Contents lists available at ScienceDirect

ELSEVIER

journal homepage: www.elsevier.com/locate/bmcl

Tetrahydro-4-quinolinamines identified as novel P2Y₁ receptor antagonists

Ángel I. Morales-Ramos^{a,*}, John S. Mecom^a, Terry J. Kiesow^c, Todd L. Graybill^c, Gregory D. Brown^a, Nambi V. Aiyar^b, Elizabeth A. Davenport^d, Lorena A. Kallal^d, Beth A. Knapp-Reed^a, Peng Li^a, Allyn T. Londregan^a, Dwight M. Morrow^d, Shobha Senadhi^b, Reema K. Thalji^a, Steve Zhao^a, Cynthia L. Burns-Kurtis^b, Joseph P. Marino Jr.^{a,*}

^a Department of Chemistry, Metabolic Pathways Centre for Excellence in Drug Discovery, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA ^b Department of Biology, Metabolic Pathways Centre for Excellence in Drug Discovery, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA ^c Department of Chemistry, Molecular Discovery Research, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA ^d Department of Biochemistry, Molecular Discovery Research, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA

ARTICLE INFO

Article history: Received 18 August 2008 Revised 27 September 2008 Accepted 29 September 2008 Available online 2 October 2008

Keywords: P2Y1 receptor Antagonist Platelet aggregation Thrombosis Tetrahydro-4-quinolinamine

ABSTRACT

High-throughput screening of the GSK compound collection against the P2Y₁ receptor identified a novel series of tetrahydro-4-quinolinamine antagonists. Optimal substitution around the piperidine group was pivotal for ensuring activity. An exemplar analog from this series was shown to inhibit platelet aggregation.

© 2008 Elsevier Ltd. All rights reserved.

Adenosine diphosphate (ADP) is a key activator of platelets and plays a central role in hemostasis and thrombosis. ADP activates platelets through interactions with two G-protein coupled P2 receptors, P2Y₁ and P2Y₁₂, producing two separate intracellular signals which synergize together to produce complete platelet activation.¹ Activation of the Gq-coupled P2Y₁ receptor leads to rapid Ca²⁺ entry and mobilization of intracellular Ca²⁺ stores resulting in platelet shape change and weak, transient aggregation. Activation of the Gi-coupled P2Y₁₂ receptor leads to the inhibition of cAMP production, resulting in the amplification of the platelet response and complete, irreversible aggregation.

The P2Y₁ receptor plays an integral role in thrombosis as evidenced by studies utilizing transgenic mice (P2Y₁^{-/-}), as well as rodents treated with nucleotide P2Y₁ antagonists (such as MRS2179 and MRS2500).² In both types of studies, ADP-induced platelet shape change, Ca²⁺ mobilization, and aggregation was abolished and the platelet response to other agonists was impaired.³ Further, these animals were protected in models of systemic vascular thromboembolism as well as models of localized arterial and venous thrombosis.^{3,4}

Taken together, these data suggest that a $P2Y_1$ antagonist could have significant utility in the treatment of a variety of thrombotic disorders. To date, there are few publications which describe selective, non-nucleotide, small molecule antagonists of $P2Y_1$,⁵ therefore, an effort to discover such molecules was initiated.

High-throughput screening of the GSK compound collection in a FLIPR-based, HEK-293 cellular assay⁸ identified tetrahydro-4-quinolinamine **1** as an antagonist of P2Y₁ with low micromolar activity (Fig. 1). Compound **1** also demonstrated low micromolar affinity in

Binding $K_i = 0.5 \mu M$

* Corresponding authors.

E-mail address: joseph.p.marino@gsk.com (J.P. Marino).

Figure 1. P2Y₁ antagonist, **1**, high-throughput screening hit.

a radioligand ([³³P]-2-SMe-ADP) binding assay⁸ using U2OS cell membranes expressing recombinant human P2Y₁ receptor.

Given the moderate potency of this new tetrahydroquinoline hit, early lead optimization chemistry efforts focused on SAR studies and confirmation of functional activity in a human platelet aggregation assay.

The synthesis of the *p*-nitro-aniline screening hit **1** was achieved following the sequence outlined in Scheme 1. A tandem condensation/cyclization of aniline and propionaldehyde resulted in the formation of *N*-phenyl-1,2,3,4-tetrahydro-4-quinolinamine **4** as a single diastereomer.⁶ Quinolamine **4** was treated with excess *p*-nitrobenzoyl chloride and polymer-bounded *N*-methylmorpholine to afford the tetrahydroquinoline **1**.

