Haloacetylated Enol Ethers, 19:¹ Synthesis of 3-(2-Thienyl)- and 3-(2-Furyl)-5trihalomethyl Substituted Azoles

Alex F. C. Flores,* Sergio Brondani, Lucas Pizzuti, Marcos A. P. Martins, Nilo Zanatta, Helio G. Bonacorso, Darlene C. Flores

NUQUIMHE, Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brasil Fax +55(55)32208031; E-mail: alexflores@smail.ufsm.br

Received 22 April 2005

Abstract: Heterocyclization of 1,1,1-trifluoro[chloro]-4-methoxy-4-[2-tienyl]-3-buten-2-one and 1,1,1-trifluoro[chloro]-4-methoxy-4-[2-furyl]-3-buten-2-ones into isoxazoles and pyrazoles derivatives as a new type of trihalomethylated bicyclic heterocycles is reported.

Keywords: [3+2] cyclocondensation, furyl isoxazoles, thienyl isoxazoles, furyl pyrazoles, thienyl pyrazoles

The wide range of biological activities of pyrazoles, isoxazoles has made them popular synthetic targets.² Numerous methods for the synthesis of these heterocycles involve approaches based on either intermolecular [2+3] cycloadditions of 1,3-dipoles to alkenes and alkynes, or cyclocondensations of hydroxylamine and hydrazines with 1,3-dielectrophiles.³ Moreover the thiophenes and furans in oligosystems have attracted considerable attention as the active component of organic electronic devices.⁴

In recent years we have focused our interest on β -diketones and α , β -unsaturated ketones with trifluoromethyl or trichloromethyl substituent.⁵ These represent interesting building blocks for the synthesis of heterocyclic systems, which often show high biological activities.⁶ The regiospecific synthesis of fluorinated N-heterocyclic compounds have drawn much more attention, the literature has reported series of CF₃-substituted pyrazoles and isoxazoles obtained from the reactions of trifluoromethyl- β diketones and α , β -unsaturated trifluoromethyl ketones (β alkoxyvinyl trifluoromethyl ketones or diethylaminomethylene hexafluoromethylacetone) with the corresponding nitrogen nucleophiles.⁷

In connection with our studies on the synthesis of isoxazole and pyrazole derivatives,⁸ we were interested in developing general and convenient methods for the synthesis of biheterocyclic systems from acetyl heterocycles. Here we report the syntheses of 2-thienyl- and 2-furylazoles with trihalomethyl and carboxyl substituents.

The trihaloacetylated precursors were obtained by acetal acylation method, from which 1,1,1-trihalo-4-heteroaryl-4-methoxybut-3-en-2-ones **1a**,**b** and **2a**,**b** were isolated as pure mixtures of E/Z isomers. The reaction of 1,1-

dimethoxy-1-(2-heteroaryl)ethanes with trichloroacetyl chloride or trifluoroacetic anhydride in CHCl₃–pyridine is a very convenient approach to trichloro- and trifluoro- methyl 1,3-dielectrophiles.⁹

In order to prepare isoxazole derivatives, compounds 1a,b and 2a,b were reacted with NH₂OH·HCl in MeOH under reflux for four hours. The crystalline products were obtained in 90-95% yields (Scheme 1). These compounds were characterized as 5-trihalomethyl-3-(2-heteroaryl)-5hydroxy-4,5-dihydroisoxazole derivatives 3a,b and 4a,b based on the analysis and spectral data. The presence of the strong electron-withdrawing substituent at the 5-position guarantees the high stability of the 5-hydroxy-4,5-dihydroisoxazole structures. The dehydration of 3 and 4 with 98% H₂SO₄ at 50 °C for 2-6 hours afforded aromatic isoxazole derivatives **5b** and **6a**, **b**. The dehydration of **3a** did not occur in this medium; the high reflux temperature leads to complex mixtures probably from furyl ring opening. In an attempt to prepare the 3-thienyl-5-isoxazole carboxylic acid the 4,5-dihydroisoxazole 4b was refluxed in 95% H₂SO₄; however after 12 hours only the reactant isoxazoline was isolated without any changes. The structure of 5, 6 was supported by elemental analysis, mass spectrometry and ¹H, ¹³C NMR spectral data (Table 1) and ¹⁹F NMR.¹⁰

Scheme 1

Next we examined the synthesis of pyrazole derivatives by cyclocondensations of 1 and 2 with hydrazine as summarized in Scheme 2. The reaction of 1a and 2a with hydrazine hydrochloride in MeOH or EtOH at 50–60 °C

SYNTHESIS 2005, No. 16, pp 2744–2750 Advanced online publication: 04.08.2005 DOI: 10.1055/s-2005-872140; Art ID: M02405SS © Georg Thieme Verlag Stuttgart · New York

gave pyrazoles **7a** and **8a** as crystals, quantitatively. The same substrates reacting with hydrazine monohydrate gave the same pyrazoles in somewhat lower yields (70–75%). The ¹³C NMR spectra of these tautomeric 3(5)-trifluoromethyl-5(3)-(2-heteroaryl)-1*H*-pyrazoles **7a**, **8a** in CDCl₃ revealed only one quartet signal assignable to CF₃ at $\delta = 121.6$ ($J_{C,F} = 268.7$) for **7a** and $\delta = 120.8$ ($J_{C,F} = 269$) for **8a**. The ¹⁹F NMR spectra showed only one signal for 5-trifluoromethyl group at -64.10 for **7a** and at -64.30 for **8a**.¹¹

