REACTIONS OF CINNOLINE, CINNOLINE N-OXIDES, AND THEIR CHLORO DERIVATIVES WITH ALKYLAMINES: THE FIRST CASE OF NUCLEOPHILIC SUBSTITUTION OF HYDROGEN IN THE CINNOLINE SERIES*

N. A. Buluchevskaya, A. V. Gulevskaya, and A. F. Pozharskii

In contrast to cinnoline and cinnoline $N_{(1)}$ -oxide, cinnoline $N_{(2)}$ -oxide reacts with primary and secondary amines on prolonged heating or in the presence of oxidants to give 3-alkylaminocinnolines.

Keywords: 3-alkylaminocinnolines, 4-alkylaminocinnolines, 4-chlorocinnoline $N_{(1)}$ -oxide, 4-chlorocinnoline $N_{(2)}$ -oxide, cinnoline, cinnoline $N_{(1)}$ -oxide, cinnoline $N_{(2)}$ -oxide, aminodehalogenation, nucleophilic substitution of hydrogen, oxidative amination.

We have recently discovered that not only does 6,8-dimethylpyrimido[4,5-*c*]pyridazin-5,7(6H,8H)-dione (1) undergo oxidative monoamination [1], which is general for neutral diazines, but it also has the unprecedented capability to undergo tandem $S_N^{H}-S_N^{H}$ reactions under the influence of bifunctional nucleophiles [2, 3]. Thus oxidative amination of the pyridazinouracil 1 with α, ω -diaminoalkanes to form polynuclear diamines 2 [2], and its reactions with alicyclic dialkylamines or aliphatic aldimines in the presence of an oxidizing agent is accompanied by annelation of a pyrrole ring to the heterocyclic starting material to give compound 3 [3].

* Dedicated to Professor S. Gronowitz on his 75th Birthday.

Rostov State University, Rostov-on-Don 344090, Russia; e-mail: AGulevskaya@chimfak.rsu.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, 91-100, January 2003. Original article submitted July 13, 2001; revision submitted April 10, 2002.

It seemed interesting to extend these reactions to other substrates which, like molecule 1, have two neighbouring electron-deficient carbon atoms in the pyridazine ring. In this work the simplest of the condensed pyridazines, cinnoline 4, and its $N_{(1)}$ - and $N_{(2)}$ -oxides (5 and 6) were used as substrates.

The starting N-oxide **5** and **6** were obtained by oxidation of cinnoline with peracetic acid. It was previously reported [4, 5] that a mixture of the mono N-oxides **5** (mp 110.5-111.5°C) and **6** (mp 125-126°C) and the cinnoline 1,2-dioxide was produced in this reaction with yields of 26, 49, and 0.3% respectively. We have established from a comparative analysis of the ¹H NMR spectra of cinnoline, and its N-oxides (Table 1) that the predominant product was erroneously ascribed the structure of the N₍₂₎-oxide. Evidently that the protons adjacent to the N \rightarrow O group, H(3) in the N₍₂₎-oxide **6** and H(8) in the N₍₁₎-oxide **5**, should experience its shielding anisotropic effect, leading to a shift of the corresponding signals to stronger field in comparison with the spectrum of cinnoline (δ H(3) 9.28, δ H(8) 8.51 ppm). In the spectrum of the N-oxide with mp 125-126°C the H(8) signal (δ 7.90 ppm) is noticeably shifted to stronger field, which corresponds to structure **5**, while in the spectrum of the compound with mp 110-111°C the signal of H(3) (δ 8.28 ppm) shows the greatest shift, which corresponds to compound **6**. We used the N-oxide with mp 110-111°C as the starting material in the synthesis of 3-alkylaminocinnolines.

To our surprise there are no reports in the literature of nucleophilic substition of hydrogen in cinnoline (e.g., in the reviews [6, 7]).

We have found that cinnoline has an unexpectedly low reactivity with respect to amines in contrast with most condensed and monocyclic diazines [6, 8, 10]. It did not react with potassium amide in the KNH₂/NH₃/KMnO₄ system nor with methyl-, benzyl-, and cyclohexylamines in the presence of Ag(C₅H₅N)₂MnO₄. Cinnoline reacted very slowly with an excess of ethylenediamine in the presence of an oxidant and after 5 days gave only 4,4'-bicinnolyl (7) in 2.5% yield. Dimerization of this type is evidently an indication of the formation of anion radicals of the substrate *in situ*. The reason for the low activity of cinnoline in the oxidative amination reaction may be its low π -deficiency [12], comparable with pyridine, which is also inert to the amide ion and other aminating agents in these conditions [13].

