

Molecular Stannatelluroxanes

Jens Beckmann,* Jens Bolsinger, and Malte Hesse

Institut für Chemie und Biochemie, Freie Universität Berlin, Germany

Received March 12, 2009

Summary: The syntheses and structures are described of the molecular stannatelluroxanes 2,4,6-t- $Bu_3C_6H_2TeO_2Sn$ -t- Bu_2Cl (4), 8- $Me_2NC_{10}H_6TeO_2Sn$ -t- Bu_2Cl (5), and (2,6- $Mes_2C_6H_3Te$) $_2O_5(Sn$ -t- Bu_2) $_2$ (6), which were obtained by the reaction of (t- Bu_2SnO) $_3$ with the respective aryltellurium trichlorides $RTeCl_3$ (R = 2,4,6-t- $Bu_3C_6H_2$, 8- $Me_2NC_{10}H_6$, 2,6- $Mes_2C_6H_3$). Compounds 4–6 were characterized by multinuclear NMR spectroscopy (1H , ${}^{13}C$, ${}^{119}Sn$, ${}^{125}Te$), ESI-TOF MS spectrometry, osmometric molecular weight determination, and X-ray crystallography.

Organostannoxane clusters and polymers have been the focus of extensive research due to their fascinating structural diversity and applications in catalysis and material science.¹ Attempts to incorporate a second heavy element into the structure of organostannoxanes are motivated by the possibility to develop more advanced catalysts with multiple active centers. However, so far only very few compounds containing Sn–O–E linkages (E = heavy element) are known. We recently reported that the reaction of $(t-Bu_2SnO)_3$

with (p-MeOC₆H₄)₂TeO using a Sn/Te ratio of 1:1 quantitatively provides the hypervalent stannatelluroxane $[p-\text{MeOC}_6\text{H}_4)_2$ TeOSn*t*-Bu₂O]₂ (1).^{2,3} Solutions of 1 rapidly absorb gaseous CO₂, giving a tetranuclear stannatelluroxane carbonate cluster $[(p-MeOC_6H_4)_2TeOSnt-Bu_2CO_3]_2$ (2).² Unlike most metal carbonates, 2 possesses three unevenly long C–O bonds due to the different coordination modes with the Sn and Te atoms, a useful characteristic when pursuing bond activation within carbonates. While salt-like carbonates are often thermally very stable, 2 liberates CO₂ upon heating above 90 °C. These properties make 2 a promising candidate for applications in the fixation and activation of CO₂. Another stannatelluroxane, [(p- $MeOC_6H_4$)₂Te(OSn-t-Bu₂OH)₂] (3), was obtained by the reaction of (t-Bu₂SnO)₃ with (p-MeOC₆H₄)₂TeO using a Sn/Te ratio of 2:1 in the presence of moisture.³ Two molecules of 3 interacted to give dimers in the solid state. The structural characterization of 2 and 3 has revealed the importance of hypervalent and secondary bonding for the fixation of CO₂, the degree of aggregation, and the supramolecular association.

In an effort to obtain deeper insight into the formation of stannatelluroxanes and their ability to absorb CO₂, we have now studied the reaction of di-*tert*-butyltin oxide with known aryltellurium trichlorides at various stoichiometric ratios (Scheme 1). The reaction of $(t-Bu_2SnO)_3$ with 2,4,6-*t*-Bu₃C₆H₂TeCl₃ and 8-Me₂NC₁₀H₆TeCl₃, respectively, using a Sn/Te ratio of 2:1 exclusively provided the dinuclear stannatelluroxanes 2,4,6-*t*-Bu₃C₆H₂TeO₂Sn*t*-Bu₂Cl (**4**) and 8-Me₂NC₁₀H₆TeO₂Sn*t*-Bu₂Cl (**5**), respectively, and *t*-Bu₂SnCl₂. Under the same conditions, the reaction of $(t-Bu_2SnO)_3$ with 2,6-Mes₂C₆H₃TeCl₃ proceeded with complete oxide transfer and produced the dimeric aryltellurium oxo chloride [2,6-Mes₂C₆H₃Te(O)Cl]₂⁴ and *t*-Bu₂SnCl₂. At a Sn/Te ratio of 5:2 the reaction of $(t-Bu_2SnO)_3$ with 2,6-Mes₂C₆H₃TeCl₃ afforded the tetranuclear stannatelluroxane (2,6-Mes₂C₆H₃Te)₂O₅(Sn-t-Bu₂)₂ (**6**). Further variation of the Sn/Te ratios provided no other stannatelluroxane products. Alternatively, **6** also was obtained by the condensation reaction of (t-Bu₂SnO)₃ with the aryltellurinic acid [2,6-Mes₂C₆H₃Te(O)OH]₂. Compounds **4**–**6** were isolated as colorless crystals in high yields and are rare examples of molecular oxides incorporating two heavy main group elements.