The reactions of **1b** and **2b** with hydrazine hydrochloride in MeOH or EtOH at 50–60 °C afforded the respective 3(5)-ester pyrazoles **9–12** as crystals in good yields of 81– 89% (Table 1). The same reaction with hydrazine monohydrate at 25 °C gave the same 3(5)-esters pyrazoles **9–12** quantitatively. The structural assignments were based on the signals due to the pyrazole ring carbons at ca δ = 140.1, 104.3 and 138.8 for **9**, and δ = 146.2, 105.9 and 138.4 for **11**. The signals from ester carboxyl groups were observed at δ = 160.2–160.9 (Table 1). The reaction of **1b** with hydrazine monohydrate in a concentrated solution of EtOH afforded a 40:60 mixture of **9** and **10** in 95% yield. The medium with hydrazine monohydrate was preferred to that with hydrazine hydrochloride when the targets were ester pyrazoles **9–12** (Table 1).

Scheme 2

However, intending to preserve the trichloromethyl group on pyrazole products the reaction of **1b** or **2b** with hydrazine monohydrate was carried out in a polar aprotic solvent (CHCl₃) at 25–30 °C for 30 minutes, which gave the 5-trichloromethyl-1*H*-pyrazoles **7b** and **8b** in quantitative yields (Table 1). The presence of the signals at $\delta = 101$ from CCl₃, as well as the chemical shifts of the pyrazole carbons supported the assignment (Table 1). The cyclocondensations of 1 and 2 with phenylhydrazine are summarized in Scheme 3. The reaction of 1a with phenylhydrazine hydrochloride in refluxing MeOH for four hours gave a mixture of 3- and 5-trifluoromethyl substituted pyrazole isomers (15a and 15a') in 82% yield (Scheme 3, Table 1). However, when 2a was allowed to react with phenylhydrazine hydrochloride under the same conditions only one isomer was obtained in 75% yield. It was attributed as 5-trifluoromethyl-1-phenyl-3-thienyl-1*H*-pyrazole (16a). The regiochemical assignment of 15a, 15a' and 16a was made on the basis of the ¹³C (Table 1) and ¹⁹F NMR spectra.^{3b,11}

The reaction of **1a** or **2a** with free phenylhydrazine furnished different results on changing the reaction time and solvent of the reaction. A short reaction period (30 min) in CHCl₃ at 5–10 °C afforded the 4,5-dihydropyrazoles **13a** and **14a** in good yields. The ¹H NMR signals from diastereotopic hydrogens at 4 position of the pyrazole ring confirmed the assignment. Nevertheless, a longer period of four hours in the same solvent led to the aromatic products **15a** and **16a**. On using EtOH as solvent, a complex mixture of 4,5-dihydropyrazole, aromatic pyrazole isomers and tar material was obtained.

Scheme 3

In reactions of **1b** and **2b** with phenylhydrazine hydrochloride in MeOH or EtOH at 25–50 °C the respective 5ester pyrazoles **17–20** were furnished as crystals in good yields 76–89% (Table 1 and Scheme 4). Moreover when **1b** or **2b** were allowed to react with free phenylhydrazine in MeOH or EtOH at 25–35 °C the same 5-ester pyrazoles were obtained with equivalent yields. In order to preserve the trichloromethyl group at pyrazole ring the cyclocondensation reaction was carried out in CHCl₃ at 5–25 °C for one hour. It was then possible to isolate the 5-trichloromethyl-3-(2-heteroaryl)-1-phenyl-1*H*-pyrazoles **15b** and **16b.** The ¹H and ¹³C NMR spectra of these pyrazoles in CDCl₃ revealed only one set of signals assigned to the 3-heteroaryl substituted isomers.

Scheme 4

The presented regiospecific reactions have been being useful and convenient alternative to obtain important biheterocyclic systems containing thiophene or furan ring. That one-pot cyclocondensation and conversion of trichloromethyl group into carboxyl groups allowed the production of a new series of pyrazole-5-carboxylic esters in good yields. Moreover, it was possible to verify that the effect of the 3-(2-heteroaryl) substituent on the isoxazole ring does not permit the conversion of the trichloromethyl groups; the same trend observed with 3-aryl substituents.¹² On the other hand, the facile transforEtOH, MeOH and CHCl₃ were purchased from Merck. Hydroxylamine, hydrazine and phenylhydrazine hydrochloride were purchased from Aldrich. All chemicals were used as obtained from suppliers. The 1,1,1-trihalo-4-(2-heteroaryl)-4-methoxy-3-buten-2ones 1 and 2 were prepared according to ref.⁹ All melting points were determined on a Reichert Thermovar apparatus and are uncorrected. ¹H and ¹³C NMR spectra were acquired on a Bruker DPX 400 spectrometer (¹H at 400.13 MHz and ¹³C at 100.62 MHz) in 5 mm sample tubes at 298 K and digital resolution of ± 0.01 ppm, in CDCl₃ and using TMS as the internal reference. Mass spectra were registered on a HP 6890 GC equipment connected to a HP 5973 MSD and interfaced by a Pentium PC. The GC was equipped with a split-splitless injector, autosampler, cross-linked HP-5 capillary column (30 m, 0.32 mm of internal diameter), and He was used as the carrier gas. The elemental analyses were performed on a Perkin-Elmer 2400 CHN elemental analyzer (São Paulo University-USP/ Brazil).