Compound	Proton chemical shifts (CDCl ₃), δ , ppm (<i>J</i> , Hz)								
Compound	H(3), d	H(4)	H(5), H(6), H(7)	H(8)					
4	9.28 $(L = 5.9)$		7.70-7.86 (m)	8.51					
5	$(J_{34} - 5.9)$ 8.16 $(J_{34} = 6.9)$	7.96 (d, $J_{34} = 6.9$)	7.57 (dd, $J_{56} = 8.5$; $J_{67} = 8.3$) 7.74 (d, $J_{56} = 8.5$)	$(d, J_{78} - 8.2) 7.90 (d, J_{78} = 8.5)$					
6	8.28 ($J_{34} = 6.2$)	7.41 (d, $J_{34} = 6.2$)	7.77 (dd, J_{67} = 8.3; J_{78} = 8.5) 7.70-7.85 (m)	8.64 (m)					
Cinnoline 1,2-dioxide	8.15 ($J_{34} = 7.3$)	7.50 $(d, J_{34} = 7.3)$	7.67-7.81 (m)	8.39 (d, J ₇₈ = 8.7)					

TABLE 1. ¹H NMR Spectra of Cinnoline N-Oxides

4
$$\frac{H_2NCH_2CH_2NH_2}{Ag(C_3H_5N)_2MnO_4}$$
 N

It is known that the introduction of the N-oxide function into the azine ring increases its π -deficiency and frequently facilitates nucleophilic substitution reactions [6, 12]. In fact according to quantum-chemical calculations (the HMO method) the positive charges on atoms C(3) and C(4) in the cinnoline N₍₁₎- and N₍₂₎-oxides (**5** and **6**) are greater than in molecule **4**. Therefore, despite the report cinnoline N₍₂₎-oxide reacts with phenylmagnesium bromide to give a mixture of products of destruction of the heterocycle [14], we studied the reactions of compounds **5** and **6** with alkylamines, assuming that reactions with nucleophiles under milder condition should be more selective.

We established that the $N_{(2)}$ -oxide **6** reacted with an excess of primary or secondary amines on prolonged heating (25-100 h) to give 3-aminocinnolines **8a-d** in 26-98% yields (Scheme 1). The lowest yields corresponded to the bulkiest amines. When benzyl- and cyclohexylamines and ethylenediamine were used complex mixtures of products were obtained which could not be separated or identified.

According to the quantum-chemical calculation, the greatest positive charge in the molecule of the $N_{(2)}$ -oxide (in comparison with cinnoline) is concentrated at C(3) which is attacked by the nucleophile. This conclusion is based on a comparison of compound **8** with 4-alkylaminocinnolines **10** (Table 2), which we obtained by aminodehalogenation of 4-chlorocinnoline (**9**). For example, the 4-amino derivatives are colourless (λ_{max} 349-370 nm) while the 3-aminocinnolines **8** are bright-yellow (λ_{max} 400-417 nm). In the ¹H NMR spectra of compounds **10** the signal of the H(3) proton is found at δ 8.5-8.9 ppm, whereas the signal of proton H(4) of the 3-amino derivatives **8** is shifted by about 1 ppm to strong field (δ 7.6-7.9 ppm). The signals of the NH protons of the 3-alkylamino group are somewhat deshielded and appear at weaker field (δ 5.2-6.5 ppm) in comparison with the signals of analogous protons in the 4-alkylamino derivatives **10** (δ 5.3-5.7 ppm).