The molecular structures of 4-6 are shown in Figures 1-3, and selected bond parameters are collected in the captions of the figures. The spatial arrangement of the Sn atoms is

^{*}Corresponding author. E-mail: beckmann@chemie.fu-berlin.de.

⁽¹⁾ Reviews and references cited therein: (a) Holmes, R. R. Acc. Chem. Res. **1989**, 22, 190. (b) Jain, V. K. Coord. Chem. Rev. **1994**, 135– 136, 809. (c) Beckmann, J.; Jurkschat, K. Coord. Chem. Rev. **2001**, 215, 267. (d) Chandrasekhar, V.; Nagendran, S.; Baskar, V. Coord. Chem. Rev. **2002**, 235, 1. (e) Chandrasekhar, V.; Gopal, K.; Thilagar, P. Acc. Chem. Res. **2007**, 40, 420.

⁽²⁾ Beckmann, J.; Dakternieks, D.; Duthie, A.; Lewcenko, N. A.; Mitchell, C. Angew. Chem., Int. Ed. 2004, 43, 6683.

⁽³⁾ Beckmann, J.; Dakternieks, D.; Duthie, A.; Mitchell, C. Dalton Trans. 2005, 1563.

⁽⁴⁾ Beckmann, J.; Finke, P.; Hesse, M.; Wettig, B. Angew. Chem., Int. Ed. 2008, 47, 9982.

Figure 1. Molecular structure of 4 showing 30% probability displacement ellipsoids and the atom numbering. Selected bond parameters [Å, deg]: Sn1-O1 2.247(6), Sn1-O2 2.084(7), Sn1-C11 2.461(3), Sn1-C50 2.17(1), Sn1-C60 2.178(1), Te1-O1 1.855(6), Te1-O2 1.886(7), Te1-C10 2.138(9), O1-Sn1-O2 72.4(3), O1-Sn1-C11 155.0(2), O1-Sn1-C50 97.3(4), O1-Sn1-C60 90.4(4), O2-Sn1-C11 82.8(2), O2-Sn1-C50 118.6(4), O2-Sn1-C60 118.0(4), C11-Sn1-C50 96.4(3), C11-Sn1-C60 99.6(4), C50-Sn1-C60 122.5(4), O1-Te1-O2 86.4(3), O1-Te1-C10 97.2(3), O2-Te1-C10 100.0(3), Sn1-O1-Te1 98.1(3), Sn1-O2-Te1 103.0(3).

distorted trigonal bipyramidal, and the Sn-O bond lengths are in the expected range for single bonds. The axial Sn-Cl bond lengths of 4 (2.461(3) Å) and 5 (2.517(3) Å) are somewhat longer than those in t-Bu₂SnCl₂ (2.334(1) and 2.335 Å).⁵ Taking into account the stereochemically active lone pair, the spatial arrangement of the Te atoms is distorted tetrahedral for 4 (CO_2 donor set), distorted octahedral for 5 $(CO_2 + NO \text{ donor set})$, and distorted trigonal bipyramidal for 6 (CO₂+O donor set), respectively. The primary Te-O bond lengths of 4 (1.855(6), 1.886(7) Å), 5 (1.900(6), 1.944(5) Å), and 6 (1.857(6)-1.874(7) Å) are significantly shorter than the standard Te-O single bond of [(4- $MeOC_6H_4)_2TeO_{l_n}$ (2.025(2) and 2.100(2) Å),⁶ pointing to a bond order of approximately 1.5. The intramolecular Te···N contact of 5 (2.533(8) Å) is longer than that in $8-Me_2NC_{10}H_6TeCl_3$ (2.420(3) Å), suggesting a reduced

