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Abstract: Tricyclic systems generated by an asymmetric vinylo-
gous aldol–oxa-Michael reaction of salicylaldehydes with seneci-
aldehyde were further elaborated using a strategy developed by
Tietze et al. to generate 4a-methyl tetrahydroxanthones.
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Organocatalytic domino reactions have recently attracted
much attention due to the mild and straightforward access
to complex structures that they provide.1 The domino
reaction of salicylaldehydes 1 with a,b-unsaturated alde-
hydes 2 has been recently investigated in light of their use
in total synthesis of natural products.

Depending on the reaction conditions, in most cases an
oxa-Michael–aldol reaction occurs to give chromenes 3.
However, under a yet different set of conditions, we and
others have discovered that rigid tricyclic systems 4 are
formed by a vinylogous aldol–oxa-Michael reaction
(Scheme 1).2

Recently, the Woggon group elaborated an organocatalyt-
ic procedure which at the end culminated in an elegant to-
tal synthesis of a-tocopherol (6).3

In the meantime, the Tietze group developed a yet differ-
ent approach for the synthesis of chromanes which was
based on an asymmetric Wacker–Heck reaction. They
were able to convert these building blocks into
tocopherols4 and, very recently, into tetrahydroxanthones
like 4-dehydroxydiversonol (5).5–7

In this paper we explore the chemistry of the tricycles 4 to
show the compatibility of both approaches.

The required salicylaldehydes are mostly commercially
available. Salicylic aldehyde 1b can be derived from orci-
nol over three steps in an overall yield of 70% according
to a literature procedure.6a

The reaction of salicylaldehydes 1 with senecialdehyde
(2a) gave the tricycles 4 in good to very good yields. The
wide scope of this type of reaction is shown in Table 1.

It is interesting to note that under yet similar conditions, salicyl-
aldehyde 1b gave the best yield. The structure of 4b was con-

firmed by X-ray crystallography (CCDC-717754, Figure 1)8.

Using Jørgensen’s proline-derived organocatalyst3,9 – (S)-bis-
[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanoltri-
methylsilyl ether – we were able to obtain the tricycle 4a
in 66% yield with an ee value of 98%.
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Figure 1 Molecular Structure of 4b. Displacement parameters are
drawn at 50% probability level
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Scheme 2 Conversion of salicylaldehydes 1 into xanthones 1310

The absolute configuration was determined by correlation
with the results of Woggon et al.3

Reaction of tricycles 4 with stabilized ylides produced the
alcohols 9 as a mixture of the two double-bond isomers
(E/Z ratio between 5:1 and 5:3). Exhaustive concomitant
reduction of the double bond and the secondary alcohol10

led to chromanes 10 in excellent yields.11 Chromanes 10
were used before by Tietze et al. yielding xanthones 13
through chromanones 12 via a Dieckmann condensa-
tion.5,12 We obtained chromanones 12 by oxidation of the
alcohols 9 (Dess–Martin periodinane, DMP) and subse-
quent hydrogenation. The heterocycles 12 were then cy-
clized to give xanthones 13 in the presence of titanium
tetrachloride (Scheme 2).5

Tietze et al. previously converted compound 13b (which
was synthesized starting from orcinol in 12 steps and an
overall yield of 14%) into 4-dehydroxydiversonol
(Scheme 3).5

Starting from orcinol we have shown in this paper that the
synthesis of xanthone 13b could be improved to an eight-
step synthesis with an overall yield of 25%.

Scheme 1 Strategies for the synthesis of chromenes based on a,b-
unsaturated aldehydes 2
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Table 1 Scope of the Oxa-Michael–Aldol and Vinylogous Aldol-
oxa-Michael Reaction of Salicylaldehydes 1 with Senecialdehyde 
(2a, R5 = Me)a

Entryb Salicylaldehyde (1) Cond.a Yield (%)

1 R1 R2 R3 R4 3 4

1 1a H H H H A 19 46

2 1a H H H H B 0 66

3 1b H Me H MeO A 0 79

4 1b H Me H MeO B 0 74

5 1c H HO H H A 37 46

6 1d H C5H11 H MeO A 0 61

7 1e MeO H H H A 13 36

8 1f H MeO H H A 4 44

9 1g H H MeO H A 36 46

10 1h H Et2N H H A 0 10

11 1i MeO H Br H A 10 57

12 1j Br H Cl H A 17 51

13 1k H H O2N H A 0 47

14 1l Allyl H H H A 19 61

15 1m Ph H H H A 23 44

a Conditions A: senecialdehyde (1.0 equiv), Et3N (0.5 equiv), 55 °C, 
2.5 d; conditions B: senecialdehyde (1.0 equiv), benzoic acid 
(0.3 equiv), (S)-a,a-bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrro-
lidinemethanoltrimethylsilyl ether (0.3 equiv), r.t., 3.5 d.
b For entries 7–15, see ref. 2a. The ee was determined by HPLC anal-
ysis using chiral stationary phases (Daicel Chiralpak AS 0.46 ¥ 25 
cm).



552 N. Volz et al. LETTER

Synlett 2009, No. 4, 550–553 © Thieme Stuttgart · New York

In conclusion, we have shown that tetrahydroxanthones
can be formed from tricycles generated by a vinylogous
aldol–oxa-Michael reaction. Furthermore the formal syn-
thesis of 4-dehydroxydiversonol was accomplished.

Scheme 3 Completion of the synthesis of 4-dehydroxydiversonol
(5) according to Tietze et al.5
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