8 a NHR¹R² = NHPr, b NHR¹R² = NHPr-*i*, c NHR¹R² = pyrrolidino, d NHR¹R² = piperidino; 10 a NR¹R² = NHPr, b NR¹R² = cyclohexylamino, c NR¹R² = NHCH₂Ph, d NR¹R² = pyrrolidino, e NR¹R² = piperidino, f NR¹R² = morpholino, g NR¹R² = NHCH₂CH₂NH₂

It is known [6, 15] that the addition of an oxidizing agent considerably accelerates the reactions of azine N-oxides with amines to give amino derivatives either with or without retention of the N-oxide function. Reaction of cinnoline $N_{(2)}$ -oxide with propylamine and pyrrolidine in the presence of $Ag(C_5H_5N)_2MnO_4$ proceeds efficiently under mild conditions (20°C) to give exclusively the desoxy 3-aminocinnolines **8a** and **8c** in yields of 60 and 95% respectively.

Com	Com IR spectrum, v, cm ⁻¹				¹ H NMR spectrum(CDCl ₃), δ , ppm (<i>J</i> , Hz)*							
pound	Ring	C–H arom	N–H	H(3), s	H(5)	H(6)	H(7)	H(8)	NH, br. s	R	λ_{max}, nm (lg ϵ)	
1	2	3	4	5	6	7 8		9	10	11	12	
8a	1572, 1599, 1626	3075	3168	—	$8.20 (d, J_{56} = 8.0)$	7.66-7.80 (m)		8.63 (d, J ₇₈ = 8.7)	6.40	1.03 (3H, t, <i>J</i> = 7.4, CH ₂ CH ₂ CH ₃); 1.82 (2H, m, CH ₂ CH ₂ CH ₃); 3.38 (2H, m, <u>CH₂CH₂CH₃</u>)	281 (3.83), 408 (4.12)	
8b	1575, 1610, 1630	3083	3200	_	7.95 (d, $J_{56} = 7.8$)	7.65-7.77 (m)		8.69 (d, $J_{78} = 8.9$)	5.20	1.38 (6H, d, $J = 6.3$, CH(<u>CH_3</u>) ₂); 3.87 (1H, m, <u>CH</u> (CH ₃) ₂)	277 (3.65), 410 (4.10)	
8c	1526, 1580, 1606	_	_	_	8.22 (d, $J_{56} = 8.6$)	7.64-7.74 (m)		8.72 (d, $J_{78} = 8.8$)	_	2.07 (4H, t, $J = 6.5$, β-CH ₂ pyrrolidino); 3.68 (4H, t, $J = 6.5$, α-CH ₂ pyrrolidino)	276 (3.83), 416 (4.22)	
8d	1530, 1590, 1602	_	_	_	7.98 (m)	7.71-7.75 (m)		8.68 (m)	_	1.72 (2H, m, γ-CH ₂ piperidino); 1.84 (4H, m, β-CH ₂ piperidino); 3.16 (4H, m, α-CH ₂ piperidino)	301 (3.62), 400 (3.92)	
10a	1553, 1600, 1646	3100	3220	8.65	7.83 (d, $J_{56} = 8.4$	7.54 (dd, $J_{56} = 8.4$, $J_{67} = 8.1$)	7.70 (dd, $J_{67} = 8.1$, $J_{78} = 8.5$)	8.27 (d, <i>J</i> ₇₈ = 8.5)	5.53	1.04 (3H, t, <i>J</i> = 7.4, CH ₂ CH ₂ CH ₃); 1.77 (2H, m, CH ₂ CH ₂ CH ₃); 3.38 (2H, m, <u>CH₂CH₂CH₃</u>)	234 (4.05), 351 (4.14)	
10b	1550, 1600, 1646	3072, 3100	3229	8.65	7.82 (d, $J_{56} = 8.4$)	$\begin{array}{ccc} 7.55 \ (\mathrm{dd}, & 7.71 \ (\mathrm{dd}, \\ J_{56} = 8.4, & J_{67} = 7.9, \\ J_{67} = 7.9 \end{array} \\ \begin{array}{c} J_{78} = 8.4 \end{array}$		8.28 (d, J ₇₈ = 8.4)	5.26	1.39 (6H, m, 3CH ₂ , C ₆ H ₁₁); 1.81 (2H, m, CH ₂ , C ₆ H ₁₁); 2.16 (2H, m, CH ₂ , C ₆ H ₁₁); 3.61 (1H, m, CH, C ₆ H ₁₁)	351 (4.01)	
10c	1540, 1590, 1630	3119	3250	8.67	7.84 (d, $J_{56} = 8.4$)	7.57 (dd, $J_{56} = 8.4$, $J_{67} = 8.2$)	7.73 (dd, $J_{67} = 8.2$, $J_{78} = 8.4$)	8.32 (d, $J_{78} = 8.4$)	5.70	4.60 (2H, d, <i>J</i> = 3.6, NH <u>CH</u> ₂); 7.33-7.39 (5H, m, Ph)	347 (4.13)	