The efficient preparation of intermediate **4** facilitated rapid analoging and SAR studies around the benzamide moeity. Tetrahydroquinoline **4** was treated with commercially available benzoyl chlorides in the presence of polymer-bounded *N*-methylmorpholine to provide amides **5a–f** (Scheme 1). In the case of the 4-methoxy-benzamide analog **5b**, the secondary aniline was methylated by treatment with sodium hydride, followed by methyl iodide to provide **5g**. In addition, replacement of the amide group with urea was also investigated. Intermediate **4** was treated with commercially available aryl isocyanates in the presence of triethylamine to produce phenylureas **6a–i**.

Attempts were made to reduce the structural complexity around the piperidine ring by eliminating chiral centers. Scheme 2 illustrates the synthetic routes to the *des*-3-methyl analogs **9**/ **10**, the *des*-2-ethyl-analog **13**, and tetrahydroquinoline **15** in which the 2 and 3 positions are unsubstituted. Ethyl lithium addition to quinoline **7**, followed by acylation of the resulting amine produced the corresponding 1,2-dihydroquinoline. Hydrobromination of the olefin, followed by dehalogenation of the bromohydrin, led to the formation of alcohol **8** as a single diastereomer. Treatment of the alcohol with iodotrimethylsilane provided an iodide intermediate which was rapidly treated with aniline under basic conditions to afford diastereomers **9** and **10**. The diastereomeric mixture was easily separated by reverse phase HPLC to cleanly provide the *cis* (**9**) and *trans* (**10**) C₂-C₄ isomers. Two dimensional NMR (nOe) studies highlighting the methine hydrogens confirmed the relative stereochemistry for analogs **9** and **10**. The synthesis of analog **13** was initiated via the acylation of dihydroquinolinone **11**. α -Alkylation and stereoselective reduction of ketone **11** produced quinoline **12**. Conversion of the cyclic benzylic alcohol to an azide using diphenylphosphoryl azide (DPPA), followed by reduction to the amine, and cross-coupling with phenyl bromide, produced tetrahydroquinoline **13**. Unsubstituted tetrahydroquinoline **15** was obtained in two steps from dihydroquinolinone **11**. N-Acylation followed by TiCl₄ mediated reductive amination with aniline provided target **15**.

Given the potential for nitroarenes to generate reactive metabolites, lead optimization efforts focused on replacing this functionality in lead compound **1**. The SAR around the 4-nitro-phenyl substituent is summarized in Table 1. The 4-methoxy-phenyl, 4chloro-phenyl, 4-trifluoromethoxy-phenyl, and 4-bromo-phenyl analogs (**5b**, **5c**, **5d**, and **5e**) were found to be suitable replacements for nitrophenyl, with all demonstrating slightly improved potency and binding affinity over compound **1**. Removal of the *para*-substituent resulted in a complete loss in activity as evidenced by analogs **5a** and **5f**.

Phenyl ureas **6a-i** demonstrated comparable activity to the benzamides (Table 2). In contrast to the benzamide series, substitution at the *meta*-position consistently offered the greatest potency. 3-Bromo-phenyl **(6f)**, 3-chloro-phenyl **(6b)**, and 3-methoxy-phenyl **(6d)** all demonstrated comparable potency to lead compound **1**. Interestingly, the unsubstituted phenyl analog, **6g**, offered similar potency to the *meta*-substituted analogs. The 2-chloro-phenyl analog, **6a**, was found to be inactive and the activity of the 4-methoxy-phenyl analog (**6e**) was attenuated relative to the 3-methoxy-analog (**6d**). 3,5-Disubstitution of the phenyl group resulted in good potency, as evidenced by **6h** and **6i**.

SAR exploration around the piperidine group focused on the various alkyl substituents as well as their relative stereochemistry (Table 3). Removal of the methyl group at C_3 led to a slight decrease in potency for the *cis* isomer **9**. There exists a strong preference for the C_2-C_4 relative stereochemistry to be *cis* (**9**) based on the loss of activity observed for the *trans* isomer (**10**). The ethyl group at C_2 also proved to be important for activity as evidenced by the 10-fold decrease in potency observed for analog **13**. Not

Scheme 1. Reagents and conditions: (i) EtOH, rt; (ii) a-R-Ph-COCl, PS-NMM, CH₂Cl₂, rt; b-PS-trisamine; (iii) R-Ph-NCO, NEt₃, CH₂Cl₂, rt; (iv) NaH, Mel, DMSO, 150 °C µwave, 5 min.