Synthesis of 5-Trihalomethyl-5-hydroxy-3-(2-heteroaryl)-4,5dihydroisoxazoles (3a,b, 4a,b)

A solution of 1,1,1-trihalo-4-(2-heteroaryl)-4-methoxy-3-buten-2ones 1 or 2 (5 mmol) and hydroxylamine hydrochloride (5.5 mmol) in MeOH (7 mL) was stirred for 2–4 h at reflux. The solvent was removed and the residue was dissolved in CHCl₃ (20 mL) and washed with water (2×10 mL). The solution was dried with Na₂SO₄ and the solvent was evaporated, which gave the pure isoxazoles **3a,b** and **4a,b**. Yields, melting points, and ¹H, ¹³C NMR data are presented in Table 1 and elemental analysis in Table 2.

 Table 1
 Yields, Melting Points and ¹H and ¹³C NMR Data of Heteroarylazoles 3–20

Product	X/R	W	Yield (%) ^a	Mp (°C)	NMR data ^c
3a ^d	F	0	90	117–119	¹ H NMR: δ = 3.52 (d, <i>J</i> = 18.0 Hz, 1 H), 3.83 (d, <i>J</i> = 18.0 Hz, 1 H), 6.62 (dd, <i>J</i> = 3.4, 1.8 Hz, 1 H), 6.95 (d, <i>J</i> = 3.4 Hz, 1 H), 7.74 (d, <i>J</i> = 1.8 Hz, 1 H) ¹³ C NMR: δ = 148.7 (C-3), 42.5 (C-4), 103.6 (<i>J</i> _{CF} = 33.5 Hz, C-5), 122.6 (<i>J</i> _{CF} = 283.6 Hz, CF ₃), 143.6 (C-2'), 113.8 (C-3'), 111.9 (C-4'), 145.5 (C-5')
4a ^d	F	S	90	123–125	¹ H NMR: δ = 3.56 (d, <i>J</i> = 18.5 Hz, 1 H), 3.93 (d, <i>J</i> = 18.5 Hz, 1 H), 7.18 (dd, <i>J</i> = 5.6, 3.7 Hz, 1 H), 7.50 (dd, <i>J</i> = 3.7, 1.0 Hz, 1 H), 7.73 (dd, <i>J</i> = 5.6, 1.0 Hz, 1 H) ¹³ C NMR: δ = 153.0 (C-3), 42.8 (C-4), 103.8 (J_{CF} = 33.1 Hz, C-5), 122.4 (J_{CF} = 284.2 Hz, CF ₃), 129.7 (C-2'), 130.0 (C-3'), 127.9 (C-4'), 131.3 (C-5')
3b ^d	Cl	0	95	155–157	¹ H NMR: δ = 3.66 (d, <i>J</i> = 18.5 Hz, 1 H), 4.02 (d, <i>J</i> = 18.5 Hz, 1 H), 6.61 (dd, <i>J</i> = 3.5, 1.8 Hz, 1 H), 6.96 (d, <i>J</i> = 3.5 Hz, 1 H), 7.74 (d, <i>J</i> = 1.8 Hz, 1 H) ¹³ C NMR: δ = 149.0 (C-3), 44.0 (C-4), 111.4 (C-5), 101.2 (CCl ₃), 143.5 (C-2'), 113.5 (C-3'), 111.8 (C-4'), 145.2 (C-5')
4b ^d	Cl	S	93	168–171	¹ H NMR: δ = 3.73 (d, <i>J</i> = 18.5 Hz, 1 H), 4.16 (d, <i>J</i> = 18.5 Hz, 1 H), 7.15 (dd, <i>J</i> = 5.0, 3.7 Hz, 1 H), 7.50 (dd, <i>J</i> = 3.7, 1.0 Hz, 1 H), 7.65 (dd, <i>J</i> = 5.0, 1.0 Hz, 1 H) ¹³ C NMR: δ = 154.1 (C-3), 45.9 (C-4), 112.8 (C-5), 102.2 (CCl ₃), 131.5 (C-2'), 130.1 (C-3'), 128.6 (C-4'), 131.3 (C-5')

 Table 1
 Yields, Melting Points and ¹H and ¹³C NMR Data of Heteroarylazoles 3–20 (continued)