TABLE 2. Spectral Characteristics of Compounds 8, 10, 13, and 14

1	2	3	4	5	6	7	8	9	10	11	12
1	2	5	т Т	5	0	/	0	,	10	11	12
10d	1513,	_	_	8.51	8.17 (d,	7.43 (dd,	7.65 (dd,	8.25 (d,	_	2.06 (4H, t, $J = 6.45$, β -CH ₂ pyrrolidino);	363 (3.20)
	1553,				$J_{56} = 8.6)$	$J_{56} = 8.6,$	$J_{67} = 8.2,$	$J_{78} = 8.6$)		3.78 (4H, t, $J = 6.45$, α -CH ₂ pyrrolidino)	
	1606					$J_{67} = 8.2$)	$J_{78} = 8.6$)				
10e	1535,	—	—	8.84	7.89 (d,	7.60 (dd,	7.72 (dd,	8.39 (d,	—	1.74 (2H, m, γ-CH ₂ piperidino);	328 (3.79),
	1580,				$J_{56} = 8.5$)	$J_{56} = 8.5,$	$J_{67} = 8.3,$	$J_{78} = 8.5$)		1.83 (4H, m, β -CH ₂ piperidino);	370 (3.95)
	1633					$J_{67} = 8.3$)	$J_{78} = 8.5$)			3.33 (4H, m, α-CH ₂ piperidino)	
10f	1533,	—	—	8.88	7.95 (d,	7.65 (dd,	7.76 (dd,	8.45 (d,	—	$3.35 (4H, t, J = 4.2, N(CH_2)_2);$	328 (3.87),
	1580,				$J_{56} = 8.2$)	$J_{56} = 8.2,$	$J_{67} = 7.9,$	$J_{78} = 8.4$)		$3.97 (4H, t, J = 4.2, O(CH_2)_2)$	363 (3.89)
	1635					$J_{67} = 7.9$)	$J_{78} = 8.4$)				
10g	1550,	3100	3200-3400	8.76	8.13 (d,	7.66 (dd,	7.79 (dd,	8.37 (d,	8.25	3.13 (2H, t, $J = 6.3$, C <u>H</u> ₂ NH ₂);	353 (3.90)
	1600,				$J_{56} = 8.5$)	$J_{56} = 8.5,$	$J_{67} = 8.4,$	$J_{78} = 8.5$)		$3.67 (2H, t, J = 6.3, CH_2NH);$	
	1646					$J_{67} = 8.4$)	$J_{78} = 8.5$)			7.80-8.10 (br. s, NH ₂)	
10h	1530,	3105	3220, 3345	8.62	8.05 (d,	7.59 (dd,	7.78 (dd,	8.24 (d,	7.43	—	350 (4.02)
	1565,				$J_{56} = 8.6$)	$J_{56} = 8.6,$	$J_{67} = 8.5,$	$J_{78} = 8.6$)			
12	1010		2100 2400		0.46(-)	$J_{67} = 8.5$	$J_{78} = 8.0$	0.46()	0.10		
13a	1540,	_	3100-3400	1.11	8.46 (m)	/.84-/.	88 (m)	8.46 (m)	8.18	$3.14 (2H, m, CH_2NH_2);$	_
121	1000		2100 2400	7.01	7 (0 (1	7.40 (11	7 72 (11	0.00 (1	7 00 0 20	$5.00(2H, III, CH_2NH), 7.30(01.8, NH_2)$	
13b	1505,	_	3100-3400	/.81	7.60 (d, 1) = 8.4	7.49 (ad, 1) = 8.4	1.12 (dd, $L = 7.4$	8.28(d, L) = 8.4)	/.90-8.20	1.93 (2H, m, $CH_2CH_2CH_2$); 2.00 (2H + $I = 6.8$ CH NH):	_
	1000				$J_{56} = 0.4)$	$J_{56} = 0.4,$ $L_{7} = 7.4)$	$J_{67} = 7.4,$ $J_{70} = 8.4)$	$J_{78} = 0.4)$		2.90 (211, t, $J = 0.8$, $C_{112}(NH_2)$, 3.40 (2H t $J = 6.8$ CH ₂ NH)	
14a	1525		3100 3400	7 88	7.62 (d	7 50 (dd	7 74 (dd	8 28 (d	8.02	$3.07 (2H, t, J = 6.1 CH-NH_{-})$	
144	1625	_	5100-5400	7.00	7.02 (u, U)	$I_{50} = 7.9$	$L_{7} = 7.2$	3.23(u, U)	8.02	$3.61 (2H, t, J = 6.1, CH_2NH)$	
	1025				$J_{56} = 7.9$	$J_{67} = 7.2$	$J_{78} = 8.0$	$J_{78} = 8.0)$		5.01(211, t, 5) = 0.1, C11(11)	
14h	1535	_	3100-3400	7 80	7.60 (d	7 50 (dd	7 73 (dd	8 23 (d	8.00	1.92 (2H m CH ₂ CH ₂ CH ₂) ¹	
140	1605		5100 5400	,.00	$L_{cc} = 8 A$	$J_{56} = 8.4$	$J_{67} = 7.8$	$I_{70} = 8.2$	0.00	$2.90 (2H, t, J = 7.2, CH_2NH_2)$:	
					J 36 (0.4)	$J_{67} = 7.8$)	$J_{78} = 8.2$)	5/8 - 0.2)		$3.38 (2H, t, J = 7.2, CH_2NH)$	
		1	•		1 I			1	1		