Figure 2. Molecular structure of 5 showing 30% probability displacement ellipsoids and the atom numbering. Symmetry code used to generate equivalent atoms: a = 2-x, 1-y, 1-z. Selected bond parameters [Å, deg]: Sn1–O1 2.165(6), Sn1–O2 2.075(5), Sn1–C20 2.210(8), Sn1–C30 2.160(8), Sn1–C11 2.517(4), Te1–O1 1.900(6), Te1–O2 1.944(5), Te1···O2a 2.650(6), Te1···N1 2.533(8), Te1–C10 2.123(8), O1–Te1–O2 82.8(2), O1–Te1–C10 99.6(3), O2–Te1–C10 95.8(3), O1–Sn1–O2 73.6(2), O1–Sn1–C11 155.8(2), O1–Sn1–C20 99.3(3), O1–Sn1–C30 92.0(3), O2–Sn1–C11 82.7(2), O2–Sn1–C20 117.1(3), O2–Sn1–C30 120.1(3),C11–Sn1–C30 95.9(2), C11–Sn1–C20 95.6(2), C20–Sn1–C30 122.6(3), Sn1–O1–Te1 100.9(2), Sn1–O2–Te1 102.6(2).

Lewis acidity of the Te atom. Besides the primary coordination sphere, **5** reveals two symmetry-related intermolecular secondary Te···O contacts (2.650(6) Å), which link two molecules into a centrosymmetric dimer in the crystal lattice. Compound **6** shows two intramolecular Te···O contacts (2.581(7) and 2.588(7) Å) to the Sn–O–Sn linkage (146.9(3)°). Compound **4** lacks any secondary interactions due to the confined space around the Te atom. Due to servere repulsion of the inorganic moiety with the *tert*-butyl groups in *ortho*positions, the Te atom is not coplanar with the phenyl ring of the 2,4,5-tri-*tert*-butylphenyl substituent (largest deviation from the ideal plane 0.299(5) Å).⁸

Compounds **4** and **6** are reasonably soluble in polar solvents such as CHCl₃ and THF, whereas **5** is only poorly soluble in most solvents. The ¹²⁵Te NMR spectrum (CDCl₃) of 2,4,6-*t*-Bu₃C₆H₂TeO₂Sn-*t*-Bu₂Cl (**4**) shows a signal at δ = 1748.6 with unresolved Sn satellites (²J(¹²⁵Te^{-119/117}Sn) = 196 Hz), which is only slightly shifted compared to the parent compound 2,4,6-*t*-Bu₃C₆H₂TeCl₃ (δ = 1791.0).⁸ The ¹¹⁹Sn NMR spectrum (CDCl₃) of **4** displays a signal at δ = -128.3 with Te satellites (²J(¹¹⁹Sn⁻¹²⁵Te) = 196 Hz), which agrees well with the spatial arrangement of the pentacoordinated Sn atom and the C₂O₂Cl donor set. The ¹H and ¹³C NMR spectra of **4** show that the two *tert*-butyl groups are magnetically inequivalent, which is in good agreement with the molecular structure established by X-ray crystallography. The ¹²⁵Te NMR spectrum (CDCl₃) of 8-Me₂N-C₁₀H₆TeO₂Sn-*t*-Bu₂Cl (**5**) shows a signal at δ = 1529.3

⁽⁵⁾ Dakternieks, D.; Jurkschat, K.; Tiekink, E. R. T. Main Group Met. Chem. 1994, 17, 471.

⁽⁶⁾ Beckmann, J.; Dakternieks, D.; Duthie, A.; Ribot, F.; Schümmann, M.; Lewcenko, N. A. Organometallics **2003**, *22*, 3257.

⁽⁷⁾ Beckmann, J.; Bolsinger, J.; Duthie, A. Manuscript in preparation.

⁽⁸⁾ Beckmann, J.; Heitz, S.; Hesse, M. Inorg. Chem. 2007, 46, 3275.