Product	X/R	W	Yield (%) ^a	Mp (°C)	NMR data ^c
6a	F	S	89	112–115	¹ H NMR: δ = 6.56–6.59 (dd, J = 3.5, 1.8 Hz, 1 H), 6.97 (s, 1 H), 7.02 (d, J = 3.5 Hz, 1 H), 7.60 (d, J = 1.8 Hz, 1 H) ¹³ C NMR: δ = 157.7 (C-3), 103.4 (C-4), 159.0 (J_{CF} = 34.0 Hz, C-5), 117.7 (J_{CF} = 280.2 Hz, CF ₃), 128.5 (C-2'), 128.6 (C-3'), 127.9 (C-4'), 128.8 (C-5').
5b	Cl	0	76	55–57	¹ H NMR: δ = 6.47–6.49 (dd, <i>J</i> = 3.5, 1.8 Hz, 1 H), 6.81 (s, 1 H), 6.92 (d, <i>J</i> = 3.5 Hz, 1 H), 7.51 (d, <i>J</i> = 1.8 Hz, 1 H) ¹³ C NMR: δ = 168.7 (C-3), 101.3 (C-4), 154.7 (C-5), 84.2 (CCl ₃), 142.7 (C-2'), 111.9 (C-3'), 111.3 (C-4'), 144.5 (C-5')
6b	Cl	S	82	101–103	¹ H NMR: δ = 6.85 (s, 1 H), 7.14 (dd, <i>J</i> = 5.0, 3.6 Hz, 1 H), 7.45–7.52 (m, 2 H) ¹³ C NMR: δ = 169.0 (C-3), 101.7 (C-4), 157.7 (C-5), 84.3 (CCl ₃), 129.1 (C-2'), 128.6 (C-3'), 128.3 (C-4'), 128.6 (C-5')
7a	F	0	80	48–50	¹ H NMR: δ = 6.67 (s, 1 H, H-4), 6.46 (dd, <i>J</i> = 1.8, 3.4 Hz, 1 H, H-4'), 6.65 (d, <i>J</i> = 3.4 Hz, 1 H, H-3'), 7.43(d, <i>J</i> = 1.8 Hz, 1 H, H-5') ¹³ C NMR: δ = 143.3 (C-3), 99.9 (J_{CF} = 1.8 Hz, C-4), 143.2 (J_{CF} = 26.0 Hz, C-5), 121.6 (J_{CF} = 268.7 Hz, CF ₃), 136.4 (C-2'), 108.0 (C-3'), 111.6 (C-4'), 143.0 (C-5').
8a	F	S	84	103–105	¹ H NMR: δ = 6.66 (s, 1 H, H-4), 7.07 (dd, J = 3.7, 4.9 Hz, 1 H, H-4'), 7.30 (d, J = 3.7 Hz, 1 H, H-3'), 7.35(d, J = 4.9 Hz, 1 H, H-5') ¹³ C NMR: δ = 139.9 (C-3), 101.5 (J_{CF} = 1.6 Hz, C-4), 143.0 (J_{CF} = 31.2 Hz, C-5), 120.8 (J_{CF} = 269.0 Hz, CF ₃), 129.8 (C-2'), 128.0 (C-3'), 125.5 (C-4'), 126.5 (C-5')
7b	Cl	0	82	53–54	¹ H NMR: δ = 6.47 (dd, <i>J</i> = 1.7, 3.2 Hz, 1 H, H-4'), 6.77 (d, <i>J</i> = 3.2 Hz, 1 H, H-3'), 6.81 (s, 1 H, H-4), 7.45 (d, <i>J</i> = 1.7 Hz, 1 H, H-5') ¹³ C NMR: δ = 154.8 (C-3), 100.3 (C-4), 143.3 (C-5), 89.52 (CCl ₃), 136.9 (C-2'), 108.6 (C-3'), 111.77 (C-4'), 143.16 (C-5')
8b	Cl	S	87	115–117	¹ H NMR: δ = 6.80 (s, 1 H, H-4), 7.09 (dd, <i>J</i> = 3.4, 4.4 Hz, 1 H, H-4'), 7.36 (d, <i>J</i> = 3.9 Hz, 1 H, H-3'), 7.37 (d, <i>J</i> = 4.4 Hz, 1 H, H-5') ¹³ C NMR: δ = 154.8 (C-3), 101.8 (C-4), 140.3 (C-5), 89.6 (CCl ₃), 130.3 (C-2'), 125.6 (C-3'), 126.5 (C-4'), 128.0 (C-5')