TABLE 2 (continued)

 $\overline{* ^{1}}$ H NMR spectra (CDCl₃): **8a** - 7.60 (H(4), s), **8b** - 7.63 (H(4), s), **8c** - 7.61 (H(4), s), **8d** - 7.87 (H(4), s).

										1
Com-	Empirical formula	Found, % Calculated, %			mp, ℃	<i>R</i> _f of product	Reaction cond	Yield, %		
pound		С	Н	Ν	•	<i>J</i> 1	Amine	V, ml	Time, h	· · · · ·
8a	$C_{11}H_{13}N_3$	$\frac{70.8}{70.6}$	$\frac{7.2}{6.9}$	$\frac{22.3}{22.5}$	182-184	0.1	PrNH ₂	2	25.5	53
8b	$C_{11}H_{13}N_3$	$\frac{70.4}{70.6}$	$\frac{7.3}{6.9}$	$\frac{22.7}{22.5}$	208-210	0.1	<i>i</i> -PrNH ₂	6	100	26
8c	$C_{12}H_{13}N_3$	<u>72.3</u> 72.4	<u>6.6</u> 6.6	<u>21.2</u> 21.1	178-180	0.15	Pyrrolidine	2	60	98
8d	$C_{13}H_{15}N_3$	$\frac{73.1}{73.2}$	$\frac{6.8}{7.0}$	$\frac{20.0}{19.8}$	125-127	0.25	Piperidine	13	100	70
10a	$C_{11}H_{13}N_3$	$\frac{70.7}{70.6}$	$\frac{6.7}{6.9}$	$\frac{22.6}{22.5}$	158-160	0.1	PrNH ₂	2	24	69
10b	$C_{14}H_{17}N_3$	$\frac{74.1}{74.0}$	$\frac{7.3}{7.5}$	$\frac{18.6}{18.5}$	160-162	0.11	Cyclohexylamine	5	144	60
10c	$C_{15}H_{13}N_3$	<u>76.8</u> 76.6	$\frac{5.4}{5.6}$	$\frac{17.7}{17.9}$	193-195	0.2	PhCH ₂ NH ₂	4	144	57
10d	$C_{12}H_{13}N_3$	$\frac{72.6}{72.4}$	$\frac{6.3}{6.6}$	$\frac{21.3}{21.1}$	166-168	0.23	Pyrrolidine	3	0.01	96
10e	$C_{13}H_{15}N_3$	$\frac{73.4}{73.2}$	$\frac{7.1}{7.0}$	$\frac{20.0}{19.8}$	134-136	0.2	Piperidine	2	0.08	90
10f	$C_{12}H_{13}N_3O$	<u>66.7</u> 67.0	$\frac{6.2}{6.0}$	$\frac{19.3}{19.5}$	140-142	0.15	Morpholine	2	24	75
10g	$C_{10}H_{12}N_4$	$\frac{63.7}{63.8}$	<u>6.5</u> 6.4	$\frac{29.6}{29.8}$	260 (dec.)	0.05	NH ₂ (CH ₂) ₂ NH ₂	2.5	24	53
10h	$C_8H_7N_3$	$\frac{66.3}{66.2}$	$\frac{5.0}{4.8}$	<u>29.2</u> 29.0	210 (dec.)	0.15	KNH ₂		5	6.5
1 3 a	$C_{10}H_{12}N_4O$	<u>58.6</u> 58.8	<u>5.7</u> 5.9	$\frac{27.3}{27.4}$	252-254 (dec.)	0.1	NH ₂ (CH ₂) ₂ NH ₂	2	168	95
13b	$C_{11}H_{14}N_4O$	$\frac{59.8}{60.0}$	$\frac{6.2}{6.4}$	$\frac{25.2}{25.7}$	>250 (dec.)	0.1	NH ₂ (CH ₂) ₃ NH ₂	4	168	94
14a	$C_{10}H_{12}N_4O$	<u>58.7</u> 58.8	<u>5.4</u> 5.9	$\frac{27.6}{27.4}$	258-260 (dec.)	0.01	NH ₂ (CH ₂) ₂ NH ₂	2	24	89
14b	$C_{11}H_{14}N_4O$	$\frac{60.2}{60.5}$	$\frac{6.5}{6.4}$	<u>25.6</u> 25.7	275-277 (dec.)	0.01	NH ₂ (CH ₂) ₃ NH ₂		24	90