Figure 3. (a) Molecular structure of 6 showing 30% probability displacement ellipsoids and the atom numbering scheme and (b) inorganic core of 6. Selected bond parameters [Å, deg]: Sn1-O3 2.165(6), Sn1-O4 2.174(6), Sn1-O5 1.997(5), Sn1-C70 2.10 (1), Sn1-C80 2.21(1), Sn2-O1 2.162(7), Sn2-O2 2.142(7), Sn2-O5 2.016(5), Sn2-C90 2.07(1), Sn2-C100 2.24(2), Te1-O1 1.869(7), Te1-O4 1.857(6), Te1...O5 2.588(7), Te1-C10 2.199(6), Te2-O2 1.874(7), Te2-O3 1.858(7), Te2···O5 2.581 (7), Te2-C40 2.169(7), O3-Sn1-O4 155.5(2), O3-Sn1-O5 79.3(2), O4-Sn1-O5 79.4(2), O3-Sn1-C70 93.1(3), O3-Sn1-C80 98.7(4), O4-Sn1-C70 92.8(3), O4-Sn1-C80 98.2(4), O5-Sn1-C70 133.1(4), O5-Sn1-C80 104.7(5), C70-Sn1-C80 122.1(6), O1-Sn2-O2 156.3(3), O1-Sn2-O5 79.6(2), O2-Sn2-O5 79.5(2), O1-Sn2-C90 91.6(3), O1-Sn2-C100 99.6(3), O2-Sn2-C90 94.2(3), O2-Sn2-C100 96.7(3), O5-Sn2-C90 132.2(4), O5-Sn2-C100 105.9(4), C90-Sn2-C100 121.9(5), O1-Te1-O4 105.1(3), O1-Te1-C10 96.5(3), O4-Te1-C10 98.1(3), O2-Te2-O3 105.6(3), O2-Te2-C40 98.6(3), O3-Te2-C40 97.1(3), Sn1-O5-Sn2 146.9(3), Sn1-O4-Te1 111.8(3), Sn1-O3-Te2 111.5(3), Sn2-O1-Te1 111.4 (3), Sn2-O2-Te2 112.5(4).

 $(\omega_{1/2} = 42 \text{ Hz})$, which is shifted to higher frequencies compared to the parent compound 8-Me₂NC₁₀H₆TeCl₃ ($\delta = 1317.1 \text{ (CDCl}_3)$).⁷ The ¹¹⁹Sn NMR spectrum (CDCl₃) of **5** exhibits a signal at $\delta = -149.1 (\omega_{1/2} = 89 \text{ Hz})$, which is also consistent with the spatial arrangement of the pentacoordinated Sn atom and the C₂O₂Cl donor set. No satellites were observed due to the poor signal-to-noise ratio (acquisition

time for each spectrum 24 h). Like the ¹¹⁹Sn NMR signal, the ¹H and ¹³C NMR chemical shifts of **5** were slightly broad, which is explained by a dynamic exchange process, namely, a monomer-dimer equilibrium in solution. This is supported by an osmometric molecular weight determination, which reveals a degree of association of 1.64 in CHCl₃. An attempt to measure a reasonable ¹²⁵Te and ¹¹⁹Sn NMR spectrum of 5 at -20 °C failed due to the poor solubility. The ¹²⁵Te NMR $(CDCl_3)$ of $(2,6-Mes_2C_6H_3Te)_2O_5(Sn-t-Bu_2)_2$ (6) shows a signal at $\delta = 1613.5 \ (\omega_{1/2} = 42 \text{ Hz})$, which is shifted to higher frequencies when compared to $[2,6-\text{Mes}_2\text{C}_6\text{H}_3\text{Te}(\text{O})\text{OH}]_2$ ($\delta = 1403$).⁴ The ¹¹⁹Sn NMR spectrum (CDCl₃) of **6** shows a signal at $\delta = -253.3$ with Sn $(^2J^{(119}Sn^{-117}Sn) = 528$ Hz) and Te satellites $(^2J^{(119}Sn^{-125}Te) = 32$ Hz) that are consistent with the spatial arrangement of the pentacoordinated Sn atoms and the C₂O₃ donor set. While the magnitude of the ${}^{2}J({}^{119}\text{Sn}-{}^{117}\text{Sn})$ coupling agrees well with the wide Sn-O-Sn angle,⁹ no explanation can be given for the small ${}^{2}J({}^{119}\text{Sn}-{}^{125}\text{Te})$ coupling at this point in time. The ¹H and ¹³C NMR spectra show two sets of signals for the magnetically inequivalent tert-butyl groups, confirming that the molecular structure is retained in solution. Stannatelluroxanes 4-6 were also characterized by ESI-TOF MS spectrometry, a method that allows the detection of (trace amounts of) ionic species formed by autoionization in solution. For 4 and 5, significant mass clusters were detected in the positive mode of the cations $[(RTe)_3 t-Bu_2 SnO_5]^+$, $[(RTe)_2t$ -Bu₂SnO₃(OH)]⁺, [(RTe)t-Bu₂SnO(OH)Cl]⁺, and $[(RTe)t-Bu_2SnO_2]^+$ (R = 2,4,6-t-Bu_3C_6H_2, 8-Me_2NC_{10}H_6), respectively, whereas 6 showed a mass cluster for the cation $[(RTe)_2(t-Bu_2Sn)_2O_4(OH)]^+$ (R = 2,6-Mes₂C₆H₃).

