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Abstract—New chiral bidentate diphenylphospholanes were designed targeting a catalytic enantioselective aldol reaction to ketones.
Ligands 5l and 5m having cis-2-butenyl and cyclopropyl groups at the linker part, respectively, were identified as effective chiral
ligands for a CuF-catalyzed enantioselective aldol reaction to ketones. Catalysts prepared from CuFÆ3PPh3Æ2EtOH and these ligands
produced ketone aldol products with up to 66% ee, which is promising particularly for this extremely difficult and important cata-
lytic enantioselective carbon–carbon bond forming reaction. The enantioselectivity was strongly dependent on the linker structure.
Construction of a deep chiral pocket around the copper metal with stable bidentate chelation is the key to meaningful
enantioinduction.
� 2005 Elsevier Ltd. All rights reserved.
Catalytic enantioselective construction of chiral tertiary
alcohols through carbon–carbon bond formation is one
of the most important and challenging research targets
in current organic synthesis.1 Although there are many
biologically active naturally occurring compounds and
artificial pharmaceuticals containing chiral tertiary alco-
hols, there are only few reliable and practical synthetic
methods for these chiral building blocks. Catalytic enan-
tioselective cyanosilylation,2 organozinc addition,3 and
allylation4 of simple ketones are recent entries in this
category. One extremely important piece, however, is
missing; that is, the catalytic enantioselective aldol reac-
tion to ketones. The first and only example of a catalytic
enantioselective aldol reaction to simple ketones was re-
ported by Denmark and Fan.5 The use of very unstable
trichlorosilyl enolate as a nucleophile, narrow substrate
generality in terms of both nucleophiles (only acetate-
derived enolate can be used) and electrophiles, and mod-
erate enantioselectivity are the main drawbacks of this
pioneering reaction. The difficulty in developing this
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reaction is partly due to the attenuated reactivity of ke-
tones and the intrinsic facile reversibility of an aldol
reaction to ketones. Thus, development of a catalytic
enantioselective aldol reaction to ketones is among the
most difficult tasks for producing a practical range of
enantioselectivity and substrate generality.

We reported a new general method for catalytic aldol
reaction to ketones using CuF as a catalyst and rela-
tively stable and commonly used ketene trimethylsilyl
acetals as nucleophiles.6,7 In this method, the addition
of a stoichiometric amount of (EtO)3SiF was critical.
Mechanistic studies indicated that a copper enolate gen-
erated through transmetalation between silicon and cop-
per atoms is the actual nucleophile, and (EtO)3SiF
facilitates the rate-determining catalyst turnover step.8

This method has almost completely overcome the reac-
tivity problem of ketones in the aldol reaction, produc-
ing a high chemical yield and reaction rate from a wide
range of ketones and silyl enolates. Thus, this reaction
can be a valuable base for developing a general and
practical catalytic enantioselective aldol reaction to
ketones. In this letter, we describe our preliminary
results of this venue by developing a series of new
chiral bidentate phosphine ligands.
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Figure 1. Proposed transition state model.
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Scheme 2. General scheme of bis(diphenylphospholane) synthesis.

4326 K. Oisaki et al. / Tetrahedron Letters 46 (2005) 4325–4329
Various available chiral diphosphine ligands were first
screened in the reaction between acetophenone (1a)
and ketene silyl acetal 2 in the presence of 2.5 mol % Cu-
FÆ3PPh3Æ2EtOH and 5 mol % chiral ligands (Scheme 1).9

Although high chemical yields were obtained in each
case, the maximum enantiomeric excess was only 33%,
even when using privileged chiral bidentate phosphines.
Unexpectedly low enantioselectivity was partly ration-
alized from the reaction mechanism of this CuF-cata-
lyzed aldol reaction. Previous studies suggested that
the reaction proceeds through a linear transition state
from a copper enolate (Fig. 1).10 Thus, a substrate ke-
tone should approach the copper enolate from an out-
side space far from the chiral environment constructed
by chiral bidentate phosphine ligands. As a result,
shielding one specific enantioface of the ketone by steric
hindrance of chiral ligands might be inefficient.

These considerations led us to design new chiral biden-
tate phosphines containing a deeper chiral pocket, which
can control the orientation of the substrate ketone at a
position far from the metal center in the transition state.
Molecular modeling studies suggested that a diphenyl-
phospholane is a suitable chiral module to construct chi-
ral bidentate phosphines for this purpose. The fact that
low but meaningful enantioselectivity (24% ee) was ob-
tained using Ph-BPE in the preliminary ligand screening
(Scheme 1) supports this idea. We anticipated that if an
appropriate linker to connect the two chiral diphenyl-
phospholanes was identified, the phenyl groups of the
phospholane would act far from the metal center to
where a ketone exists in the transition state, and enantio-
selectivity could be expected to improve. The diphenyl-
phospholane module can be synthesized on a
multigram-scale according to the reported procedure.11

Linking the two phospholanes was accomplished
through a substitution reaction by the BH3-protected
phospholane followed by deprotection using DABCO
(Scheme 2). Following this general scheme, we synthe-
sized 12 new bidentate chiral phosphines as shown in
Table 1.
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Scheme 1. Preliminary screening of privileged bidentate phosphines.
The enantioselectivity of these ligands was assessed in
the catalytic aldol reaction of ketone 1a. As expected,
the linker had a profound effect on enantioselectivity
(Table 1). Ligand 5b, which has a propyl linker, pro-
duced higher enantioselectivity than 5a and 5d which
have either an ethyl or a butyl linker (entries 1–4). Con-
straining the propyl linker flexibility by introducing a
methyl substituent (ligand 5c) improved the enantiose-
lectivity (entry 2 vs entry 3). Molecular modeling studies
suggested that ligands 5b and 5c would produce a more
obtuse bite angle than Ph-BPE (5a) when the chelate was
formed with copper metal. Therefore, the phenyl group
of the phospholane should work more efficiently to pro-
duce steric bulkiness at the far position from the copper
center, thus giving higher enantioselectivity using 5b and
5c than 5a. On the other hand, if the linker is longer
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Table 1. Catalytic enantioselective aldol reaction to ketonesa