TABLE 3. Conditions for the Amination of Compounds 5 and 6 and the Physicochemical Characteristics of Compounds 8, 10, 13, and 14

In contrast to compound **6**, cinnoline $N_{(1)}$ -oxide **5** does not react with alkylamines either on prolonged heating or in the presence of an oxidizing agent. It is possible that in the case of the $N_{(2)}$ -oxide additional activation of the substrate occurs in the form of an intermediate of type **11**, which facilitates nucleophilic attack at position 3.

Since we had not succeeded in carrying out tandem $S_N^H - S_N^H$ conversions in cinnoline and its N-oxides, we attempted to synthesize polynuclear systems of type 12 from 4-(β -aminoethylamino)cinnoline 10g and the N-oxides 13 and 14 (the latter were obtained from chlorides 15 and 16 by scheme 2). Amine 10g was treated with potassium amide and KMnO₄ in liquid ammonia. We had thought that in these conditions it would be possible to form an equilibrium concentration of the N-anion 17 which would undergo intermolecular amination. But instead of the expected piperazinocinnoline (12, n = 2), only 4-aminocinnoline (10h) was isolated in 6.5% yield. It is possible that during the reaction the diaminoethylene substituent coordinates potassamide, causing attack of the amide anion at C(4) *via* the intermediate complex 18. But it is more likely that the starting amine 10g is oxidized to the imine 19, hydrolysis of which leads to 10h. Attempts to convert the N-oxides 13 and 14 into the cyclic amines 12 by heating for many hours in DMSO (100 h, 90-100°C) or with excess α, ω -diaminoalkanes were unsuccessful, the starting materials remaining unchanged.

Scheme 2

So, in contrast to pyridazinouracil 1, cinnoline 4 and its $N_{(1)}$ -oxide 5 do not participate in oxidative amination and tandem conversions of the S_N^{H} - S_N^{H} type. Direct alkylamination is characteristic only for cinnoline $N_{(2)}$ -oxide 6. This is the first example of nucleophilic substitution of hydrogen in the cinnoline series.

EXPERIMENTAL

¹H NMR spectra were recorded on a Bruker-250 (250 MHz) spectrometer, UV spectra of ethanol solutions on a Specord M-40 spectrophotometer, and IR spectra of nujol mulls on Specord IR-71 spectrometer. Chromatography was carried out on Al₂O₃ (Brockman activity IV-V). Melting points were measured in glass capillaries with a PTP apparatus and were not corrected.