In an effort to investigate their ability to fix carbon dioxide, solid and liquid samples of **4** and **6** in CDCl₃ were treated with gaseous CO₂ at room temperature. No reaction was observed by means of IR and NMR spectroscopy. Thus, unlike $[p-MeOC_6H_4)_2$ TeOSn-*t*-Bu₂O]₂(**1**),^{2,3} no evidence for the formation of stannatelluroxane carbonates was found.

Experimental Section

General Considerations. The starting compounds (*t*-Bu₂S-nO)₃,¹⁰ 2,4,6-*t*-Bu₃C₆H₂TeCl₃,⁸ 8-Me₂NC₁₀H₆TeCl₃,⁷ 2,6-Mes₂C₆H₃TeCl₃, and [2,6-Mes₂C₆H₃Te(O)OH]₂⁴ were prepared according to a literature procedure. The solution ¹H, ¹³C, ¹¹⁹Sn, and ¹²⁵Te NMR spectra were collected using a Jeol JNM-LA 400 FT spectrometer and a Jeol Eclipse + 500 FT spectrometer and are referenced against Me₄Si, Me₄Sn, and Me₂Te. Electrospray ionization time-of-flight ESI-TOF mass spectra were measured on an Agilent 6210 mass spectrometer (Agilent Technologies, Santa Clara, CA). Solvent flow rate was adjusted to 4 μ L/min. The spray voltage and skimmer voltage were set to 4 kV and 150 V, respectively. Molecular weights were determined using a Knauer vapor pressure osmometer. Microanalyses were obtained from a Vario EL elemental analyzer.

Synthesis of 4–6. A solution or suspension of the appropriate aryltellurium trichloride (240 mg of 2,4,6-t-Bu₃C₆H₂TeCl₃, 202 mg of 8-Me₂NC₁₀H₆TeCl₃, 273 mg of 2,6-Mes₂C₆H₃TeCl₃; 0.50 mmol) and (*t*-Bu₂SnO)₃ (246 mg, 0.33 mmol for 4 and 5; 620 mg, 0.83 mmol for 6) in THF (60 mL) was stirred at rt for 6 h. The volume of the solution was reduced to

⁽⁹⁾ Lockhart, T. P.; Puff, H.; Schuh, W.; Reuter, H.; Mitchell, T. N. J. Organomet. Chem. 1989, 366, 61.

⁽¹⁰⁾ Puff, H.; Schuh, W.; Sievers, R.; Wald, W.; Zimmer, E. J. Organomet. Chem. 1984, 260, 271.