Scheme 2. Reagents and conditions: (i) EtLi, THF, -78 °C, 15 min; (ii) 4-MeO-Ph-COCl, NMM, CH₂Cl₂, rt; (iii) NBS, DMSO/H₂O, rt; (iv) AlBN (5 mol%), Bu₃SnH, toluene, 80 °C; (v) a-TMSl, CH₂Cl₂, 0 °C; b-aniline, Ba₂CO₃, THF, rt; (vi) LHMDS, THF, -78 °C, then Mel; (vii) L-selectride, THF, -78 °C; (viii) DPPA, DBU (5 mol%), CH₂Cl₂, 0 °C to rt; (ix) PPh₃, THF/H₂O, 70 °C; (x) Ph-Br, Pd₂(dba₃ (3 mol%), NaOt-Bu, X-PHOS (6 mol%), *t*-BuOH, 120 °C µwave, 10 min; (xi) a-aniline, TiCl₄, CH₂Cl₂; b-NaBH₄, MeOH.

Table	1
-------	---

SAR of endocyclic amides 1 and 5a-f

Compound	R	FLIPR IC_{50}^{a} (μM)	$P2Y_1 K_i^a (\mu M)$
1	4-NO ₂	1.6	0.5
5a	3-OCF ₃	>25	ND
5b	4-OMe	0.8	0.4
5c	4-Cl	1.3	0.4
5d	4-0CF ₃	1.0	0.1
5e	4-Br	0.8	0.1
5f	Н	25	ND

ND, not determined.

 a Values are means of at least three determinations with a standard deviation $\leqslant 0.3$ log units.

Tuble 2			
SAR of endocyclic	phenyl	ureas	6a-i

Table 2

Compound	R	FLIPR IC_{50}^{a} (μM)	P2Y ₁ K _i ^a (μM)
6a	2-Cl	>25	ND
6b	3-Cl	1.0	0.3
6c	4-Cl	2.0	0.3
6d	3-OMe	1.6	0.5
6e	4-OMe	6.0	ND
6f	3-Br	1.0	0.1
6g	Н	1.6	0.4
6h	3,5-0Me	0.8	0.2
6i	3,5-Cl	0.6	0.07

ND, not determined.

 a Values are means of at least three determinations with a standard deviation $\leqslant 0.3$ log units.

Table 3 Relative stereochemistry and substitution of the piperidine ring

Compound	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	FLIPR IC ₅₀ ^a (μ M)	$P2Y_1 K_i^a (\mu M)$
5b	Н	CH₃	Et	Н	0.8	0.4
5g	CH ₃	CH ₃	Et	Н	>25	ND
9	Н	Н	Et	Н	3.2	0.8
10	Н	Н	Н	Et	>25	ND
13	Н	CH_3	Н	Н	10	ND
15	Н	Н	Н	Н	>25	ND

ND, not determined.

 a Values are means of at least three determinations with a standard deviation $\leqslant 0.3$ log units.

too surprisingly removal of both the 2-ethyl and 3-methyl groups led to a loss of activity as evidenced by analog **15**. Methylation of the aniline nitrogen of **5b** also led to a complete loss in activity (analog **5g**), suggesting that the aniline hydrogen may play a role in hydrogen bonding or in achieving a favorable binding conformation.

The importance of absolute stereochemistry on P2Y₁ activity is highlighted in Table 4. Separation of enantiomers for racemate **6i**

 Table 4

 Data for individual enantiomers of analog 6i

Compound	Absolute stereochemistry (% purity)	FLIPR IC ₅₀ ^a (nM)	P2Y ₁ K _i ^a (nM)	Inhibition of platelet aggregation IC_{50}^{b} (nM)
16	2R,3S,4S (99.5)	600	70	504 ± 103
17	2S,3R,4R (97.8)	>25,000	ND	ND

ND, not determined.

 a Values are means of at least three determinations with a standard deviation $\leqslant 0.3$ log units.

^b Values are means \pm SEM for n = 3 independent donors.