R Me

O
+

OMe

OSiMe3

1) CuF•3Ph3P•2EtOH (2.5 mol %)
    chiral phosphine (5 mol %)
    (EtO)3SiF (120 mol %)
    THF, 4 ºC

2) 3HF•Et3N Me
R

OH

OMe

O

1a: R = Ph
1b: R = c–Hex

2 (S)–3a

Entry Chiral ligand Time (h) Yield (%)b ee (%)c R/S

1 P

Ph

Ph 5a: Ph-BPE

P

Ph

Ph

1.2 92 24 R

2 P

Ph

Ph

P

Ph

Ph5b

24 86 41 S

3 P

Ph

Ph
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Ph

Ph5c

24 53 50 S

4 P
P

Ph

Ph
Ph

Ph

5d

18 86 29 S

5 P
N

Ph

Ph 5e

P

Ph

Ph

Ph

24 65 8 R

6d P P
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PhPh

Ph
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24 73 4 S
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24 83 3 R
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20 87 0 —

9 P
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13 86 0 —

10 P P
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18 100 18 S

11 P P

OOPh

PhPh
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Table 1 (continued)

Entry Chiral ligand Time (h) Yield (%)b ee (%)c R/S

12d P P

Ph

PhPh

Ph

5l

8 95 62 S

13d,e 43 78 66 —

14d P P

Ph

PhPh

Ph

5m

13 91 60 S

a Substrate 1a was used unless otherwise mentioned.
b Isolated yield.
c Determined by chiral HPLC after conversion to the corresponding 3,5-dinitrobenzoate.
d DME was used as solvent. Reactions in DME generally gave 3–4% higher ee than in THF.
e Substrate 1b was used.
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than propyl without any constraining group (ligand 5d),
the chelation should become less stable due to entropy
factor. As a result, a less enantioselective pathway
catalyzed by monodentate coordinated copper should
compete with the desired pathway catalyzed by the
bidentate coordinated copper, thus giving the product
with lower enantioselectivity in the case of 5d than
5b.12 Consistent with these considerations, ligands with
more flexible linkers (entries 5–7) produced only very
low enantioselectivity. In addition, no enantioselectivity
was observed using C1-symmetric bidentate phosphines
(entries 8 and 9), which indicated that both of the chiral
phospholanes are essential for enantioinduction.

The rational design concept based on these investigations
is to construct a C2-symmetric bidentate chiral phos-
phine with a wide bite angle and stable chelation ability.
Thus, ligands 5j–m were synthesized and their enantio-
selectivity was assessed (Table 1, entries 10–14). Gratify-
ingly, the best enantioselectivity (62% ee) was obtained
using ligand 5l having cis-2-butene linker (entry
12).13,14 A comparable result was also obtained using li-
gand 5m having cyclopropyl linker (entry 14). These link-
ers should define the positions of the steric hindrance (the
phenyl groups of the phospholane) far from the metal
center while maintaining stable bidentate coordination
to the copper atom. The predominant effect of the linker
structure on the enantioselectivity was also demon-
strated using ligands 5j and 5k. Although enantioselec-
tivity was much lower than when using 5l and 5m, the
absolute configuration of the aldol product depended
on the chirality at the linker part, and not on the chirality
of the phospholane (entries 10 and 11).

Finally, the best ligand 5l also produced appreciable
enantioselectivity (66% ee) from an aliphatic ketone 1b
(Table 1, entry 13).15 Although enantioselectivity is still
in the moderate range, this result is significant if com-
pared with the results obtained under the following rep-
resentative conditions; the aldol product was obtained
with only 32% ee under Denmark�s conditions,5 and
with 12% ee using tol-BINAP as a ligand under CuF-
catalyzed reactions. Thus, this is the most enantioselec-
tive catalytic aldol reaction reported to date using ali-
phatic ketones.16
To summarize, we established a new ligand design con-
cept for a CuF-catalyzed enantioselective aldol reaction
to ketones. A modular approach was used to identify
new chiral bidentate diphenylphospholane ligands 5l
and 5m, which produced up to 66% ee. The linker moi-
ety connecting the two diphenylphospholane modules
had a profound effect on enantioselectivity. This linker
effect was rationalized by the generation of a deep chiral
pocket around the catalytically active copper metal, as
well as the formation of a stable chelation to copper.
These factors are essential for constructing an effective
chiral environment to control the orientation of the sub-
strate ketone in the linear transition state of this cata-
lytic enantioselective aldol reaction. Although
enantioselectivity is still moderate, the applicability to
both aromatic and aliphatic ketones and the use of a rela-
tively stable ketene trimethylsilyl acetal are significant
advantages to the previous example, considering the for-
midable difficulty and high importance of the target
reaction.17 The results described here demonstrated that
a rational design of chiral bidentate phosphine ligands is
possible toward a general and practical catalytic enan-
tioselective aldol reaction to ketones. Studies toward
this goal are ongoing. In addition, the unique chiral
environment constructed by the newly developed ligands
5l and 5m should be useful for other transition metal-
catalyzed organic reactions.
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