Table 1. Crystal Data and Structure Kennement of 4 ⁻¹	Table 1.	Crystal Data	and Structure	Refinement of	4 - 6
--	----------	--------------	---------------	---------------	-------

	4	5.THF	6
formula	C ₂₆ H ₄₇ ClO ₂ SnTe	C ₂₄ H ₃₈ ClNO ₃ SnTe	C ₆₄ H ₈₆ O ₅ Sn ₂ Te ₂
fw, $g mol^{-1}$	673.38	670.29	1427.91
cryst syst	monoclinic	triclinic	monoclinic
cryst size, mm	0.31 imes 0.18 imes 0.07	0.25 imes 0.21 imes 0.08	0.50 imes 0.13 imes 0.05
space group	$P2_1/n$	$P\overline{1}$	C2/c
a, Å	11.949(2)	8.56(1)	21.52(1)
b, Å	10.2751(8)	12.65(1)	21.417(5)
c, Å	25.423(3)	12.90(2)	29.85(1)
α, deg	90	100.4(1)	90
β , deg	91.64(1)	92.4(1)	96.22(4)
γ , deg	90	90.39(9)	90
$V, Å^{\overline{3}}$	3120.1(7)	1373(3)	13676(9)
Z	4	2	8
$\rho_{\rm calcd}$, Mg m ⁻³	1.433	1.622	1.387
<i>T</i> , K	150	150	150
μ (Mo K α), mm ⁻¹	1.839	2.093	1.608
<i>F</i> (000)	1352	664	5712
θ range, deg	1.86 to 25.25	2.08 to 29.20	2.22 to 29.29
index ranges	$-14 \le h \le 14$	$-11 \le h \le 11$	$-29 \le h \le 29$
-	$0 \le k \le 12$	$-17 \le k \le 17$	$-29 \le k \le 24$
	$0 \le l \le 30$	$-17 \le l \le 17$	$-40 \le l \le 40$
no. of reflns collected	5643	14890	65 721
completeness to θ_{max}	99.8%	98.2%	97.7%
no. indep reflns	5643	7303	18 258
no. obsd reflns with $(I > 2\sigma(I))$	3258	2371	5397
no. refined params	275	280	730
$\operatorname{GooF}(F^2)$	0.866	0.994	0.958
$R_1(F)(I > 2\sigma(I))$	0.0530	0.0375	0.0570
wR_2 (F^2) (all data)	0.1543	0.0844	0.1149
$(\Delta/\sigma)_{\rm max}$	< 0.001	< 0.001	< 0.001
largest diff peak/hole, e $Å^{-3}$	0.972/-1.600	0.602/-0.940	0.900/-0.713

10 mL under vacuum. Colorless single crystals of 4, $5 \cdot \text{THF}$, and 6 were obtained within 12 h. The crystals of $5 \cdot \text{THF}$ were dried for 2 h at 40 °C under vacuum to give an analytical sample of 5.

2,4,6-*t***-Bu₃C₆H₂TeO₂Sn-***t***-Bu₂Cl (4). Yield: 272 mg, 0.41 mmol; 81%. ¹H NMR (CDCl₃): \delta 7.37 (s, 2H; Ar), 1.49 (s, 18H; CH₃), 1.38 (s, 9H; CH₃), 1.24 (s, 18H; CH₃). ¹³C NMR (CDCl₃): \delta 156.7, 152.3, 149.8, 141.5, 125.5, 119.39 (Ar), 45.1, 42.1, 39.7, 34.7, 33.8, 31.5, 31.4, 30.4 (CMe₃). ¹¹⁹Sn NMR (CDCl₃): \delta – 128.3 (²***J***(¹¹⁹Sn⁻¹²⁵Te)=196 Hz). ¹²⁵Te NMR (CDCl₃): \delta 1748.6 (²***J***(¹²⁵Te^{-119/117}Sn) = 196 Hz). Anal. Calcd for C₂₆H₄₇ClO₂SnTe (673.41): C, 46.37; H, 7.03. Found: C, 46.25; H, 6.78. ESI-TOF MS:** *m***/***z* **1433.4 [C₆₂H₁₀₅O₅Te₃Sn]⁺, 1044.1 [C₄₄H₇₇O₄Te₂Sn]⁺, 675.1 [C₂₆H₄₈O₂SnTeCl]⁺, 639.2 [C₂₆H₄₇O₂SnTe]⁺.**