Figure 2. Inhibition of ADP-induced platelet aggregation by example 16.

was carried out by chiral HPLC. Assignment of absolute configuration was determined by vibrational circular dichroism (VCD). All $P2Y_1$ activity is derived from a single enantiomer, as the 2*R*, 3*S*, 4 *S* (**16**) isomer was active in all assays tested, and the 2*S*, 3*R*, 4*R* (**17**) isomer was inactive in the primary FLIPR screen.

The functional activity of compound **16** was subsequently evaluated in a platelet aggregation assay. Human washed platelets were incubated with compound for 5 min prior to the addition of 10 μ M ADP and aggregation was monitored by standard light transmittance aggregometry.⁷ Compound **16** inhibited ADP-induced aggregation with an IC₅₀ of 504 ± 103 nM (Fig. 2).

In summary, a new series of tetrahydroquinoline $P2Y_1$ antagonists have been identified. *para*-Substituted benzamides and *meta*-substituted phenylureas provided enhanced activity. Within the piperidine ring of the tetrahydroquinoline, the *cis* stereochemistry for the C₂-C₄ substituents, and the *trans* stereochemistry for the C₂-C₄ substituents also enhanced potency. In addition, P2Y₁ activity appears to reside in a single enantiomer (2*R*,3*S*,4*S*). One of the most potent analogs identified, **16**, demonstrated functional activity in a human platelet aggregation assay. Thus far poor aqueous solubility has hindered pharmacokinetic studies with urea **16** and similar analogs. Therefore future lead optimization efforts to improve in vivo exposure will be necessary prior to the evaluation of tetrahydro-4-quinolamines in thrombosis models.