9	Me	0	85	Oil	3.90 (s, 3 H, Me), 6.46 (dd, J = 1.8, 3.4 Hz, 1 H, H-4'), 6.73 (d, J = 3.4 Hz, 1 H, H-3'), 6.99 (s, 1 H, H4), 7.44 (d, J = 1.8 Hz, 1 H, H-5') ¹³ C NMR: δ = 140.9 (C-3), 104.8 (C-4), 139.0 (C-5), 160.9 (CO ₂ R), 145.8 (C-2'), 107.2 (C-3'), 111.5 (C-4'), 142.5 (C-5')
10	Et	0	81	Oil	1.32 (t, <i>J</i> = 7.0 Hz, 3 H, Me), 4.34 (q, <i>J</i> = 7.0 Hz, 2 H, CH ₂), 6.56 (dd, <i>J</i> = 1.8, 3.4 Hz, 1 H, H-4'), 6.96 (d, <i>J</i> = 3.4 Hz, 1 H, H-3'), 7.05 (s, 1 H, H-4), 7.65 (d, <i>J</i> = 1.8 Hz, 1 H, H-5') ¹³ C NMR: δ = 140.1 (C-3), 104.3 (C-4), 138.8 (C-5), 160.7 (CO ₂ R), 145.6 (C-2'), 107.5 (C-3'), 111.9 (C-4'), 143.3 (C-5')
11	Me	S	87	Oil	¹ H NMR: δ = 3.89 (s, 3 H, Me), 6.96 (s, 1 H, H-4), 7.03 (dd, J = 3.6, 5.1 Hz, 1 H, H-4'), 7.26 (d, J = 5.1 Hz, 1 H, H3'), 7.37 (d, J = 3.6 Hz, 1 H, H-5') ¹³ C NMR: δ = 144.8 (C-3), 105.5 (C-4), 137.9 (C-5), 160.5 (CO ₂ R), 133.4 (C-2'), 127.6 (C-3'), 124.8 (C-4'), 125.5 (C-5')
12	Et	S	89	132–134	¹ H NMR: δ = 1.34 (t, <i>J</i> = 7.1 Hz, 3 H, Me), 4.35 (q, <i>J</i> = 7.1 Hz, 2 H, CH ₂), 7.11 (dd, <i>J</i> = 3.6, 5.1 Hz, 1 H, H-4'), 7.27 (s, 1 H, H-4), 7.47 (dd, <i>J</i> = 1.06, 5.1 Hz, 1 H, H-3'), 7.58 (dd, <i>J</i> = 1.06, 3.6 Hz, 1 H, H-5'). ¹³ C NMR: δ = 146.2 (C-3), 105.9 (C-4), 138.4 (C-5), 160.2 (CO ₂ R), 135.2 (C-2'), 128.6 (C-3'), 125.8 (C-4'), 126.5 (C-5')
13a	F	0	81	Oil	¹ H NMR: δ = 3.59 (dd, <i>J</i> = 18.6, 1.6 Hz, 1 H, H-4a), 3.83(d, <i>J</i> = 18.6 Hz, 1 H, H-4b), 6.57 (dd, <i>J</i> = 3.5, 1.84 Hz, 1 H, H-4'), 6.79 (d, <i>J</i> = 3.5 Hz, 1 H, H-3'), 7.27 (m, 3 H, Ph), 7.51 (m, 2 H, Ph), 7.66 (d, <i>J</i> = 1.84 Hz, 1 H, H-5') ¹³ C NMR: δ = 139.7 (C-3), 45.0 (C-4), 94.1 (J_{CF} = 31.7 Hz, C-5), 120.3 (J_{CF} = 284.0 Hz, CF ₃), 143.5 (C-2'), 111.0 (C-3'), 113.3 (C-4'), 144.7 (C-5')
14a	F	S	78	Oil	¹ H NMR: δ = 3.42 (d, <i>J</i> = 18.15 Hz, 1 H, H-4a), 3.71 (d, <i>J</i> = 18.15 Hz, 1 H, H-4b), 7.05 (d, 1 H, H-3'), 7.31 (dd, 1 H, H-4'), 7.30–7.60 (m, 6 H, H-5', Ph) ¹³ C NMR: δ = 140.9 (C-3), 44.8 (C-4), 93.5 (<i>J</i> _{CF} = 31.8 Hz, C-5), 121.0 (<i>J</i> _{CF} = 284.8 Hz, CF ₃), 144.3 (C-2'), 129.1 (C-3'), 128.7 (C-4'), 140.9 (C-5')