The physicochemical and spectral characteristics of the compounds synthesized are cited in Tables 2 and 3.

4,4'-Bicinnoline (7). The oxidizing agent Ag(C₅H₅N)₂MnO₄ (0.38 g, 1 mmol) was added in small portions to a solution of compound **4** (0.38 g, 3 mmol) in ethylenediamine (5 ml) cooled to 10°C. The reaction mixture was kept at 20°C for 5 days and was then evaporated to dryness. The residue was extracted with chloroform, the extract was concentrated to about 3 ml and passed through an Al₂O₃ column with CHCl₃ as eluent. The first fraction collected was a colorless fraction with R_f 0.32, containing the starting material **4**, then a yellow fraction with R_f 0.12 was collected. The solvent was evaporated and the residue crystallized when treated with diethyl ether, yield 0.019 g (2.5%). Compound **7** consisted of clear yellow crystals, mp 235-236°C, which corresponded to literature data [16]. Mass spectrum, m/z (I_{rel} , %): 258 (100) [M]⁺, 229 (12) [M - 1 - N₂]⁺, 200 (81) [M - 2 - 2N₂]⁺, 176 (18), 150 (15), 126 (12), 100 (13), 86 (8), 75 (18), 62 (12), 50 (34), 39 (23), 26 (3). ¹H NMR spectrum (CDCl₃), δ , ppm (J, Hz): 9.35 (2H, s , 2H(3)); 8.74 (2H, d, J_{78} = 8.6, 2H(8)); 7.95 (2H, dd, J_{67} = 8.5, J_{78} = 8.6, 2H(7)); 7.72 (2H, dd, J_{56} = 8.5, J_{67} = 8.5, 2H(6)); 7.47 (2H, d, J_{56} = 8.5, 2H(5)). Found, %: C 74.6; H 3.7; N 21.6. C₁₆H₁₀N₄. Calculated, %: C 74.4; 3.9; N 21.7.

3-Alkylaminocinnolines (8a-d) (General Method A). A solution of compound **6** (0.1 g, 0.6 mmol) in an alkylamine was refluxed for the time reported in Table 3. The bright-yellow solution was evaporated to dryness, the residue was dissolved in a minimum amount of CHCl₃ and chromatographed on an alumina column with CHCl₃ as eluent (10:1 CHCl₃–Et₂O for compound **8c**). The first fraction collected (R_f 0.3) contained starting material **6**, was followed by a clear yellow solution of the aminocinnoline (see Table 3 for R_f). Bright-yellow crystals of compounds **8a-d** were obtained after recrystallization from benzene (petroleum ether for compound **8c**).

General Method B. Small portions of $Ag(C_5H_5N)_2MnO_4$ (0.42 g, 1.1 mmol) were added to a solution of compound **6** (0.1 g, 0.7 mmol) in 2-5 ml of the corresponding alkylamine, cooled to 10°C. The reaction mixture was kept for 10 days at 20°C (20 days for **8a**). The mixture was evaporated and the residue extracted with CHCl₃ (10 ml), then concentrated to about 3 ml and chromatographed on an Al₂O₃ column with CHCl₃ as eluent. Bright-yellow fraction with R_f shown in Table 3 was collected. In the case of compound **8a**, a fraction containing unreacted compound was first collected (R_f 0.3). The products were recrystallized from benzene: yields **8a** 60, **8c** 95%.

4-Alkylaminocinnolines (10a-g) (General Method). A solution of compound **9** (0.17 g, 1 mmol) in alkylamine was kept at 20°C for the time given in Table 3, and then evaporated to dryness. The residue was treated with water (10 ml), neutralized with NH₄OH, and evaporated again. The product was recrystallized from benzene (**10e,f** from petroleum ether, and **10g** was washed out of the mixture with hot methanol until colorless). Amine **10b** was chromatographed on an Al₂O₃ column with CHCl₃ as eluant (for R_f see Table 3) before recrystallization. Compounds **10a-g** consist of colorless or bright-yellow crystals.

