structure of L-685,458 (1). The side chains corresponding to the P and P0

sites are marked.
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Figure 2. X-ray crystallographic structure of 12: C37H49NSiO5, M 615.86, ortho-
rhombic P212121 (No. 19), a = 5.9239(12) Å, b = 12.923(3) Å, c = 46.419(9) Å,
V = 3553.0(12) Å3, Dc (Z = 4) = 1.151 g/cm3, T = 100 K, l = 0.106 cm�1. The final R
value is 0.2116 for 3442 independent reflections with I > 2rI and 398 parameters.
(The crystal structure of 12 has been deposited at the Cambridge Crystallographic
Data Centre with the deposition number: CCDC 710680.)
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Scheme 1. Synthesis of epoxide 8. Reagents and conditions: (a) TMSCHN2, MeOH,
0 �C to rt, 18 h, 90%; (b) NaBH4, MeOH, �60 �C, 86%; (c) TBSCl, CH2Cl2, imidazole, rt,
95%; (d) 4 equiv CH2ICl, 5 equiv LDA, THF, �78 �C; (e) 4 equiv NaBH4, MeOH,
�78–0 �C, 65%; (f) KOH, EtOH, 0 �C to rt, 95%.
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uration of 6 is assigned by X-ray crystallographic analysis of inter-
mediate 12 (Scheme 2) as described later in Figure 2. Treatment of
methyl ester 7 with excess LDA/CH2ICl provided an a-chloroke-
tone, which was reduced with NaBH4 to give chlorohydrin 7 (9:1
dr) in favor of the desired stereoisomer as demonstrated by X-
ray analysis. The two diastereoisomers of 7 were separated by col-
umn chromatography (65% yield of the desired compound, based
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Scheme 2. Synthesis of acid 15. Reagents and conditions: (a) CH2(CO2Et)2, NaOEt,
EtOH, rt, 70%; (b) LiOH/DME–H2O, 50 �C, 6 h; (c) toluene, reflux, 8 h, 60%; (d) LDA,
PhCHO, THF, �78 �C; (e) Ac2O, Et3N, 120 �C, 80% for 2 steps; (f) H2, 10% Pd/C, EtOAc,
rt, 6 h, 90%; (g) HF�Py, THF, 18 h, 83%; (h) MnO2, CH2Cl2, 18 h, 76%; (i) ia—LiOH/
DME–H2O, rt; ib—TBSCl, imidazole, DMF, rt; ic—MeOH, 79% for 3 steps.
on recovered starting material 6). Cyclization of chlorohydrin 7
produced epoxide 8 in 95% yield.14

Treatment of epoxide 8 with the sodium salt of diethyl malon-
ate directly provided lactone 9 as a mixture of stereoisomers
(Scheme 2).15 Hydrolysis of 9 with aqueous LiOH, followed by
decarboxylation gave lactone 10 in 60% yield. Aldol condensation
of 10 with benzaldehyde followed by dehydration with acetic
anhydride-triethylamine at 120 �C gave the a,b-unsaturated lac-
tone 11 in 80% yield.16 Hydrogenation of 11 with 10% Pd/C
(1 atm, 6 h) provided lactone 12 as the sole product. The assign-
ment of three chiral centers, as indicated in Scheme 2, was con-
firmed by the X-ray crystallographic analysis of 12 (Fig. 2).
Removal of the silyl group in lactone 12 with n-Bu4NF (TBAF) led
to epimerization at the a-lactone position, perhaps due to the ba-
sicity of the TBAF reagent. However, we were able to find that
treatment of 12 with pyridine/HF overnight successfully removed
the silyl protecting group to give 13 without any epimerization.17

Oxidation of the benzylic alcohol with MnO2
18 gave benzophenone

14 in 76% yield.19 Hydrolysis of lactone 14 with LiOH and silylation
of the resulting hydroxy acid produced 15 in 79% yield.

Esterification of Leu-Phe-OH with TMSCl in MeOH,20 followed
by coupling of the resulting amine with acid 15, and deprotection
of the resulting silyl ether with TBAF, produced the desired com-
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Scheme 3. Synthesis of compounds 2 and 3. Reagents and conditions: (a) TMSCl
MeOH, 0 �C to rt, 18 h, 80%; (b) 15, EDC, HOBt, i-Pr2NEt, DMF, 57%; (c) n-Bu4NF, THF
rt, 85%; (d) LiOH, THF/H2O, rt, 90%; (e) 5-(biotinamido)pentylamine, EDC, HOBt
DMF, rt, 50%.
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Figure 3. Both 2 and 3 are potent c-secretase inhibitors that directly bind to
presenilin-1. (A) Inhibitory potencies of compounds 2 and 3 against c-secretase. (B)
Scheme of photoaffinity labeling procedure. After photo-crosslinking, the biotinyl-
ated proteins were captured, eluted and analyzed by Western analysis. (C) Analysis
of photolabeled proteins. The photo-crosslinked proteins were resolved by SDS–
PAGE and probed with PS-1-NTF (N-terminal fragment) antibody.
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pound 2 in reasonable yield (Scheme 3).21 In order to facilitate the
purification of the labeled proteins or fragments thereof, biotinyl-
ated compound 3 was prepared (Scheme 3). Mild saponification
of the methyl ester in 2 led to the corresponding carboxylic acid,
which was coupled with 5-(biotinamido)pentylamine in the pres-
ence of EDC and HOBt and resulted in compound 3.

We next examined the biological activities of 2 and 3. First, we
determined their inhibitory potency against c-secretase using an
in vitro assay.22 The IC50 values of 2 and 3 are 0.7 and 0.6 nM,
respectively (Fig. 3A), which is similar to the parent compound,
L-685,458 (1). These findings have demonstrated that incorporat-
ing BPA into the P1 position and attaching a biotin tag at the C-ter-
minus do not affect their potency for inhibition of c-secretase.
Second, we tested whether 3 was capable of photo-crosslinking
to c-secretase. HeLa cell membranes were incubated with 3 at a fi-
nal concentration of 10 nM in the absence and the presence of
2 lM of L-685,458 for 2.5 h. Then samples were irradiated with
UV light (>350 nm) and the labeled proteins were solubilized and
isolated with streptavidin beads.4

The biotinylated proteins were eluted and analyzed by Western
blotting with antibodies against presenilin-1 (PS-1). Inhibitor 3 di-
rectly photolabels PS-1 (Fig. 3C). Moreover, an excess of L-685,458
is able to block photoinsertion of this probe into presenilin-1.
Taken together, these results have demonstrated that compounds
2 and 3 are potent c-secretase inhibitors that can specifically label
the catalytic core of c-secretase. Therefore, compounds 2 and 3
should be valuable probes for mapping the active site of c-
secretase.
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