Downloaded by: Florida State University Libraries. Copyrighted material.

 Table 1
 Yields, Melting Points and ¹H and ¹³C NMR Data of Heteroarylazoles 3–20 (continued)

Product	X/R	W	Yield (%) ^a	Mp (°C)	NMR data ^c		
15a	F	0	80	Oil	¹ H NMR: δ = 5.96 (d, J = 3.3 Hz, 1 H, H-3'), 6.32 (dd, J = 1.8, 3.3 Hz, 1 H, H-4'), 6.89 (s, 1 H, H-4), 7.42 (d, J = 1.8 Hz, 1 H, H-5'), 7.43 (m, 2 H, Ph), 7.47–7.51 (m, 3 H,Ph) ¹³ C NMR: δ = 136.1 (C-3), 103.7 (J_{CF} = 1.8 Hz, C-4), 143.1 (J_{CF} = 38.5 Hz, C-5), 121.0 (J_{CF} = 269.0 Hz, CF ₃), 143.1 (C-2'), 109.8 (C-3'), 111.3 (C-4'), 143.1 (C-5')		
15a ^{1,3}					¹ H NMR: δ = 6.47 (dd, <i>J</i> = 1.8, 3.3 Hz, 1 H, H-4'), 6.79 (d, <i>J</i> = 3.3 Hz, 1 H, H-4'), 7.03 (s, 1 H, H-4), 7.39 (d, <i>J</i> = 1.8 Hz, 1 H, H-5'), 7.47–7.51 (m, 5 H, Ph) ¹³ C NMR: δ = 133.6 (J_{CF} = 39.5 Hz, C-3), 105.7 (J_{CF} = 2.4 Hz, C-4), 147.0 (C-5), 119.5 (J_{CF} = 269.3 Hz, CF ₃), 144.1 (C-2'), 107.1 (C-3'), 111.4 (C-4'), 142.5 (C-5')		
16a	F	S	81	53–55	¹ H NMR: δ = 6.98(s, 1 H, H-4), 7.06 (dd, <i>J</i> = 5.06, 3.6 Hz, 1 H, H-4'), 7.28 (dd, <i>J</i> = 5.05, 1.1 Hz, 1 H, H-3'), 7.39 (dd, <i>J</i> = 3.6, 1.1 Hz, 1 H, H-5'), 7.46 (m, 3 H, Ph), 7.51 (m, 2 H, Ph) ¹³ C NMR: δ = 147.1 (C-3), 105.7 (J_{CF} = 1.8 Hz, C-4), 133.8 (J_{CF} = 39.6 Hz, C-5), 121.4 (J_{CF} = 269.0 Hz, CF ₃), 144.1 (C-2'), 129.8 (C-3'), 127.3 (C-4'), 141.4 (C-5')		
15b	Cl	0	79	119–121	¹ H NMR: δ = 5.97 (d, <i>J</i> = 3.5 Hz, 1 H, H-3'), 6.32 (dd, <i>J</i> = 3.5, 1.9 Hz, 1 H, H-4'), 6.99 (s, 1 H, H-4), 7.40 (d, <i>J</i> = 1.9 Hz, 1 H, H-5'), 7.43–7.49 (m, 5 H, Ph). ¹³ C NMR: δ = 136.2 (C-3), 103.8 (C-4), 143.09 (C-5), 90.5 (CCl ₃), 143.2 (C-2'), 109.8 (C-3'), 111.3 (C-4'), 139.4 (C-5')		
16b	C1	S	82	134–136	¹ H NMR: δ = 7.07 (dd, <i>J</i> = 5.6, 1.2 Hz, 1 H, H-3'), 7.08 (s, 1 H, H-4), 7.28 (dd, <i>J</i> 3.6 Hz, 1 H, H-4'), 7.41 (dd, <i>J</i> = 3.6, 1.2 Hz, 1 H, H-5'), 7.44–7.49 (m, 3 H, Ph (m, 2 H, Ph) ¹³ C NMR: δ = 145.6 (C-3), 105.9 (C-4), 139.6 (C-5), 86.5 (CCl ₃), 134.7 (C-2'), (C-3'), 125.4 (C-4'), 127.5 (C-5')		
17	Me	Ο	80	65–67	¹ H NMR: δ = 3.94 (s, 3 H, Me), 5.94 (d, J = 3.34 Hz, 1 H, H-3'), 6.32 (dd, J = 3.34, 1.7 Hz, 1 H, H-4'), 7.17 (s, 1 H, H-4), 7.39 (d, J = 1.7 Hz, 1 H, H-5'), 7.40–7.48 (m, 5 H, Ph) ¹³ C NMR: δ = 139.5 (C-3), 107.9 (C-4), 136.1 (C-5), 162.4 (CO ₂ Me), 143.2 (C-2'), 109.4 (C-3'), 111.2 (C-4'), 142.9 (C-5')		
18	Et	Ο	89	Oil	¹ H NMR: δ = 1.40 (t, J = 7.1 Hz, 3 H, Me), 4.43 (q, J = 7.1 Hz, 2 H, CH ₂), 5.94 (d, J = 3.4 Hz, 1 H, H-3'), 6.31 (dd, J = 3.4, 1.76 Hz, 1 H, H-4'), 7.17 (s, 1 H, H-4), 7.39 (d, J = 1.76 Hz, 1 H, H-5'), 7.40–7.48 (m, 5 H, Ph) ¹³ C NMR: δ = 139.4 (C-3), 107.9 (C-4), 136.0 (C-5), 161.9 (CO ₂ Et), 143.2 (C-2'), 109.4 (C-3'), 111.1 (C-4'), 142.9 (C-5')		
19	Me	S	76	68–70	¹ H NMR: δ = 3.94 (s, 3 H, Me), 6.82(d, <i>J</i> = 3.74 Hz, 1 H, H-3'), 6.92 (dd, <i>J</i> = 5.0, 3.34 Hz, 1 H, H-4'), 7.08 (s, 1 H, H-4), 7.26 (d, <i>J</i> = 5.0 Hz, 1 H, H-5'), 7.38–7.43 (m, 5 H, Ph) ¹³ C NMR: δ = 138.9 (C-3), 109.3 (C-4), 138.6 (C-5), 162.4 (CO ₂ Me), 143.7 (C-2'), 129.1 (C-3'), 127.0 (C-4'), 127.6 (C-5')		
20	Et	S	83	Oil	¹ H NMR: δ = 1.41 (t, J = 7.2 Hz, 3 H, Me), 4.44(q, J = 7.2 Hz, 2 H, CH ₂), 6.82 (d, J = 2.8 Hz, 1 H, H-3'), 6.93 (dd, J = 4.8, 2.8 Hz, 1 H, H-4'), 7.08 (s, 1 H, H-4), 7.28 (d, J = 4.8 Hz, 1 H, H-5'), 7.40–7.45 (m, 5 H, Ph) ¹³ C NMR: δ = 139.0 (C-3), 109.4 (C-4), 138.7 (C-5), 162.1 (CO ₂ Et), 144.1 (C-2'), 129.1 (C-3'), 127.1 (C-4'), 127.7 (C-5')		

^a Yield refers of the pure products.

^b Melting points were determined with a Reichert Thermovar apparatus and are uncorrected.

^c NMR spectra were recorded on a Bruker DPX400 spectrometer in CDCl₃-TMS.

^d In DMSO-*d*₆/TMS. See ref.⁹

Synthesis of 5-Trihalomethyl-3-(2-heteroaryl)isoxazoles (5b, 6a,b)

To the respective 4,5-dihydroisoxazole **3b** or **4a,b** (1 mmol) was added at room temperature 98% H_2SO_4 . The black mixture was stirred for 2 h (**3b** and **4b**) or 6 h for **4a**. After that the acidic solution was diluted with cooled water and precipitated solid was filtered and dried over CaCl₂ under vacuum. Yields, melting points and ¹H, ¹³C NMR data for the obtained pure isoxazoles **5b** and **6a,b** are presented in Table 1 and elemental analysis in Table 2.