8-Me₂NC₁₀H₆TeO₂Sn-*t***-Bu₂Cl (5). Yield: 147 mg, 0.25 mmol; 50%. ¹H NMR (CDCl₃): \delta 8.68 (d, 2H; Ar), 8.05 (d, 2H; Ar), 7.87–7.81 (m, 4H; Ar), 7.59–7.57 (m, 4H; Ar), 3.34 (s, 12 H, NCH₃), 1.03 (s, 36 H, CCH₃). ¹³C NMR (CDCl₃): \delta 148.6, 140.9, 134.9, 131.9, 131.6, 131.3, 127.6, 127.4, 126.8, 119.7 (Ar), 47.9 (NMe₂), 40.9 (***C***Me₃), 29.8 (***CMe₃***). ¹¹⁹Sn NMR (CDCl₃): \delta – 149.1 (\omega_{1/2} = 89 Hz). ¹²⁵Te NMR (CDCl₃): \delta 1529.3 (\omega_{1/2} = 42 Hz). Anal. Calcd for C₂₀H₃₀ClNO₂TeSn (598.22): C, 40.15; H, 5.05; N, 2.34. Found: C, 39.99; H, 4.84; N, 2.28. ESI-TOF MS:** *m***/***z* **1208.0 [C₄₄H₅₄N₃O₅SnTe₃]⁺, 895.0 [C₃₂H₄₃N₂O₄SnTe₂]⁺, 600.0 [C₂₀H₃₁NO₂SnTeCl]⁺, 564.0, [C₂₀H₃₀NO₂SnTe]⁺. MW: 981 g mol⁻¹ (***c* **10–25 mg/g CHCl₃).**

(2,6-Mes₂C₆H₃Te)₂O₅(Snt-Bu₂)₂ (6). Yield: 550 mg, 0.39 mmol, 77%. ¹H NMR (CDCl₃): δ 7.47 (t, 1H; Ar), 7.03 (d, 2H; Ar), 6.82 (s, 4H; Ar), 2.29 (s, 6H; CH₃), 2.0 (s, 12H; CH₃), 0.95 (s, 9H; CH₃), 0.88 (s, 9H; CH₃). ¹³C NMR (CDCl₃): δ 146.3, 146.1, 137.5, 136.7, 136.4, 130.9, 129.3, 128.1 (Ar), 41.5, 35.5 (CMe₃), 30.2, 29.9 (CMe₃), 21.4, 21.0 (ArMe). ¹¹⁹Sn NMR (CDCl₃): δ – 253.3 (²J(¹¹⁹Sn⁻¹¹⁷Sn) = 528 Hz, ²J(¹¹⁹Sn^{-O⁻¹²⁵Te) = 32 Hz). ¹²⁵Te NMR (CDCl₃): δ 1613.5 ($\omega_{1/2}$ = 42 Hz). Anal. Calcd for C₆₄H₈₆O₅Sn₂Te₂ (1427.98): C, 53.83; H, 6.07. Found: C, 53.86; H, 5.91. ESI-TOF MS: *m*/*z* 1429.3 [C₆₄H₈₇O₅Sn₂Te₂]⁺.} Alternative Synthesis of 6. A solution of $[2,6-Mes_2C_6H_3Te(O)-OH]_2$ (474 mg; 0.50 mmol) and (*t*-Bu₂SnO)₃ (246 mg; 0.33 mmol) in toluene (50 mL) was heated under reflux in a Dean–Stark apparatus for 2 h. The volume of the solution was reduced to 10 mL under vacuum. Colorless single crystals of 6, which were obtained within 12 h, were isolated by filtration. Yield: 542 mg, 0.38 mmol, 76%.

X-ray Crystallography. Intensity data of 4-6 were collected on a STOE IPDS 2T area detector with graphite-monochromated Mo K α (0.7107 Å) radiation. The structures were solved by direct methods and difference Fourier synthesis using SHELXS-97 and SHELXL-97 implemented in the program WinGX 2002.11 Full-matrix least-squares refinements were done on F^2 , using all data. All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were included in geometrically calculated positions using a riding model and were refined isotropically. Disorder of the inorganic core of 6 was resolved with split occupancies of 0.75 (Te1, Te2, Sn1, Sn2, and O1-O5) and 0.25 (Te1', Te2', Sn1', Sn2', and O1'-O5'). Crystal and refinement details are collected in Table 1. Crystallographic data (excluding structure factors) for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC numbers 733996 (4), 733997 (5), and 733998 (6). Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Acknowledgment. The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support.

Supporting Information Available: This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹¹⁾ Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.