4-Aminocinnoline (10h). Compound **10g** (0.2 g, 1 mmol) was added to a solution of potassium (0.156 g, 4 mmol) in liquid ammonia (30 ml) at -60°C. After 10 min KMnO₄ (0.158 g, 1 mmol) was added to the bright-yellow solution. The solution was stirred for 5 h while the temperature was raised stepwise to 20°C. The ammonia evaporated. The residue was extracted with methanol (20 ml), the extract was concentrated to 5 ml and chromatographed on an Al₂O₃ column with CHCl₃ as eluent. The fraction collected had the R_f shown in Table 3. Compound **10h** consists of creamy crystals; mp 210°C (dec.), which corresponds to data from [17].

4-(\omega-Aminoalklylamino)cinnoline N₍₂₎-Oxides (13a,b). A solution of compound 15 [18] (0.2 g, 1 mmol) in 2-4 ml of the corresponding diaminoalkane was kept for 7 d at 20°C and then evaporated to dryness. The residue was dissolved in methanol (5 ml) and chromatographed on an Al₂O₃ column with 1:1 CHCl₃-CH₃OH as eluent. The bright-yellow fraction was collected (for *R*_f see Table 3). Compounds 13a,b consist of bright-yellow crystals.

4-(ω -Aminoalklylamino)cinnoline N₍₁₎-Oxides (14a,b). A solution of compound 16 (0.1 g, 0.5 mmol) in the corresponding diaminoalkane (2-3 ml) was kept for 1 d at 20°C and then evaporated to dryness. The residue was washed clean from impurities with boiling methanol until colorless. Compounds 14a,b are colorless crystals.

This work was carried out with a grant from the Russian Fund for Fundamental Research (grant No. 01-3-32338).

REFERENCES

- 1. A. V. Gulevskaya, D. V. Besedin, and A. F. Pozharskii, *Izvest. Akad. Nauk, Ser. Khim.*, 6, 1161 (1999).
- 2. D. V. Besedin, A. V. Gulevskaya, and A. F Pozharskii, *Mendeleev. Commun.*, 150 (2000).
- 3. A. V. Gulevskaya, D. V. Besedin, A. F. Pozharskii, and Z. A. Starikova, *Tetrahedron Lett.*, **42**, 5981 (2001).
- 4. M. Ogata, H. Kano, and K. Tori, Chem. Pharm. Bull., 10, 1123 (1962).
- 5. I. Suzuki, M. Nakadate, T. Nakshimi, and N. Nagasawa, *Tetrahedron Lett.*, 25, 2899 (1966).
- 6. O. N. Chupatkin, V. N. Charushin and H. C. Van der Plas, *Nucleophllic Aromatic Substitution of Hydrogen*. Acad. Press., New York, 1994.
- 7. A. O. Pozharskii and A. V Gulevskaya, *Khim. Getrotsikl. Soedin.*, 1611 (2001).
- 8. H. Van der Plas, *Khim. Getrotsikl. Soedin.*, 1011 (1987).
- 9. H. Van der Plas and M. Wozniak, Croat. Chem. Acta, 59, 33 (1986) (Engl. Trans.)
- 10. A. F. Pozharskii, A. M. Simonov, and V. N. Doron'kin, Usp. Khim., 47, 1933 (1978).
- 11. M. F. Budyka, N. B. Terent'ev, and A. N. Kost, *Khim. Geterotsikl. Soedin.*, 11, 1554 (1977).
- 12. A. R. Katritzky and A. F. Pozharskii, *Handbook of Heterocyclic Chemistry*, 2nd Ed., Elsevier, Amsterdam, 2000.
- 13. J. A. Zoltewicz and L. S. Helmick, J. Am. Chem. Soc., 94, 682 (1987).
- 14. I. Hiroshi, T. Tahashi, N. Toshiko, and O. Genzo, Chem. Pharm. Bull., 18, 1497 (1970).
- 15. A. Rykowski and H. C. Van der Plas, *Synthesis*, 9, 884 (1985).
- 16. D. Bhattacharjee and F. D. Popp, J. Heterocycl. Chem., 17, 121 (1980).
- 17. R. N. Castle, D. B. Cox, and J. F. Suttle, J. Am. Pharmac. Assoc. Scient. Ed., 48, 135 (1959).
- 18. I. Suzuki and T. Nakashima, Chem. Pharm. Bull., 12, 619 (1964).