References and notes

- (a) Camaioni, E.; Boyer, J. L.; Mohanram, A.; Harden, T. K.; Jacobson, K. A. J. Med. Chem. **1998**, 41, 183; (b) Kim, H. S.; Ohno, M.; Xu, B.; Kim, H. O.; Choi, Y.; Ji, X. D.; Maddileti, S.; Marquez, V. E.; Harden, T. K.; Jacobson, K. A. J. Med. Chem. **2003**, 46, 4974.
- (a) Fabre, J.-E.; Nguyen, M.; Latour, A.; Keifer, J. A.; Audoly, L. P.; Coffman, T. M.; Koller, B. H. Nat. Med. **1999**, 510, 1199; (b) Léon, C.; Hechler, B.; Freund, M.; Eckly, A.; Vial, C.; Ohlmann, P.; Dierich, A.; LeMeur, M.; Cazenave, J.-P.; Gachet, C. J. Clin. Invest. **1999**, 10412, 1731; (c) Baurand, A.; Raboisson, P.; Freund, M.; Leon, C.; Cazenave, J.; Bourguignon, J.; Gachet, C. Eur. J. Pharmacol. **2001**, 412, 213; d Cattaneo, M.; Lecchi, A.; Ohno, M.; Joshi, B. V.; Besada, P.; Tchilibon, S.; Lombardi, R.; Bischofberger, N.; Harden, T. K.; Jacobson, K. A. Biochem. Pharmacol. **2004**, 68, 1995.
- (a) León, C.; Freund, M.; Ravanat, C.; Baurand, A.; Cazenave, J. P.; Gachet, C. *Circulation* **2001**, *103*, 718; (b) Lenain, N.; Freund, M.; León, C.; Cazenave, J. P.; Gachet, C. J. Thromb. Haemost. **2003**, *1*, 11440; (c) Hechler, B.; Nonne, C.; Roh, E. J.; Cattaneo, M.; Cazenave, J.-P.; Lanza, F.; Jacobson, K. A.; Gachet, C. J. Pharmacol. *Exp. Ther.* **2006**, *316*, 556.
- 5. (a) Chao, H. J.; Tuerdi, H.; Herpin, T.; Roberge, J. Y.; Liu, Y.; Lawrence, R. M.; Rehfuss, R. P.; Clark, C. G.; Qiao, J. X.; Gungor, T.; Lam, P. Y. S.; Wang, T. C.; Ruel, R.; L'Heureux, A. L.; Thibeault, C.; Bouthillier, G.; Schnur, D. M. World Patent W02005113511A1, 2005.; (b) Tuerdi, H.; Chao, H. J.; Qiao, J. X.; Wang, T. C.; Gungor, T. U. S. Patent 2005261244A1, 2005.; c Herpin, T. F.; Morton, G. C.; Rehfuss, R. P.; Lawrence, R. M.; Poss, M. A.; Roberge, J. Y.; Gungor, T. World Patent W02005070920A1, 2005.; d Sutton, J. C.; Pi, Z.; Ruel, R.; L'Heureux, A.; Thibeault, C.; Lam, P. Y. S. World Patent W02006078621A2, 2006.; (e) Pfefferkorn, J. A.; Choi, C.; Winters, T.; Kennedy, R.; Chi, L.; Perrin, L. A.; Lu, G.; Ping, Y.-W.; McClanahan, T.; Schroeder, R.; Leininger, M. T.; Geyer, A.; Schefzick, S.; Atherton, J. Bioorg. Med. Chem. Lett. **2008**, *18*, 3338.
- 6. Funabashi, M.; Masaharu, I.; Juji, Y. Bull. Chem. Soc. Jpn. 1969, 42, 2885.
- For details of the platelet aggregation assay, see: Wilson, R. J.; Giblin, G. M. P.; Roomans, S.; Rhodes, S. A.; Cartwright, K. A.; Shield, V. J.; Brown, J.; Wise, A.; Chowdhury, J.; Pritchard, S.; Coote, J.; Noel, L. S.; Kenakin, T.; Burns-Kurtis, C. L.; Morrison, V.; Gray, D. W.; Giles, H. Br. J. Pharmacol. 2006, 1483, 326.
- 8. Experimental procedure for the preparation of compound **16**.Preparation of (*rac*)-2-ethyl-3-methyl-*N*-phenyl-1,2,3,4-tetrahydro-4-quinolinamine (4): In a 250 mL round bottom flask, aniline (18.6 g, 200 mmol) was dissolved in absolute ethanol (50 mL). The solution was cooled to 0 °C. To this solution was added propionaldehyde (11.6 g, 200 mmol) dropwise. Once the addition was completed, the reaction was allowed to warm to room temperature and stirred overnight (~14 h). The resulting yellow precipitate was filtered, washed with cold ethanol, and then allowed to dry at RT (under vacuum) for 24 h. The title compound was obtained as a white solid (9.3 g, 35 mmol, 35% yield). ¹H NMR (400 MHz, CHCl₃-*d*) δppm 7.16–7.23 (3H, m) 7.02 (1H, t, *J* = 7.6 Hz) 6.62–6.68 (3H, m) 6.61 (1H, d, *J* = 1.0 Hz) 6.51 (1H, dd, *J* = 8.0, 1.1 Hz) 4.31 (1H, t, *J* = 0.0 Hz) 3.78–3.86 (2H, m) 3.13 (1H, td, *J* = 7.8, 3.4 Hz) 1.84–1.91 (1H, m) 1.68–1.75 (1H, m) 1.57–1.63 (1H, m) 1.08 (3H, d, *J* = 6.8 Hz) 0.98 (3H, t, *J* = 7.4 Hz).

Preparation of (2*R*,35,4*S*)-2-ethyl-3-methyl-*N*-[3,5-(chloro)phenyl]-4-(phenylamino)-3,4-dihydro-1(2*H*)-quinolinecarboxamide (**16**): In a 100 mL round bottom flask (*rac*)-2-ethyl-3-methyl-*N*-phenyl-1,2,3,4-tetrahydro-4-quinolinamine **4** (1 g, 3.76 mmol) was dissolved in dichloromethane (13 mL). To this solution was added 3,5-dichlorophenylisocyanate (0.85 g, 4.51 mmol) followed by triethylamine (785 µL, 5.64 mmol) at room temperature. The reaction mixture was stirred overnight (~14 h). The resulting mixture was diluted with dichloromethane (50 mL) and quenched with water (25 mL). The phases were separated, and the aqueous phase was back-extracted with dichloromethane twice (15 mL each). The combined organic phases were dried over MgSO₄ and purified by flash chromatography (ISCO, 40 g SiO₂ cartridge, 0–15% ethyl acetate/ hexanes as the eluents). The fractions corresponding to (*rac*)-2-ethyl-3-methyl-*N*-[3,5-(chloro)phenyl]-4-(phenylamino)-3,4-dihydro-1(2*H*)-quinolinecarboxamide (**6**) were combined and concentrated under reduced pressure to provide the title compound as the racemate (1.2 g, 2.65 mmol, 70% yield).

