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Abstract: A concise and efficient carbohydrate-based approach for
the total syntheses of (+)-garvensintriol and (+)-5-epi-garvensintri-
ol is described in nine and six steps with 20% and 37% overall yield,
respectively, starting from a known intermediate. A sequence of
Grignard-assisted lactol opening with terminal alkyne, stereoselec-
tive keto reduction and oxidative lactonization are the key reactions.

Keywords: garvensintriol, goniotriol, cytotoxic, oxidative lacton-
ization, Grignard-assisted lactol opening

Lactone rings are a structural feature of simple to highly
complex biologically active natural products.1 Among
them, six-membered lactone moieties are relatively com-
mon in various types of natural sources.2 These natural
and designed molecules possess cytotoxic, anti-HIV, apo-
ptosis induction, antileukemic activity and other relevant
pharmacological properties.3 Several bioactive styryl lac-
tones have been reported from goniothalamus species
which are found to possess significant cytotoxic activity
against several human tumor cell lines.4 (+)-Garvensintri-
ol (1) was isolated from the methanolic extract of G.
arvensis stem bark along with (+)-altholactone (3), (+)-
goniotriol (4), (+)-etharvendiol (5) and (+)-goniofufurone
(6; Figure 1).5 The structure of (+)-garvensintriol (1) was
determined from IR, 1H NMR, 13C NMR and mass spec-
tral analysis.

Figure 1 Structures of few novel styryl lactones

The absolute configuration was assigned as
(5S,6R,7S,8S), which was different from that of (+)-
goniotriol (4), whose absolute configuration
(5S,6R,7R,8R) was previously determined by X-ray crys-
tallographic analysis.6 Because of the wide distribution of
the styryl lactone class of natural products in nature with
interesting biological activities and to confirm the struc-
ture and configuration, we have taken up the synthesis of
(+)-garvensintriol (1) and (+)-5-epi-garvensintriol (2).

The retrosynthetic analysis of our approach is shown in
Scheme 1. It was envisioned that (+)-garvensintriol (1)
and (+)-5-epi-garvensintriol (2) could be obtained from D-
(–)-ribose. The six-membered lactone could be construct-
ed by oxidative lactonization of triol 8. The triol 8 could
be obtained from keto derivative 13. The crucial interme-
diate 9 could be obtained from a Grignard-assisted open-
ing of a known lactol 11 with a terminal alkyne 10.

Scheme 1 Retrosynthetic analysis of (+)-garvensintriol (1) and (+)-
5-epi-garvensintriol (2)

The synthesis of the key intermediate 11 was obtained
from D-(–)-ribose following a known protocol.7 The lactol
ring opening with in situ metalated alkyne (obtained by
treating 10 with ethyl magnesium bromide) afforded the
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anti isomer as the only product in 80% yield.8 The initial
attempt for inversion of secondary hydroxyl center fol-
lowing Mitsunobu protocol9 was not successful. At this
juncture, proceeding further with compound 9 led to the
(+)-5-epi-garvensintriol (2) in five steps. To obtain both
(+)-garvensintriol (1) and (+)-5-epi-garvensintriol (2),
compound 9 was treated with Pd/C under hydrogen atmo-
sphere to obtain the saturated product 12 in 91% yield.
The selective protection of the benzyl alcohol with NaH
and benzyl bromide followed by oxidation with pyridini-
um dichromate (PDC)10 reagent in CH2Cl2 resulted in keto
derivative 13 in 77% yield over two steps. The selective
reduction under different reaction conditions (Table 1)
was studied at this stage to obtain the required syn isomer.

Out of all the reagents tried, reduction using (S)-2-methyl-
CBS-oxazaborolidine11 afforded the required hydroxyl
compound 14 and its epimer 15 in a ratio of 9:1
(Scheme 2). Both the isomers were separated by silica gel
column chromatography and characterized separately.

To obtain (+)-5-epi-garvensintriol (2), compound 12 was
benzylated with NaH and benzyl bromide to afford the
dibenzyl derivative 16 in 86% yield. Dibenzyl derivative
16 was also obtained by treating compound 15 with NaH
and benzyl bromide in 84% yield. Both acetonide and
THP group deprotection with p-TSA in methanol afforded
the triol 812 in 89% yield. The oxidation of the triol 8 in
the presence of 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO) and [bis(acetoxy)iodo]benzene (BAIB) pro-
duced the six-membered lactone 1713 in 87% yield.14 Fi-
nally, deprotection of the benzyl groups with excess TiCl4

in CH2Cl2 at room temperature afforded the (+)-5-epi-
garvensintriol (2)15 in 76% yield.16

The assigned structure of (+)-5-epi-garvensintriol (2) was
confirmed by IR, 1H NMR, 13C NMR and mass spectral
analysis. The product after purification and recrystalliza-
tion produced single crystals whose X-ray analysis further
confirmed its structure and absolute configuration to be
(5S,6R,7S,8S).17

After the synthesis of (+)-5-epi-garvensintriol (2) and
confirmation of its absolute configuration by X-ray crys-
tallographic analysis, the synthesis of the natural product
1 was initiated. Starting from intermediate 14 and follow-
ing the same sequence of reactions18,19 as followed for
compound 15 to (+)-5-epi-garvensintriol (2), the total

Scheme 2 Reagents and conditions: (a) EtMgBr, THF, 6, 0 °C to r.t., 6 h, 80%; (b) Pd/C, H2, EtOAc, 4 h, 91%; (c) NaH, BnBr, DMF, 0 °C
to r.t., 2 h, 90%; (d) PDC, CH2Cl2, r.t., 85%; (e) (S)-CBS, BH3·Me2S, THF, –100 °C, 4 h, 82%; (f) NaH, BnBr, DMF, 0 °C to r.t., 2 h, 84%; (g)
p-TSA, MeOH, r.t., 6 h, 89%; (h) TEMPO, BAIB, CH2Cl2, 0 °C to r.t., 4 h, 87%; (i) TiCl4, CH2Cl2, r.t., 2 h, 76%
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Table 1 Results of Selective Reduction

Entry Reducing agents Conditions 14/15 Yield (%)a

1 NaBH4 MeOH, 0 °C, 30 min 1:9 89

2 L-Selectride THF, –78 °C, 4 h 1:4 85

3 NaB(OAc)3H THF, –78 °C, 2 h 1:4 90

4 NaBH4–CeCl3 MeOH, –100 °C, 4 h 2:3 84

5 (R)-CBS THF, –78 °C, 4 h 1:9 85

6 (S)-CBS THF, –78 °C, 4 h 9:1 82

7 ZnBH4 THF, –78 °C, 3 h 1:9 80

a Isolated yield.
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synthesis of (+)-garvensintriol (1)20 was achieved in four
steps (Scheme 3).

The spectral data were in good agreement with those of
the natural product but the analytical value showed a dif-
ference {[a]D

25 +70.3 (c = 1.5, EtOH); lit.5 [a]D
25 +7.8

(c = 3.3, EtOH)} which might be due to typographical er-
ror.

In conclusion, we have succeeded in the concise stereose-
lective syntheses of (+)-garvensintriol (1) and (+)-5-epi-
garvensintriol (2) from a known lactol 11 in nine and six
steps with 20% and 37% overall yield, respectively. The
absolute configurations of (+)-garvensintriol (1) and (+)-
5-epi-garvensintriol (2) have been elucidated. Following
the same protocol, other related natural products synthe-
ses are in progress and will reported in due course.
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