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Abstract—Treatment of cyclic ketones, e.g. 4, with tungsten hexachloride (WCly) provided good yields of vinyl chlorides, e.g. 5,
and/or gem-dichlorides. A trans-diequatorial dichloride 9 was prepared by treatment of the corresponding epoxide 8 with WCl,.
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For a projected synthesis of several chloride-containing
naturally-occurring terpenoid antitumor agents, e.g. the
lissoclimides 1ab' and the reticulidins 2ab,> among oth-
ers,® we required a good method for the conversion of
a hindered cyclohexanone into the corresponding vinyl
chloride. Because of the severe 1,3-diaxial methyl-
methyl interaction in the trimethyldecalone system, we
wanted to avoid strongly acidic or very vigorous condi-
tions that might cause cationic skeletal rearrangements,
e.g. Wagner-Meerwein or Westphalen, to occur to
relieve the steric strain. We report herein the use of
tungsten hexachloride (WClg) under mild conditions for
this and several other interesting transformations.*

HQ, H g

MW'

2a X = OH reticulidin A
2b X = H deoxyreticulidin A

1a X = Cl dichlorolissoclimide
1b X = H chlorolissoclimide

Racemic methylated Wieland-Miescher ketone 3° was
converted, via the known hydroxy trimethyl ketone®
into the acetoxy ketone 4. Treatment of 4 with commer-
cially available tungsten hexachloride in dichloro-
methane solution under vigorous reflux (bath tempera-
ture 45°C) for 20 min afforded the desired vinyl chlo-
ride 5 in excellent yield.” The structure of 5 was easily
assigned by NMR spectroscopy, both proton (¢ 5.6, dd,
J=6.7, 2.3 Hz) and carbon (J 141.2, 121.5).3° This is in
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contrast to the previously reported claim that ketones
(and aldehydes) do not undergo chlorination with
WCl..'° As has previously been postulated for the
formation of vinyl halides,'! the intermediacy of the
chloro carbocation A is very likely, which then loses a
proton to afford the vinyl chloride.
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Two further noteworthy points are that the acetate
survives these conditions untouched and that no skele-
tal rearrangements occur under these mild conditions.
The structurally analogous diketone 6 (casily prepared
from 3) was treated with WCl; under similar conditions
to furnish the bis-vinyl chloride 7 also in excellent yield.
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Again the proton NMR spectroscopy’ allowed the
assignment of structure and no rearrangement was
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observed. The synthesis of dichlorolissoclimide 1a
requires a trans-diequatorial dichloride which can be
made from the corresponding trans-diaxial dichloride on
heating neat at greater than 200°C,'? which unfortu-
nately destroys all but the most stable functional groups.
In order to allow more functionality in the final dichlo-
ride, we decided to investigate the possibility of convert-
ing the more available o,a-epoxide 8 into the dichloride
9 under mild conditions with tungsten hexachloride.!®
Treatment of 8 with WCl; at 45°C for 10 min gave the
trichloride 9 in 80% yield. Again proton and carbon
NMR spectroscopy’ were used to assign the structure
with the diequatorial dichloride being indicated by the
trans diaxial protons (6 5.68, dd, J=5.0, 2.7 Hz; 4.17,
ddd, J=12.4, 11.8, 44 Hz and ¢ 3.69, d, J=11.8 Hz).

M

Thus, both functional groups reacted well, the ketone
giving the expected vinyl chloride and the epoxide giving
only the more stable frans-diequatorial dichloride. Pre-
sumably the epoxide 8 is opened by tungsten hexachlo-
ride to give the axial chloro alkoxide complexed to
tungsten B which can then undergo loss of the very good
leaving group, namely WCI;O anion (which would give
WCI,0 and chloride ion), to generate the chloronium ion
C."3 Opening of this chloronium ion by chloride at C-3
would then generate the trans-diequatorial dichloride 9
as observed.

2eqWClg

CH20|2
45 °C/10 m|n
Me H

80%

H Me

Cl Me
Me WCI Me
[0) Me H

H c:|4w\O Me

Me
—OWCI4>H _> CCI

Not all ketones afford vinyl chlorides under these condi-
tions. Cyclohexanone 10 and adamantanone 11 both
furnished the corresponding gem-dichlorides 12'* and
13" when treated with tungsten hexachloride under
similar conditions in moderate yields (no attempts were
made to optimize the yields of these reactions).
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Although we observed no skeletal rearrangements in any
of the reactions described above, in certain cases rear-
rangement products could be obtained in high yield.
Thus treatment of D-camphor 14 with tungsten hexachlo-
ride for 4 h afforded an 80% yield of the known'¢
2-chloro-p-cymene 15. Presumably the reaction occurs
via the chloro carbocation D which could lose a proton
as described above to give the known!” strained vinyl
chloride 16 but instead undergoes a rearrangement to
give the tertiary carbocation E (driven by relief of ring
strain) which can then lose a proton to afford the diene
F. Acid-catalyzed isomerization of the exocyclic alkene
into the ring would afford the diene G which then must
suffer an oxidation to give the final aromatic product. We
have no hypothesis for the source of this oxidation.
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In a similar manner, norbornanone 17 also furnished a
rearranged product, namely the known dichloride 188 in
fair yield (again no attempts at optimization were made).
This is a fairly common rearrangement pathway for
norbornyl cations and the exo chloride is the expected

product!'® via the rearrangement of the chloro carboca-
tion H.
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Simple acyclic ketones give mixtures of products (includ-
ing some vinyl chlorides) as do sterically hindered
cyclopentanones and relatively unhindered cyclic
ketones. These processes are not yet synthetically useful.

In summary, we have shown that hindered cyclohex-
anones give good yields of vinyl chlorides when treated
with tungsten hexachloride while simple ketones afford
gem-dichlorides under similar treatment. Epoxides give
the trans-diequatorial dichlorides in good yield. Bicy-
clo[2.2.1]heptyl ketones afford the products of rearrange-
ment in generally good yields. The further synthetic
utility of this reaction is currently under investigation in
our laboratories.
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pound 5: 'TH NMR (CDCl;, 400 MHz) J: 5.60 (dd, 1H,
J=6.7, 2.3 Hz), 4.39 (dd, 1H, J=11.4, 4.1 Hz), 2.04 (s,
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synthesis of 5 via treatment of the corresponding known
ketoalcohol with methanesulfonic acid and acetyl chlo-

3H), 1.10-2.00 (m, 9H), 1.06 (s, 3H), 0.97 (s, 3H), 0.94 (s,
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1H), 1.52 (m, 1H), 1.16 (s, 3H), 1.16 (s, 3H), 1.07 (s, 3H).
13C NMR (CDCl,, 125 MHz) 6: 141.4, 1409, 124.1,
121.6, 50.8, 40.4, 39.8, 38.2, 29.0, 27.0, 19.8, 19.3, 18.9.
Compound 9: 'H NMR (CDCl,, 500 MHz) 6: 5.67 (dd,
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52.2,47.0, 42.0, 41.8, 29.6, 27.1, 19.7, 17.8. IR (thin film):
2975, 1644, 1467, 1395, 1381, 985, 951, 889, 845, 779
cm~!. High resolution MS (EI, m/z): 280.0547, calcd for
C,3H,,Cl; 280.0552.
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