The racemate (0.67 g) was separated by chiral HPLC (SFC with 25% MeOH as the modifier solvent; 10 μm Chiralpak OD, 10 mm \times 250 mm, 10 ml/min, UV at 280 nm).

 R_{t} = 7.1 min for 2*R*,3*S*,4*S*-enantiomer (99.4% purity), and R_{t} = 9.0 min for 2*S*,3*R*,4*R*-enantiomer (97.8% purity).

The absolute configuration for the (2*R*,35,4S)-enantiomer was assigned by vibrational circular dichorism (VCD) studies (Bomen Chiral IR VCD spectrometer at 4 cm⁻¹; frequency range = 2000–800 cm⁻¹; dual PEM calibrated at 1400 cm⁻¹; PEM1 = 0.250 λ ; PEM2 = 0.275 λ ; Scan Method: single block scan 180 min; CCl₄ as solvent; Concentration 10 mg/125 µL).

 $\begin{array}{l} (2R,3S,4S)-2-Ethyl-3-methyl-N-[3,5-(chloro)phenyl]-4-(phenylamino)-3,4-dihydro-1(2H)-quinolinecarboxamide (16): LC/MS: (M+H) = 454.0; ^1H NMR (400 MHz, CHCl_3-d) & ppm 7.39-7.44 (3H, m) 7.36 (1H, d, J = 7.6 Hz) 7.24-7.31 (3H, m) 7.17-7.23 (2H, m) 7.02 (1H, m) 6.97 (1H, br s) 6.74 (1H, t, J = 7.3 Hz) 6.62 (2H, d, J = 7.8 Hz) 4.41 (1H, dt, J = 7.8, 5.6 Hz) 3.99 (1H, d, J = 9.6 Hz) 1.65-1.72 (1H, m) 1.59 (1H, ddd, J = 13.6, 7.6, 5.6 Hz) 1.35-1.39 (1H, m) 1.30 (3H, d, J = 6.7 Hz) 0.92 (3H, t, J = 7.4 Hz). Screening Assay Protocols. \end{array}$

P2Y₁ FLIPR: HEK-293 MSRII cells endogenously expressing P2Y₁ were maintained in DMEM/F12 medium supplemented with 10% fetal bovine serum, 1% L-glutamine, 15 mM Hepes, and 1% penicillin–streptomycin at 37 °C in a humidified 5% CO₂ incubator. Cells were seeded at a density of 20,000 cells/well (384-well format) and cultured for 48 h prior to experiment. On the day of the experiment, growth media was removed and the cells were loaded with Calcium 3 dye from Molecular Devices in HBSS, pH7.4 containing 2.5 mM probenecid for 1 h at 37 °C. The dye loaded cells were then incubated with compound for 10 min prior to challenge with an EC80

For reviews, see: (a) Hechler, B.; Cattaneo, M.; Gachet, C. Semin. Thromb. Hemost. 2005, 312, 150; (b) Gachet, C. Annu. Rev. Pharmacol. Toxicol. 2006, 46, 277; (c) Oury, C.; Toth-Zsamboki, E.; Vermylen, J.; Hoylaerts, M. F. Curr. Pharm. Des. 2006, 12, 859.

concentration of ADP (determined daily; typically 2–6 nM). Intracellular calcium fluxes were measured on a Fluorescence Imaging Plate Reader (FLIPR). Compound IC_{50} values were subsequently determined by non-linear regression analysis using Activity Base.

P2Y₁ Binding: Membranes were prepared from BacMam transduced U2OS cells expressing human P2Y₁. [³³P]-2-MeS-ADP was utilized as the radioligand. Binding reactions were performed in 96-well plates in a volume of 130 μL containing 150 pM $[^{33}P]$ -2-SMe-ADP, 0.5 μg hP2Y₁ expressing U2OS cell membranes pre-bound to 0.5 mg of WGA-SPA (wheat germ agglutinin-coupled scintillation proximity assay) beads in 15 mM Hepes, 145 mM NaCl, 0.1 mM MgCl₂, 5 mM EDTA, 5 mM KCl binding buffer, and various concentrations of test compound or dimethylsulfoxide vehicle control. Reactions were allowed to proceed to completion at room temperature for 1 h. Following centrifugation (2000g), supernatants were counted on a Perkin-Elmer Topcounter.