Synthesis of 3(5)-Trihalomethyl-5(3)-(2-heteroaryl)-1*H*-pyrazoles (7a,b, 8a,b)

To a stirred solution of 1,1,1-trihalo-4-(2-heteroaryl)-4-methoxy-3buten-2-ones 1 or 2 (5 mmol) in CHCl₃ (20 mL) was added hydrazine monohydrate (5.2 mmol). The mixture was stirred for 2 h at r.t. After that the solution was dried with Na₂SO₄, filtered and the solvent was removed. Then pure 1*H*-pyrazoles **7a,b**, **8a,b** were obtained. Yields, melting points and ¹H, ¹³C NMR data are presented in Table 1 and elemental analysis in Table 2. The synthesis of 5-trifluoromethyl-3-(2-thienyl)-1*H*-pyrazole (**8a**) has been previously

Table 2	Elemental	Analyses	of Isolated	Compounds ^a
---------	-----------	----------	-------------	------------------------

Product	Molecular Formula	C (%) Calcd.	C (%) Found	H (%) Calcd.	H (%) Found
3a	C ₈ H ₆ F ₃ NO ₃	43.45	43.40	2.73	2.75
4a	$C_8H_6F_3NO_2S$	40.51	40.50	2.55	2.50
3b	C ₈ H ₆ Cl ₃ NO ₃	35.52	35.70	2.24	2.35
4b	$C_8H_6Cl_3NO_2S$	33.53	33.40	2.11	2.13
6a	C ₈ H ₅ F ₃ NOS	43.84	43.80	1.84	2.00
5b	C ₈ H ₅ Cl ₃ NO ₂	38.06	38.00	1.60	1.65
6b	C ₈ H ₅ Cl ₃ NOS	35.78	35.75	1.50	1.50
7a	$C_8H_5F_3N_2O$	47.54	47.40	2.49	2.45
8a	$C_8H_5F_3N_2S$	44.04	44.00	2.31	2.30
7b	$C_8H_5Cl_3N_2O$	38.21	38.20	2.00	2.00
8b	$C_8H_5Cl_3N_2S$	35.91	36.10	1.88	1.90
9	$C_9H_8N_2O_3$	56.25	56.30	4.20	4.35
10	$C_{10}H_{10}N_{2}O_{3} \\$	51.91	51.95	3.87	4.00
11	$C_9H_8N_2O_2S$	58.25	58.25	4.89	4.90
12	$C_{10}H_{10}N_{2}O_{2}S$	54.04	54.10	4.53	4.55
15a	$C_{14}H_9F_3N_2O$	60.44	60.50	3.26	3.35
16a	$C_{14}H_9F_3N_2S$	57.14	57.20	3.08	3.15
15b	$C_{14}H_9Cl_3N_2O$	51.33	51.50	2.77	2.90
16b	$C_{14}H_9Cl_3N_2S$	48.93	48.90	2.64	2.65
17	$C_{15}H_{12}N_{2}O_{3} \\$	67.16	67.10	4.51	4.50
18	$C_{15}H_{12}N_{2}O_{2}S$	68.08	68.10	5.00	4.90
19	$C_{16}H_{14}N_{2}O_{3}\\$	63.36	63.35	4.25	4.30
20	$C_{16}H_{14}N_2O_2S$	64.41	64.30	4.73	4.65

^a Perkin-Elmer 2400 CHN elemental analyzer (São Paulo University-USP/Brazil)

reported and the analytical and spectral data are reported in reference 11a.

Synthesis of 3(5)-(2-Heteroaryl)-1*H*-pyrazole-5(3)-carboxylic Acids (9–12)

A solution of 1,1,1-trihalo-4-(2-heteroaryl)-4-methoxy-3-buten-2ones 1 or 2 (5 mmol) and hydrazine hydrochloride (5.2 mmol) in MeOH or EtOH (7 mL) was stirred for 2 h at reflux. The solvent was removed and the residue was dissolved in CHCl₃ (20 mL) and washed with water (2 × 10 mL). The solution was dried with Na₂SO₄ and the solvent was evaporated. Then pure 1*H*-pyrazole-5carboxylic acids **9–12** were obtained. Yields, melting points, mass and ¹H, ¹³C NMR data are presented in Table 1 and elemental analysis in Table 2.

Acknowledgment

Financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçomento de Pessoal de Nível Superior (CAPES) is acknowledged. Two of us (SB and LP) thank the CNPq for doctoral and master fellowships.

References

- For part 18 in this series, see: Martins, M. A. P.; Bastos, G. P.; Sinhorin, A. P.; Zimmermann, N. E. K.; Rosa, A.; Brondani, S.; Emmerich, D.; Bonacorso, H. G.; Zanatta, N. *J. Fluorine Chem.* **2003**, *123*, 249.
- (2) (a) Frolund, B.; Jorgensen, A. T.; Tagmose, L.; Stensbol, T. B.; Vertergaard, H. T.; Engblom, C.; Kristiansen, U.;

Sanchez, C.; Krogsgaard-Laesen, P.; Liljefors, T. J. Med. Chem. 2002, 45, 2454. (b) Frolund, B.; Tagmose, L.;
Liljefors, T.; Stensbol, T. B.; Engblom, C.; Kristiansen, U.;
Krogsgaard-Larsen, P. J. Med. Chem. 2000, 43, 4930.
(c) Habeeb, A. G.; Praveen Rao, P. N.; Knaus, E. E. J. Med. Chem. 2001, 44, 3039. (d) Clark, R. D. J. Agric. Food Chem. 1996, 44, 3643. (e) Donohue, B. A.; Michelotti, E.
L.; Reader, J. C.; Reader, V.; Stirling, M.; Tice, C. M. J. Comb. Chem. 2002, 4, 23.

- (3) (a) Grünanger, P.; Vita-Finzi, P. In Chemistry of Heterocyclic Compounds: Isoxazoles, Vol. 49, Part 1; Wiley: New York, 1991. (b) Singh, S. P.; Kumar, D.; Batra, H.; Naithani, R.; Rozas, I.; Elguero, J. Can. J. Chem. 2000, 78, 1109. (c) Elguero, J. In Comprehensive Heterocyclic Chemistry, Vol. 5, 1st ed.; Katrittzky, A. R.; Rees, C. W., Eds.; Pergamon/Elsevier: Oxford, 1984, 167.
- (4) (a) Baurle, P. In *Electronic Materials: The Oligomeric Approach*; Müllen, K.; Wegner, G., Eds.; Wiley-VCH: Weinheim, **1998**, Chap. 2. (b) Otsubo, T.; Aso, Y.; Takimiya, K. *Bull. Chem. Soc. Jpn.* **2001**, *74*, 1789.
 (c) Fichou, D. *J. Mater. Chem.* **2000**, *10*, 571.
 (d) Dodabalapur, A.; Torsi, H.; Katz, H. E. *Science* **1995**, 268, 270.
- (5) (a) Martins, M. A. P.; Bastos, G. P.; Bonacorso, H. G.; Zanatta, N.; Flores, A. F. C.; Siqueira, G. M. *Tetrahedron Lett.* 1999, 40, 4309. (b) Bonacorso, H. G.; Martins, M. A. P.; Bittencourt, S. R. T.; Lourega, R. V.; Zanatta, N.; Flores, A. F. C. J. Fluorine Chem. 1999, 99, 177.
- (6) (a) In Organofluorine Chemistry: Principles and Commercial Applications; Banks, R. E.; Smart, B. E.; Tatlow, J. C., Eds.; Plenum: New York, 1994. (b) In Organic Chemistry in Medicinal Chemistry and Biochemical Applications; Filler, R., Ed.; Elsevier: Amsterdam, 1993. (c) Sargent, C. R. Adv. Heterocyclic Chem. 1991, 28, 1. (d) Clark, R. D. J. Agric. Food Chem. 1996, 44, 3643. (e) Habeeb, A. G.; Praveen Rao, P. N.; Knaus, E. E. J. Med. Chem. 2001, 44, 3039.

- (7) (a) Jiang, B.; Xu, Y.-Y.; Yang, J. J. Fluorine Chem. 1994, 67, 83. (b) Plancquaert, M.-A.; Redon, M.; Janousek, Z.; Viehe, H. G. Tetrahedron 1996, 52, 4383. (c) Bravo, P.; Diliddo, D.; Resnati, G. Tetrahedron 1994, 50, 8827. (d) Touzot, A.; Soufyane, M.; Berber, H.; Toupet, L.; Mirand, C. J. Fluorine Chem. 2004, 125, 1299. (e) Sloop, J. C.; Bumgardner, C. L.; Loehle, W. D. J. Fluorine Chem. 2002, 118, 135. (f) Sevenard, D. V.; Khomutov, O. G.; Pashkevich, K. I.; Lork, E.; Röschenthaler, G.-V. Helv. Chim. Acta 2002, 85, 1960.
- (8) (a) Martins, M. A. P.; Cunico, W.; Pereira, C. M. P.; Sinhorin, A.; Flores, A. F. C.; Bonacorso, H. G.; Zanatta, N. *Curr. Org. Chem.* 2004, *1*, 391. (b) Martins, M. A. P.; Pereira, C. M. P.; Zimmermann, N. E. K.; Moura, S.; Sinhorin, A.; Cunico, W.; Zanatta, N.; Bonacorso, H. G.; Flores, A. F. C. *Synthesis* 2003, 2353.
- (9) Flores, A. F. C.; Brondani, S.; Zanatta, N.; Rosa, A.; Martins, M. A. P. *Tetrahedron Lett.* **2002**, *43*, 8701.
- (10) ¹⁹F NMR in CDCl₃ from external CFCl₃ ($\delta = 0.0$ ppm): for 5-trifluoromethyl-4,5-dihydroisoxazoles and 5trifluoromethyl-1-phenyl-4,5-dihydropyrazoles the δ were in range -78.1 to -82.9 ppm; for 5-trifluoromethylisoxazoles $\delta = -64.1$ to -64.5 ppm; for 5-trifluoromethyl-1*H*-pyrazoles $\delta = -62.8$ to -63.5 ppm; from a mixture of isomers ([1,3] **15a'** and [1,5] **15a**) were obtained two signals at -62.8 and -64.1 ppm with the same intensity.
- (11) (a) Claramunt, R. M.; Lopez, C.; Trofimenko, S.; Elguero, J. *Can. J. Chem.* **1993**, *71*, 678. (b) Foces-Foces, C.; Trofimenko, S.; Lopez, C.; Santa Maria, M. D.; Claramunt, R. M.; Elguero, J. *J. Mol. Struct.* **2000**, *526*, 59.
- (12) Martins, M. A. P.; Flores, A. F. C.; Bastos, G. P.; Sinhorin, A. P.; Zanatta, N.; Bonacorso, H. G. *Tetrahedron Lett.* **2000**, *41*, 293.
- (13) Chapman, A. V.; Cook, M. J.; Katritzky, A. R.; Aabraham, M. H.; Danil de Namor, A. F.; Dumont, L.; Reisse, J. *Tetrahedron* **1978**, *34*, 1571.